Engine diagram BMW 323i 1998 E36 User Guide

Page 166 of 759


130-20



FUEL
INJECTION

Fig
.
29
.
Throttleposition
sensor
terminal
identification
on
M50
engine
.

Tableg
.
Throttle
Position
Sensor
Tests

(DME3
.113
.3
.1)

Test
conditions



I
Terminals



I
Testvalue

Harness
connector



13
andground



15
VDC
(approx
.)
disconnected,
igni-



in
harness
tion
on



connector

Harness
connector



1
and3
at
sen-
14
k
ohms
(approx
.)
disconnected,
igni-



sor
terminals
tion
off

Throttle
plate
rotat-



1
and
2
at
sen-



Variable
from
1
-
4ked
from
¡dieto
full



sor
terminals



ohms
(approx
.)
with-
throttle
position



out
interruption



¡die
Speed
Control
Valve
Coil
Resistance
Values

"
M50/S50US
engine

NOTE-



Terminals
1
and
2
..
.
................
20
t
5
ohms

On
cars
with
tractioncontrol,
do
not
confuse
the
throttle



Terminals
2
and
3
...................
20
t5
ohms
position
sensor
on
the
main
throttle
body
with
the
throt-



Terminals
1
and
3
..
.
..
:
............
.40
t
5
ohms
tle
positionswitch
on
the
secondary
throttle
body,
where
applicable
.

¡die
speed
control
valve,
testing

¡die
speed
is
maintained
by
the
ECM
through
the
¡die
speed
control
valve
.
The
¡die
controlfunction
compensates
for
engine
load
and
engine
operating
conditions
.
¡die
speed
is
adaptive
through
the
ECM
and
no
¡die
speed
adjustments
can
be
made
.

NOTE-
Before
testing
the
valve,
confirm
that
the
throttle
position



The
idle
speed
controlvalve
receives
positive
(+)
bat-
sensor
is
working
correctly
.



tery
voltage
from
the
main
relay
.

BOSCH
DME
M3
.
1
AND
M3
.3
.1
COMPONENT
TESTS
AND
REPAIRS

NOTE-

"
The
tests
given
below
are
electrical
checks
only
.
They

do
not
check
the
mechanical
operation
of
the
valve
.
If
the
valve
is
suspected
of
causing
poor
idie,
substitut-
ing
a
known
good
valve
is
the
best
way
to
check
for
a
mechanical
fault
.

1
.
With
engine
running,
check
that
¡die
speed
control

valve
is
buzzing
.

2
.
Turn
on
A/C
or
shift
car
finto
drive
.
¡die
should
remain
steady
orincrease
slightly
.

3
.
If
valve
is
not
buzzing,or
if
¡die
decreases
in
step
2,

stop
engine
and
disconnect
harness
connector
from
valve
.
Check
resistance
of
valve
across
its
terminals
.

See
Fig
.
30
.
Test
values
are
listed
below
.

NOTE
-

If
you
suspect
an
intermittent
fault,
lightly
tapthe
valve
while
testing
resistance
.

11250

Fig
.
30
.
¡die
speed
control
valve
terminal
identification
.

4
.
With
valve
harnessconnector
disconnected,
check
for
battery
voltage
at
red/white
wire
in
connector
with
igni-

tion
tumed
on
.

"
If
there
is
no
voltage,
check
wiring
between
connec-
tor
and
main
relayterminal
87
.
See
Electrical
Wiring
Diagrams
.

5
.
If
voltage
is
presentas
described
above,
check
wiring
between
ECM
and
valve
.
If
no
wiring
faults
are
found,
check
ECM
signal
to
valve
.

Page 173 of 759


0013ZIM
Fig
.
42
.
Engine
control
module
(ECM)
located
in
compartment
in
right-rearof
engine
compartment
(arrow)
.

NOTE-

Replacement
ECMs
must
be
coded
with
application
in-
formation
(Le
.
engine
code,
transmission
type,
etc
.)
pri-
or
to
installation
.
Consult
an
authorized
BMW
dealer
before
replacing
the
ECM
.

ECM
pin
assignments
are
given
in
Tables
h
through
Table
I.
This
information
can
be
helpful
when
diagnosing
faultsto
or
from
the
ECM
.
If
al¡
inputs
and
wiring
are
OK
butoperational
problems
still
exist,
the
ECM
itself
may
be
faulty
.

Fig
.
43
.
ECM
pin
numbers
as
seen
from
back
of
ECM
connector
.

FUEL
INJECTION



130-
2
7

Generally,
absence
of
voltage
or
continuity
means
there
is
a
wiring
or
connector
problem
.
Test
results
with
incorrect
values
do
notnecessarily
mean
that
a
component
is
faulty
:
Check
for
loose,
broken
or
corroded
connections
and
wiring
before
re-
placing
components
.
If
the
results
are
still
incorrect,
test
the
component
itself
.
For
engine
management
system
electrical
schematics,
see
Electrical
Wiring
Diagrams
.

CAUTION-

Always
waitat
least
40
seconds
after
tuniing
off
the
ignition
before
removing
the
connector
from
the
engine
control
module
(ECM)
.
If
the
connec-
tor
is
removed
before
this
time,
residual
power
in
the
system
relay
may
damage
the
ECM
.

"
Always
connector
disconnect
the
control
module
connector
and
meter
probes
with
the
ignitionoff
.

When
making
checks
at
the
ECM
itself,
a
breakout
box
should
be
used
to
allow
tests
to
be
made
with
the
connector
attached
to
the
ECM
.
This
also
prevents
damage
tothe
small
termínals
in
the
connector
.
As
an
alternative,
theharness
con-
nector
housing
can
be
separated
so
that
electrical
checks
can
be
made
from
the
back
of
the
connector
.
ECM
pin
numbering
is
shown
in
Fig
.
43
.

NOTE
-

On
cars
with
tractioncontrol,
do
not
confuse
the
throttle
position
sensor
on
the
main
throttle
body
with
the
throt-
tle
position
switch
on
the
secondary
throttle
body
.

27
Lb
2L4
LJ
22
©©®®17
©©®©©~©©®©~~rui~~ru

®®®®®®®®®®®®®®®IZA®®®®®®®®®®®®®®®®®

1
>I-
0013211

ECM
PIN
ASSIGNMENTS

Page 191 of 759


Fig
.
9
.



Fuel
pump
relay
terminal
identification
.

Fuel
Pump
Electrical
Tests

Troubleshooting
of
any
fuel
pump
fault
should
begin
with

checking
the
fuel
pump
fuse
and
the
fuel
pump
relay
.
The
DME
main
relay
should
also
be
checked
.

NOTE-

Special
tools
are
requíred
for
some
of
the
tests
de-
scribed
here
.

Fuel
pump
electrical
circuit,
testing

The
fuel
pump
electrical
circuit
diagram
is
shown
in
Fig
.
10
.

3
.
If
fuel
pump
does
not
run,
disconnect
black
harness

connector
from
tank
sender
unit
.
With
jumper
wire
con-

nectedas
described
in
step
2
above,
check
for
positive

(+)
batteryvoltage
at
harness
connector
terminals
.
See
Fig
.
11
.

FUEL
TANK
AND
FUEL
PUMP



160-
7

From
Main
Relay
(+15
power
with
key
in
run



From
B+juretion
point
orstartposition)
(batteryvoRageatalltirnes)

'
.5
RD/Nrr



1
.5
RD

1
.5
GNNI

From
Engine



2
.5
GNNI
Control
Module



15
2
.5
GNNI

Ground
(below
center
console)

Fig
.
10
.
Fuel
pump
electrical
circuit
.

30

-~
Relay
Fuel
Pump

8~T

I



1

s
ám
61
Front
Power
I



a
1
Distribution
Box
I_
16

WIRING
COLOR
CODE

BK
-
BLACK
BR
-
BROWN
Fuel
Pump



RD



-



RED
(in-tank)
M
YL
YELLOWGN
-
GREENBU
-
BLUE
1
VI
-
VIOLET
GY
-
GREY
WT
-
WHITE
PK
-
PINK

0011946

4
.
If
voltage
and
groundare
present,
fuel
pump
is
proba-
bly
faulty
.
If
there
is
no
voltage,
check
wiring
From
fuel
pump
Reay
and
make
sure
Reay
is
functioning
correctly
.

CAUTION-

Fuseandrelaylocationsmayvary
.
Usecara
when



Fuel
pump
power
consumption,
testing

troubleshooting
the
electrical
system
at
the
fuselrelay
panel
.
To
resolve
problems
in
identify-



NOTE-
ing
a
relay,
see
en
authorízed
BMW
dealer
.



"
To
achieveaccurate
testresults,
fhe
battery
voltage
at
the
connector
should
be
approximately
13
volts
.
1.
Remove
rearseat
cushion,
pull
right
side
insulation
mat



Charge
the
battery
asnecessary
.

back
to
expose
fuel
tank
accesscover
.
Remove
cover



.
q
higher
than
normal
power
consumption
usually
fin-
to
expose
wiring
connections
.



dicates
a
worn
fuel
pump,
which
may
cause
intermit-
tentfuel
starvation
due
lo
pump
overheating
and
2
.
Remove
fuel
pump
relay
and
opérate
fuel
pump
as
de-



seizure
.
The
only
remedy
is
pump
replacement
.
Be
scribed
under
Operating
fuel
pump
for
tests
earlier
.



sure
to
check
that
thereturn
fine
and
the
pump
pickup
Pump
should
run
.
Disconnect
jumper
wire
when
fin-



are
not
obstructed
before
replacing
the
pump
.

ished
.
1
.
Remove
rear
seat
cushion,
pull
right
side
insulation
mal
back
to
expose
fuel
tank
accesscover
.
Remove
cover
to
expose
wiring
connections
.

2
.
Disconnect
(black)
harness
connector
from
fuel
pump
.

3
.
Connect
an
ammeter
and
an
insulated
jumper
wire
be-

tween
terminals
in
connector
and
corresponding
pump

terminals
.
See
Fig
.
12
.

FUEL
PUMP

Page 199 of 759


NOTE-

Some
cars
covered
by
this
manual
may
have
an
alter-
nate
cooling
fan
switchwith
switching
temperatures
of
176%190W
(80%88°C)
.
When
replacing
the
switch
check
theswitching
specifications,
whichshouldbe
stamped
on
the
switch
body
.

1
.
If
coolant
is
circulating
at
normal
operating
tempera-
ture,
but
auxiliary
cooling
fan
does
not
run,
disconnect
connector
from
radiator
temperature
switch
and
make
tests
listed
in
Table
c
.

Table
c
.
Auxiliary
Cooling
Fan
Temperature

Switch
Tests

Wires
jumpered



Test



Test
resuits
conditions

Black/green
(terminal2)
and



Ignition
ON



Fan
runs
on
brown
(terminal
1)



low
speed

Black/gray
(terminal
3)
and



Ignition
ON



Fan
runson
brown
(terminal



I
1)



high
speed
2
.
If
fan
runs
only
when
powered
directly
by
jumpered
connector
and
hot
coolant
is
circulating
through
radia-
tor,
radiator
temperature
switch
is
most
likelyfaulty
.
Use
a
new
sealing
ring
when
replacing
switch

Tightening
Torque

"
Temperature
switch
to
radiator
......
15
Nm
(11
ft-Ib)

3
.
If
auxiliary
fan
does
notrun
when
powered
directly,
check
for
battery
voltage
at
temperature
switch
connec-
tor
(black/green
wire)
with
ignition
on
.
If
battery
voltage
is
not
present,
check
fuses
.
See
610
Electrical
Com-
ponent
Locations
.

RADIATOR
AND
COOLING
SYSTEM



170-
5

~r~nmm
a
00
0

Fig
.
4
.



Auxiliary
radiator
cooling
fan
low
speed
relay
(1)
and
high
speed
relay
(2)
in
power
distribution
box
.
(Relay
locations
may
vary
.)

Auxiliary
Cooling
Fan
Circuit
Fuses



Fig
.
5
.
Auxiliary
radiator
fan
resistor
(arrow)
.
"
Fuse16
.
...................
..
..
...
...
.5
amp

"
Fuse
41
(ex
.
M44
w/man
.
trans)
.
..
.
..
.....
30
amp

"
Fuse
48
(M44
w/man
.
trans
.
only)
..
.
..
.....
40
amp



COOLING
SYSTEM
SERVICE

0013034

4
.
If
no
faults
are
found,
remove
low
speed
relay
and
turn



Coolant,draining
and
filling

ignition
ON
.
See
Fig
.
4
.



1
.
Remove
expansion
tank
cap
.
Set
temperature
controls
"
Check
for
power
at
terminal
30
and
terminal
86
of
relay



to
full
warm
.
socket
.

"
Reinstall
low
speed
relay
and
repeat
testat
high
speed



WARNING
-
relay
socket
.
Fix
any
wiring
faults
found
.



Allow
the
cooling
system
to
cool
before
openlng
or

On
early
productioncars
(up
to
9/92)
:
If
fan
operates
only
on



draining
the
cooling
system
.

high
speed
and
no
electrical
faults
have
been
foundup
to
this
point,
usean
ohmmeter
to
check
that
fan
resistor
is
not
electri-



2
.
Place
3
ra
allo

ug
.



beneath
radiator
drain
plug
and
re-

cally
open
.
Resistor
is
mounted
on
auxiliary
cooling
fan
housing



move
drain
plg
.
See
Fig
.
6
.

behind
front
grille
.
See
Fig
.
5
.
Wiring
diagrams
for
the
radiator

cooling
fan
canbefoundunder
Electrical
Wiring
Diagrams
.



3
.
Place
3-g



pail
beneath
rear
of
engine
blo
.
Loos-
en
and
re

mlon

ove
engine
blockcoolant
drain
plug
k
.

COOLING
SYSTEM
SERVICE

Page 239 of 759


Fig
.
10
.
Align
contact
slide
(1)
with
slot
in
switch
housing
(2)
before
in-
stalling
gear
position/neutral
safety
switch
.

Fig
.
11
.
Engage
release
button
pin
to
hole
in
pull
rod
before
installing

The
automatic
shiftlock
uses
an
electríc
solenoid
to
lock
the
selector
lever
in
P
or
N
.
Depressing
the
foot
brake
withthe
ig-
nition
on
energizes
the
solenoid,
allowingthe
lever
to
be
moved
into
a
drive
gear
.
The
solenoid
is
energized
only
when

the
engine
speed
is
below
2,500
rpmand
thevehicle
speed
is

below
3
mph
.
The
solenoid
ís
mounted
in
the
right-hand
side

of
theselector
lever
housing
.
See
Fig
.
12
.

1
.
With
engine
running
and
car
stopped,
place
selector
le-
ver
in
P
or
N
.

2
.
Without
depressing
brake
pedal,
check
that
selector
le-

ver
is
locked
in
position
P
or
N
.

3
.
Depress
brakepedal
firmly
.
Solenoid
should
be
heard

to
energize
.

GEARSHIFT
LINKAGE



250-
5

Fig
.
12
.
Automatic
shiftlock
prevents
drive
gear
selection
until
the
brakepedal
is
depressed
.

4
.
Check
thatselector
lever
can
now
be
moved
out
of
P
or
N
.

NOTE
-

The
next
test
should
be
performed
in
anopen
area
with
the
parking
brake
on
and
with
extreme
caution
.

5
.
With
selector
lever
in
P
or
N
and
brake
pedal
de-

pressed,
raise
engine
above
2,500
rpm
.
Check
that
se-

lector
lever
cannotbe
moved
outof
P
or
N
.

shift
lever
handle
.



If
any
faults
are
found
check
the
electrical
operation
of
the
shiftlock
solenoid
and
check
for
wiring
faultsto
or
from
the
Automatic
shiftiock,
checking
function



transmission
control
module(TCM)
.
See610
Electrical

(automatic
transmission)



Component
Locations
and
Electrical
Wiring
Diagrams
.

NOTE
-

The
solenoid
is
controlled
viathe
TCM,
using
brakepedal
position,
engine
speed,
and
road
speed
as
con-
trolling
inputs
.

AUTOMATIC
TRANSMISSION
GEARSHIFT

Page 381 of 759


600
Electrical
System-General

GENERAL
.
...........
.
.
.
.
.
.
.
.
.
...
.
...
600-1

Voltage
and
Polarity
........
.
.
.
.
.
.
.
.....
600-1

Ming,
Fuses
and
Relays
............
.
.
.
.
600-1

Electrical
System
Safety
Precautions
...
.
.
.
.
600-1

Electrical
Test
Equipment
.....
.
.
.
....
.
.
.
.
600-2

WIRING
DIAGRAMS
..
.
.
.
.
.
.
.
.
.
........
600-2

Ming
Codes
and
Abbreviations
..
.
...
.
....
600-2

ELECTRICAL
TROUBLESHOOTING
..
.
..
600-3

Voltage
and
Voltage
Drops
..........
.
.
.
.
.
600-4

GENERAL



Electrical
System
Safety
Precautions

A
brief
description
of
the
principal
parts
of
the
electrical
sys-
tem
is
presented
here
.
Also
covered
here
are
basic
electrical
system
troubleshooting
tips
.

Voltage
and
Polarity

The
vehicle
electrical
system
is
a
12-volt
direct
current
(DC)
negative-ground
system
.
A
voltage
regulator
controls
system
voltage
at
approximately
the
12-volt
rating
of
the
battery
.
Al¡
circuits
are
grounded
by
direct
or
indirect
connection
to
the

negative
(-)
terminal
of
the
battery
.
A
number
of
ground
con-

nections
throughout
the
car
connect
the
wiring
harness
to

chassis
ground
.
These
circuits
are
completedby
the
battery

cable
or
ground
strap
between
the
body
and
the
battery
nega-

tive
(-)
terminal
.

Wiring,
Fuses
and
Relays

Nearly
all
parts
of
the
wiring
harnessconnect
to
compo-

nents
of
the
electrical
system
with
keyed,
push-on
connectors

that
lock
into
place
.
Notable
exceptions
arethe
heavy
battery

cables
and
the
starter
wiring
.
The
wiring
is
color-coded
for
cir-

cuitidentification
.

With
theexception
of
the
battery
charging
system,
most

electrical
power
is
routed
from
the
ignition
switch
or
the
bat-
tery
through
the
main
fuse/relay
panel,
located
in
¡he
left
rear

comer
of
the
engine
compartment
.
Fuses
are
color
coded
to

indicate
current
capacities
.

The
relays
and
control
units/modules
are
mounted
in
vari-

ous
places
throughout
the
vehicle
.
See610
Electrical
Com-

ponent
Locations
.

ELECTRICAL
SYSTEM-GENERAL
600-1

Voltage,
measuring
.
.
.
................
.
.
600-4

Voltage
drop,
testing
.
.
.....
.
.....
.
......
600-4

Continuity,
checking
..
.
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
600-5
Short
Circuits
.
.
.
.
.
.
.
.
.....
.
...
.
.
.
.
.
.
.
.
.
600-5

Short
circuit,
testing
with
ohmmete'r
.
.
.
.
.
.
.
.
.
600-6

Short
circuit,
testing
with
voitmeter
.
.
.
.
.
.
.
.
.
600-6

TABLES
a
.
Terminal
and
Circuit
Numbers
..............
..
.600-3
Please
read
the
following
warnings
and
cautions
before
do-
ing
any
work
on
your
electrical
system
.

WARNING
-

"
The
cars
covered
by
this
manual
are
equipped
with
aSupplemental
Restraint
System
(SRS)
that
automatically
deploys
one
or
more
airbags
.
Each
airbag
unit
houses
an
explosive
powerful
charge
.
Any
work
involving
the
SRS
system
should
only
be
performed
byan
authorized
BMW
dealer
.
Making
repairs
without
the
proper
knowledge
and
special
test
equipment
may
cause
serious
per-
sonal
injury
.
See
721
Airbag
System
(SRS)
.

"
The
ignition
system
of
the
car
operates
at
lethal
voltages
.
People
with
pacemakers
or
weak
hearts
should
not
expose
themselves
to
the
ignition
sys-
tem
.
Extra
caution
mustbe
taken
when
working
on
the
ignition
system
or
when
servicing
theen-
gine
while
it
is
runningor
the
key
is
on
.
See
120
Ignition
System
for
additional
ignition
system
warnings
and
cautions
.

"
Before
operating
the
starter
without
starting
the
engine
(as
when
making
a
compressfon
test),
dis-
able
the
ignition
system
as
described
in
120
Igni-
tion
System
.

"
Keep
hands,
clothing
and
other
objects
clear
of
the
electric
radiator
coollng
fan
when
working
on
a
warm
engine
.
The
fan
may
start
at
any
tíme,
even
when
the
ignition
is
switched
off
.

GENERAL

Page 382 of 759


600-2



ELECTRICAL
SYSTEM-GENERAL

CAUTION
-

"
Always
turn
off
the
engine
and
disconnect
the

negative
()
cable
from
the
batterybefore
remov-

ing
any
electrical
components
.
Disconnecting
the

battery
may
erase
fault
code(s)
stored
in
control

module
memory
.
Check
for
fault
codes
using
spe-
cial
BMW
diagnostic
equipment
.

"
Prior
to
disconnecting
the
battery,
read
the
bat-

tery
disconnection
cautions
given
at
the
front
of

this
manual
onpage
viii
.

"
Connect
and
disconnect
ignition
system
wires,
multiple
connectors,
and
ignition
test
equipment
leads
only
while
the
ignition
is
off
.

"
Do
not
disconnect
the
battery
with
engine
run-

ning
.

"
Do
not
quick-charge
the
battery
(for
boost
start-
ing)
for
longer
than
one
minute,
and
do
not
ex-
ceed
16
.5
volts
at
the
battery
with
the
boosting
cables
attached
.
Wait
at
feast
one
minute
before
boosting
the
battery
a
second
time
.

"
Do
not
usea
test
famp
that
has
a
normal
incan-

descent
bulb
to
test
circuits
contafning
electronic
components
.
The
high
electrical
consumptionof
these
test
lamps
may
damage
the
components
.

"
Do
not
use
an
analog
meter
.
Use
onfy
a
digital
multimeter
.

"
Many
of
the
solid-state
modules
are
static
sensi-
tive
.
Static
discharge
will
permanently
damage
them
.
Always
handle
the
modules
using
proper
static
prevention
equipment
and
techniques
.

"
To
avoid
damaging
harness
connectors
or
relay
panel
sockets,
use
jumper
wires
with
flat-blade
connectors
that
are
the
same
size
as
the
connec-
tor
or
relay
terminals
.

"
Always
switch
a
digital
multimeter
to
the
appropri-
ate
function
and
range
before
making
test
con-
nections
.

"
Do
not
tryto
start
the
engine
of
a
carwhich
has
been
heated
above176°F
(80°C),
(for
example,
in
a
paint
dryingbooth)
.
Allow
it
to
cool
to
normal
temperature
.

"
Disconnect
the
battery
before
dolng
any
electric
welding
on
the
car
.

"
Do
not
wash
the
engine
while
it
is
runnfng,
or
any-
time
the
ignition
is
switched
on
.

WIRING
DIAGRAMS

Electrical
Test
Equipment

Many
of
the
electrical
tests
described
in
this
manual
call
for

measuring
voltage,
currentorresistanceusing
a
digital
multi-

meter
(DMM)
.
Digital
meters
are
preferred
for
precise
mea-

surements
and
for
electronics
work
because
they
are
generally
more
accuratethan
analog
meters
.
The
numerical

display
is
alsoless
likely
to
be
misread,
since
there
is
no
nee-

dle
position
to
be
misinterpreted
by
reading
at
an
angle
.

An
LED
test
light
is
a
safe,
inexpensive
tool
that
can
be
used

to
perform
many
simple
electrical
tests
that
would
otherwise

require
a
digital
multimeter
.
The
LED
indicates
when
voltage

is
present
between
anytwo
test-points
in
a
circuit
.

CA
UTION-

"
Choose
test
equipment
carefully
.
Use
a
digital

multimeter
with
at
leadt
10
megaohm
input
im-

pedance,or
an
LED
test
light
.
An
analog
meter
(swing-need1e)
ora
test
light
with
a
normal
incan-
descent
bulb
may
draw
enough
current
to
dam-
age
sensitive
electronic
components
.

"
An
ohmmeter
must
not
beused
to
measure
resis-
tance
on
solidstate
components
suchas
controlunits
or
time
delay
relays
.

"
Always
disconnect
the
battery
before
making
re-

sístance
(ohm)
measurements
on
the
circuit
.

WIRING
DIAGRAMS

The
wiring
diagrams
shown
in
Electrical
Wiring
Diagrams

have
been
specially
designed
to
enable
quick
and
efficientdi-

agnosis
and
troubleshooting
of
electrical
malfunctions
.

Wiring
Codes
and
Abbreviations

A
lot
of
information
is
included
in
each
wiring
diagram
if
you
know
how
to
read
them
.
Wire
colors
in
the
diagrams
are
ab-

breviated
.
Combined
color
codes
indicate
a
multi-colored
wire
.
For
example
the
code
BLU/RED
indicates
a
Blue
wire

with
a
Red
stripe
.

Many
electrical
components,
connectors,
fuses,
and

ground
locations
are
identified
using
a
unique
number
.
Each

of
there
numbers
corresponds
to
a
particular
part
in
the
circuit
commonly
found
in
Electrical
Wiring
Diagrams
.

Page 385 of 759


Continuity,
checking
Short
Circuits

from
Battery

CAUTION-

Use
only
a
high
quality
digital
ohmmeter
having
high
input
impedance
when
checking
electronic
componente
.
The
internal
power
source
used
in
most
analog
(swing-need1e)
meterscan
damage
solidstate
components
.

0013239

Fig
.
2
.



Digital
multimeter
being
used
to
check
for
voltage
drop
across
a
switch
.

The
continuity
test
can
beused
to
check
a
circuit
or
switch
.
Because
most
automotive
circuits
are
designed
to
have
little

or
no
resistance,
a
circuit
or
part
of
a
circuit
canbe
easily

checked
for
faults
using
an
ohmmeter
.
An
open
circuit
or
a
cir-

cuit
withhigh
resistance
will
not
allow
current
to
flow
.
A
círcuit
with
little
or
no
resistanceallows
current
to
flow
easily
.

When
checking
continuity,
the
ignition
should
be
off
.
On
cir-
cuits
that
are
powered
at
all
times,
the
battery
should
be
dis-
connected
.
Using
the
appropriate
wiring
diagram,
a
circuit
can
be
easily
tested
for
faulty
connections,
wires,
switches,
relays,
and
engine
sensorsby
checking
forcontinuity
.
For
a
continu-
ity
check
on
a
brake
light
switch,
see
Fig
.
3
..

A
short
circuit
is
exactly
what
the
narre
implies
.
The
circuit
takes
a
shorter
paththan
it
was
designed
to
take
.
The
most

common
short
that
causes
problems
is
a
short
to
ground

where
the
insulation
on
a
positive
(+)
wire
wears
away
and
the

metal
wire
is
exposed
.
When
the
wire
rubs
against
a
metal

partof
thecar
or
other
ground
source,
the
circuit
is
shorted
to
ground
.
If
the
exposed
wire
is
live
(positive
battery
voltage),
a

Puse
will
blow
and
the
circuit
may
possibly
be
damaged
.

ELECTRICAL
SYSTEM
-
GENERAL
600-
5

Brake
light
switch

Brake
pedal
in
rest
position

Q

Brake
pedal
depressed
Brake
light
switch

Fig
.
3
.



Brake
light
switchbeing
tested
for
continuity
.
With
brake
ped-
alin
rest
position
(switch
open)
there
is
no
continuity
(infinite
ohms)
.
With
pedal
depressed
(switch
closed)
there
is
continu-
ity
(zero
ohms)
.

Shorts
to
groundcanbe
located
with
a
digital
multimeter
.
Short
circuits
are
often
difficult
to
locate
and
may
vary
in
na-
ture
.
Short
circuits
can
befound
using
a
logical
approach
based
onthe
current
path
.

CAUTION
-

"
On
circuits
protected
with
high
rating
fuses
(25
amp
and
greater),
the
wires
or
circuit
compo-
nents
may
be
damaged
before
the
fuse
blows
.
Always
check
for
damage
before
replacing
fuses
of
this
rating
.

"
When
replacing
blown
fuses,
use
only
fuses
hav-
ingthe
correct
rating
.
Always
confirm
the
correct
fuse
rating
printed
on
the
fuselrelay
panelcover

DC

ELECTRICAL
TROUBLESHOOTING

Page 456 of 759


640-10



HEATING
AND
AIR
CONDITIONING

i

El
Radio

Antenna

Rear



.
,



si,-
Left
side



I
d

1
.
Rear
vents
2
.
Fresh
air
3
.
Face-level
vents
4
.
Recirculation
5
.
Footwell
vents
0013017

Fig
.
28
.
Location
oflate
production
air
distribution
motors
in
heater
box(shown
in
rear,
side
and
top
views)
.

Heater
andA/C
air
distribution
motor,

replacing
(rotary-knob)

1
.
Toaccess
left
side
motors
(dash
vent
mixing
or
recircu-

lation
flap),
remove
lower
dash
panel
and
knee
bolster

on
driver
side
.
See
513
Interior
Trim
.

2
.
To
access
right
side
motor
(fresh
air
flap),
remove
glove

compartment
.
See513
Interior
Trim
.

3
.
Each
motor
can
be
removed
after
its
electrical
wiring

harness
connector
has
been
removed
.
Squeeze
plastic

clip
to
release
motor
.
See
Fig
.
29
.

Fig
.
29
.
A/
C
air
distribution
motor
plastic
retaíning
clip
(arrow)
.
Re-
lease
clip
and
tilt
motor
out
of
housing
.

Rear
Window
Defogger

0011877

The
rear
window
defogger
switch
is
integrated
with
the
heating
andA/C
control
head
.

HEATER
AND
CONTROLS

Fig
.
30
.
Wiring
diagram
of
rear
window
defogger
and
radio
antenna
.

Rear
Window
Blower
(Convertible
Models)

A
blower
fan,
fitted
into
the
rear
seatback,
defogs
therear

window
.
It
will
only
operate
with
the
engine
nunning
and
the

top
raised
.
A
microswitch
behindthe
rear
seats
provides
the

signal
that
thetop
is
raised
.

To
access
the
blower
fan
motor,
it
is
necessary
to
remove

four
screwsfrom
the
center
seat
back
.
Remove
the
wiring
har-

ness
connector
and
motor
mounting
boits,
then
remove
motor

by
pulling
it
down
and
forward
.
See
Fig
.
31
.

ri

Suppressor
filter

1
0013005

Fig
.
31
.
Rear
window
blower
in
center
of
rear
seat
back
(arrow)
.

The
electric
rear
window
defogger
is
integrated
with
the
ra-

dio
antenna
.
See
Fig
.
30
.



y



/f



0013014

Page 459 of 759


Fig
.
36
.
6-cylinder
engine
belt
diagram
:
To
remove
A/C
belt,
lever
ten-
sioner
(A)
in
clockwise
direction
using
long-handled
wrench
or
breaker-bar
.

6
.
Disconnect
electrical
harness
connector
from
com-
pressor
.

7
.
Remove
A/C
pressure
hose
and
suction
hose
flange



10
.
Before
recharging,
evacuate
system
for
at
least
30
min
.
bolts
from
compressor
.
Plug
hoses
immediately
See



Recharge
system
following
equipment
manufacturer's

Fig
.
37
.



instructions
.
See
Table
d
.
A/C
System
Refrigerant

Capacities
.

0011879

Fig
.
37
.
A/
C
compressor
pressure
hose
(A)
and
suction
hose
(B)
.
(6-
cylinder
engine
shown
.
4-cylinder
engine
is
similar
.)

HEATING
AND
AIR
CONDITIONING



640-
1
3

Fig
.
38
.
A/
C
compressor
mounting
boits
(arrows)
.

9
.
Installation
is
reverseof
removal
.

CAUTION
-

"
Always
replaceO-rings
when
reconnecting
re-
frigerantfines
.

"
When
installlng
a
new
compressor
always
re-
place
receiverldrier
unit
.

Tightening
Torques

"
A/C
compressor
to
engine
block
....
22
Nm
(17
ft-Ib)
"
A/C
line
flange
to
A/C
compressor
5/8
in
.
fine
.
......
.....
....
.
.....
20
Nm
(15
ft-Ib)

3/4
in
.
fine
.......
.....
..........
39
Nm
(29
ft-Ib)

7/8
in
.
fine
...
....
.....
..........
42
Nm
(31
ft-Ib)

11/16
in
.
fine
.....
..
..
..
...
.
.....
48
Nm
(35
ft-Ib)

A/C
Compressor
Clutch

The
compressor
clutch
can
be
replaced
without
disturbing

thesealed
refrigerant
system,
although
clearances
in
the
six-

cylinder
cars
may
be
very
tight
.
Detach
the
compressor
from

the
compressor
bracket
togain
extra
clearance
.

8
.
Remove
compressor
mounting
boits
.
See
Fig
.
38
.
Re-



Typical
A/C
compressor
and
clutch
is
shown
in
Fig
.
39
.
move
compressor
by
pulling
downward
from
under-

neath
car
.



Remove
driveplate
and
pulley
to
access
clutch
magnetic

winding
.
See
Fig
.
40
.

AIR
CONDITIONING

Page:   < prev 1-10 11-20 21-30 31-40 41-50 51-60 ... 130 next >