engine BMW M3 1992 E36 Workshop Manual

Page 187 of 759


2
.
Remove
fuel
tank
filler
cap
.

3
.
Remove
rearseat
cushion
and
pull
back
insulation
mats
to
expose
fuel
tank
access
covers
.
See
Fig
.
2
.

uui3140

Fig
.
2
.



Right
side
fuel
tank
access
cover
under
rear
seat
cushion
.

4
.
Remove
right
and
left
access
covers
to
expose
fuel
hoses
and
electrical
connections
at
tank
.

5
.
Label
fuel
hoses
.
Then
disconnect
hoses
and
harness
connectors
from
fuel
sending
units
and
fuel
pump
.
See
Fig
.
3
.

FUELTANK
AND
FUEL
PUMP



160-
3

NOTE-

"
If
necessary,
push
fuel
level
sender
arm
toward
fuel
pump
assembly
to
facilitate
removal
.

"
BMW
special
tool
no
.
16
1
020
should
beused
tore-
move
and
install
the
threaded
collar
.
Damage
to
thecollar
may
result
if
the
special
tool
is
not
used
.

"
Pump
out
contents
of
each
tanklobe
using
approved
pumpinglextraction
equipment
and
flexible
fuel-grade
hose
.

WARNING
-

Fuel
may
be
spilled
.
Do
not
smoke
or
work
near
heaters
or
other
fire
hazards
.

7
.
Installation
of
sending
units
is
reverse
of
removal,
not-
ing
the
following
:

"
Use
new
sealing
rings
when
installing
pump/sending
unit
assemblies
.
"
Be
sure
that
fuel
line
connections
point
in
same
direc-tion
as
they
carne
out
.
"
Fill
tank
and
check
for
leaks
by
running
engine
.

CA
UTION-

Before
starting
the
engine,
fill
the
fuel
tank
with
at
least
1.5
gallons
(5liters)
of
fuel
.
The
pump
will
be
damaged
if
you
run
it
without
fuel
.

Fuel
tank,
removing
and
installing

1.
Disconnect
negative
(-)cablefrom
battery
:

CAUTION-

Prior
to
disconnectiog
the
battery,
read
the
battery
disconnection
cautions
given
at
the
front
of
this
manual
onpage
viii
.

2
.
Remove
fuel
tank
filler
capand
drain
tank
as
described
earlier
.

3
.
Working
in
left
access
tank
access
hole
(under
rear

seat
cushion),
remove
vent
pipe
fromtank
.

4
.
Working
inside
car,
disconnectparking
brake
cable
ends
from
parking
brake
lever
.
See
340
Brakes
.

5
.
Working
underneath
car,
gently
pry
fuel
lines
away
from
retaining
bracket
in
front
of
tank
.
Remove
clamps
and
disconnect
fuel
hoses
as
shown
in
Fig
.
4
.

6
.
Remove
exhaust
system
and
heat
shield
as
described

ooisiai



in
180
Exhaust
System
.
See
Fig
.
5
.

Fig
.
3
.



Fuel
pump/fuel
level
sender
assembly
in
top
offuel
tank
(right
side
shown)
.
Disconnect
supply
hose
(A),
return
hose
(B)
and



7
.
Remove
driveshaft
.
See
260
Driveshaft
.
harness
connector
(C)
.

8
.
Pull
parking
brake
cables
backward
away
from
bottom
of

6
.
Unscrew
threaded
collars
from
fuel
tank
.
Slowly
with-



fuel
tank,
disengaging
them
from
brackets
as
needed
.

draw
fuel
sender
assemblies
from
tank,allowing
fuel
to
drain
off
.

FUEL
TANKAND
LINES

Page 188 of 759


160-
4



FUEL
TANK
AND
FUEL
PUMP

Fig
.
4
.



Pinch
off
supply
and
retum
fuel
hoses
(arrows)
before
dis-
connecting
from
rigid
metal
lines
.

0013143

Fig
.
5
.
After
removing
exhaustsystem,
remove
heat
shield
screws
(arrows)
and
heat
shield
.

9
.
Working
underneath
car,
loosen
hose
clamp
and
dis-

connect
filler
hose
.

10
.
Support
tank
from
below
.
Remove
tank
strap
mounting

bolts
.
Lower
and
remove
tank,
disconnecting
right
side



TheE36
model
uses
a
two-lobed
fuel
tank
and
each
lobeof
vent
and
other
hoses/electrical
connectors
as
neces-



the
tank
has
its
own
fuel
level
sending
unit
.
sary
.

11
.
Installation
is
reverse
of
removal
.

"
Always
use
new
seals,
gaskets,
O-rings,
and
hose
clamps
.

"
Inspect
hoses
and
replace
any
that
are
chafed,
dried

outor
cracked
.

"
Inspect
heat
shield
and
replace
if
corroded
.

"
Inspect
rubber
buffers
and
liners
on
fuel
tank,
support
straps
and
on
underside
of
body
.
Replace
rubber

parts
that
are
hardened
or
damaged
.

FUEL
LEVEL
SENDERS

CAUTION-

"
Before
starting
the
engine,
fill
the
fuel
tank
with
at
least
1.5
gallons
(5
liters)
of
fuel
to
prevent

damaging
a
dry
fuel
pump
.

"
If
the
filler
neck
has
been
removed
from
the
body,
be
sure
toreattach
theneck's
grounding
screw
(where
applicable)
.
Check
electrical
resistance
between
the
ground
tab
and
wheel
hub
.
The
re-
sistance
shouldbeno
higher
than
0
.6
ohms
.

Tightening
Torques

"
Fuel
tank
to
body
.............
...
23
Nm
(17
ft-Ib)

"
Hose
clamps
(10
mm-16
mm
día
.)
..
2
.0
Nm
(18
in-lb)

Fuel
Tank
Evaporative
Control
System

The
fuel
tank
evaporative
control
system
is
used
to
vent
the

fuel
tank
to
a
charcoal
canister,
which
is
then
purgedby
en-

gine
vacuum
during
normal
engine
operatíon
.
This
controls

emission
of
raw
hydrocarbons
(fuel)
to
the
atmosphere
.
See

Fig
.
1
.

A
fuel
expansion
tank,
located
under
the
right
rear
fender,

traps
overflow
fuel
and
incorporates
extra
fuel
tank
plumbing
.

Startingwith
1996
models,
OBD
II
standards
require
that

the
fuel
tank
evaporative
control
system
be
monitored
for

leaks
.
This
is
accomplished
usingthe
fuel
tankpressuresen-

sor,
the
ventshut
off
valve,
and
the
evaporative
purge
valve
.

NOTE-

On
most
early
cars(1992-1995),
the
charcoal
canister

is
in
the
engine
compartment
.
On
latercars,
the
char-
coal
canister
is
under
the
spare
tire
in
the
luggage
com-
partment
.

FUEL
LEVEL
SENDERS

The
right
side
fuel
leve¡
sender
is
integrated
with
the
fuel

pump
.
Each
senderhas
a
float
connected
to
a
variable
resis-

tance
for
fuel
leve¡
.
When
replacing
the
sender/pump
assem-

bly
always
replace
hose
clamps,gaskets
and
O-rings
.

WARNING
-

When
removing
the
fuel
level
sender
or
the
fuel
pump,
the
fuel
tank
should
be
emptied
.

Page 189 of 759


Fuel
leve¡
senders,
testing



Fuel
leve¡
sender
(right
side)

The
left
and
right
fuelleve¡
sending
units
are
wired
in
series
.



and
fuel
pump,
removing
and
installing

The
fuel
gauge
receives
a
signal
that
is
the
average
of
the
two



1
.
Disconnect
negative
(-)
cable
from
battery
.

input
values
.

1
.
Remove
rear
seat
cushion,
lift
up
insulation
mats,
andremove
both
fuel
tank
access
covers
.

2
.
Disconnect
white
plug
on
each
sending
unit
.
See
Fig
.
6
.

3
.
Check
resistance
value
of
eachsending
unit
.
Values
should
be
the
same
.

5
.
If
valuesare
different,
remove
sending
units
as
described

below,
and
check
resistance
valuésacross
terminals
.
Table
a

lists
resistance
values
for
senders
at
various
float
positions
.

Table
a
.
Fuel
Leve¡
Sender
Resistances

Float
position



Test
result
(ohms)

Right
side
empty



10
ohm
t2

Right
side
full



250
ohm
±
5
Left
side
empty



10
ohm
t
2

Left
side
fui¡



250
ohm
±
5

FUEL
TANK
AND
FUEL
PUMP



160-
5

CAUTION
-

Prior
to
disconnecting
the
battery,
read
the
battery
disconnection
cautionsglven
at
the
front
of
this
manual
onpage
viii
.

2
.
Drain
fuel
from
tank
as
described
earlier
.

WARNING
-

Always
unscrew
the
fuel
tank
cap
to
release
pres-
sure
in
the
tank
before
working
on
the
tank
or
fines
.

3
.
Remove
rear
seat
cushion
and
pull
back
insulation
pad
under
right
side
.

4
.
Remove
screws
holding
rightfuel
tank
accesscover
.

Remove
cover
.

5
.
Label
fuel
hoses
.
Disconnect
hoses
and
harness
con-

nectors
from
fuel
sending
unit
and
fuel
pump
.

6
.
Unscrew
threaded
collar
from
fuel
pumplfuel
leve¡
sender
.
Slowly
withdraw
assembly
from
tank,allowing

fuelto
drain
off
.
See
Fig
.
7
.
0013187
&
0013194

Fig
.
6
.



Fuel
pump/leve¡
sender
terminal
identification
.
Check
resis-
tance
at
terminals
of
white
connectors
(arrows)
.



"
If
necessary,
push
leve¡
sender
arm
toward
fuel
pump

assembly
to
facilitate
removal
.

NOTE
-

BMW
special
tool
no
.
16
1
020
should
beused
to
re-
move
and
install
the
threaded
collar
.
Damage
to
the
collar
may
result
if
the
special
tool
is
not
used

WARNING
-

NOTE-



Fuel
may
be
spilled
.
Do
not
smoke
or
work
near

The
compensating
siphon
pump
(Fig
.
1)
maintains
the



heaters
or
other
fire
hazards
.

fuel
leve¡
between
the
right
and
left
tank
lobes
.
If
the
re-
sistances
are
different
between
the
left
and
right
send-
ers,
remove
the
senders
and
visually
inspect
the
leve)
in



7
.
Using
a
new
sealing
ring,
install
pump
and
sending
each
lobe
.
If
the
leve¡
is
different,
check
the
siphon
com-



unit,
being
sure
that
fuel
line
connections
point
in
same

pensating
pump
.



direction
as
they
carne
out
.

8
.
Reconnect
harnessconnector
and
hoses
.
Fill
tank
and

check
for
leaks
by
running
engine
.
Insta¡¡
access
cover

and
its
mountingscrews
.
Reconnect
negative
(-)
cable

to
battery
.

CAUTION
-

Before
starting
the
engine,
fill
the
fuel
tank
with
at
least
1
.5
gallons
(5liters)
of
fuel
.
The
pump
will
be
damaged
if
you
run
it
without
fuel
.

FUEL
LEVEL
SENDERS

Page 190 of 759


160-
6



FUEL
TANK
AND
FUEL
PUMP

Fig
.
7
.



Fuel
sender
and
pump
assembly
.

To
operate
the
fuel
pump
for
testing
purposes
without
hav-
Fuel
leve¡
sender
(left
side),



ing
to
runthe
engine,
the
fuel
pump
relay
can
be
bypassed
to

removing
and
installing



powerthe
pump
directly
.

The
procedure
for
removing
and
replacing
the
left
side
fuel



To
runthe
fuel
pump,
remove
the
relay
and
connect
the
leve¡
sender
is
similar
tothat
used
for
the
right
side
.
There
is



socket
for
relayterminal
30
to
the
socket
for
relay
terminal
no
.
no
fuel
pump
on
the
left
side
.



87
with
afused
jumper
wire
.
Relay
terminal
identification
is
shown
in
Fig
.
9
.
After
completing
the
tests,
remove
the
jumper

wire
.

FUEL
PUMP

The
electric
fuel
pump
ís
mounted
in
the
fuel
tank
in
tandem
with
the
right
side
fuelleve¡
sender
.
The
fuel
pump
delivers
fuel
at
high
pressure
to
the
fuel
injection
system
.
A
pressure
regulator
maintains
system
pressure
.
The
quantity
of
fuel
sup-
plied
exceeds
demand,
so
excess
fuel
retums
to
the
fuel
tank
via
a
retum
líne
.
See
130
Fuel
Injection
for
more
information
on
system
pressure
and
the
fuel
pressure
regulator
.

NOTE
-

Fuel
pump
removalprocedures
are
given
earlier
under
Fuel
leve¡
sender
(right
side)
and
fuel
pump,
remov-
íng
and
installing
.

Fuel
Pump
Fuse
and
Relay

The
fuel
pump
is
operated
by
a
fuel
pump
relay
located
ín
the
power
distribution
box
.
The
fuel
pump
circuit
is
protected
by
fuse
no
.
18
located
in
the
power
distribution
box
.
See
Fig
8
.

FUEL
PUMP

0013142

Fuel



DM
E
PUMP
main
re
ay



rel
ay

0

aoo
o
~a

aao
ó

Fig
.
8
.



Fuel
pump
relay
location
in
power
distribution
box
.

The
DME
engine
control
module
(ECM)
and
the
DME
main

relay
supply
power
to
the
coi¡
sideof
the
fuel
pump
relay
.
Dur-

ing
starting,
the
fuel
pump
runs
as
long
as
the
ignition
switch
is
in
the
start
position
and
continues
to
run
oncethe
engine

starts
.
If
an
electrical
system
fault
interrupts
power
to
the
fuel
pump,
the
engine
will
notrun
.

Operating
fuel
pump
for
tests

CA
UTION-

Relay
locations
may
vary
.
Use
care
when
identify-
ing
relays
and
when
troubleshooting
the
electrical
system
at
the
fuselrelay
panel
.
The
fuel
pump
re-
¡ay
is
a
four
pin
relay
and
has
a
1.5
mm
2
red
wireat
terminal
30
in
the
relay
socket,
lf
in
doubt,
con-
sult
an
authorized
BMW
dealer
.

NOTE-

Thejumper
wire
shouldbe
1.5
mm2
(14
ga
.)
and
in-
clude
en
in-fine
fuse
holder
with
a16
amp
fuse
.
To
avoid
fuselrelay
panel
damage
fromrepeated
connect-
íng
and
disconnecting,
also
include
a
toggleswitch
.
A
heavy-duty
jumper,
BMW
tool
no
.
613
050,
fs
also
available
from
en
authorized
BMW
dealer
.

0013034,

If
the
pump
does
notrun
with
the
jumper
installed,
the
fault
could
be
in
the
fuel
pump
or
the
wiring
to
the
pump
.
Check
the
pump
and
its
wiring
as
described
below
.

Page 191 of 759


Fig
.
9
.



Fuel
pump
relay
terminal
identification
.

Fuel
Pump
Electrical
Tests

Troubleshooting
of
any
fuel
pump
fault
should
begin
with

checking
the
fuel
pump
fuse
and
the
fuel
pump
relay
.
The
DME
main
relay
should
also
be
checked
.

NOTE-

Special
tools
are
requíred
for
some
of
the
tests
de-
scribed
here
.

Fuel
pump
electrical
circuit,
testing

The
fuel
pump
electrical
circuit
diagram
is
shown
in
Fig
.
10
.

3
.
If
fuel
pump
does
not
run,
disconnect
black
harness

connector
from
tank
sender
unit
.
With
jumper
wire
con-

nectedas
described
in
step
2
above,
check
for
positive

(+)
batteryvoltage
at
harness
connector
terminals
.
See
Fig
.
11
.

FUEL
TANK
AND
FUEL
PUMP



160-
7

From
Main
Relay
(+15
power
with
key
in
run



From
B+juretion
point
orstartposition)
(batteryvoRageatalltirnes)

'
.5
RD/Nrr



1
.5
RD

1
.5
GNNI

From
Engine



2
.5
GNNI
Control
Module



15
2
.5
GNNI

Ground
(below
center
console)

Fig
.
10
.
Fuel
pump
electrical
circuit
.

30

-~
Relay
Fuel
Pump

8~T

I



1

s
ám
61
Front
Power
I



a
1
Distribution
Box
I_
16

WIRING
COLOR
CODE

BK
-
BLACK
BR
-
BROWN
Fuel
Pump



RD



-



RED
(in-tank)
M
YL
YELLOWGN
-
GREENBU
-
BLUE
1
VI
-
VIOLET
GY
-
GREY
WT
-
WHITE
PK
-
PINK

0011946

4
.
If
voltage
and
groundare
present,
fuel
pump
is
proba-
bly
faulty
.
If
there
is
no
voltage,
check
wiring
From
fuel
pump
Reay
and
make
sure
Reay
is
functioning
correctly
.

CAUTION-

Fuseandrelaylocationsmayvary
.
Usecara
when



Fuel
pump
power
consumption,
testing

troubleshooting
the
electrical
system
at
the
fuselrelay
panel
.
To
resolve
problems
in
identify-



NOTE-
ing
a
relay,
see
en
authorízed
BMW
dealer
.



"
To
achieveaccurate
testresults,
fhe
battery
voltage
at
the
connector
should
be
approximately
13
volts
.
1.
Remove
rearseat
cushion,
pull
right
side
insulation
mat



Charge
the
battery
asnecessary
.

back
to
expose
fuel
tank
accesscover
.
Remove
cover



.
q
higher
than
normal
power
consumption
usually
fin-
to
expose
wiring
connections
.



dicates
a
worn
fuel
pump,
which
may
cause
intermit-
tentfuel
starvation
due
lo
pump
overheating
and
2
.
Remove
fuel
pump
relay
and
opérate
fuel
pump
as
de-



seizure
.
The
only
remedy
is
pump
replacement
.
Be
scribed
under
Operating
fuel
pump
for
tests
earlier
.



sure
to
check
that
thereturn
fine
and
the
pump
pickup
Pump
should
run
.
Disconnect
jumper
wire
when
fin-



are
not
obstructed
before
replacing
the
pump
.

ished
.
1
.
Remove
rear
seat
cushion,
pull
right
side
insulation
mal
back
to
expose
fuel
tank
accesscover
.
Remove
cover
to
expose
wiring
connections
.

2
.
Disconnect
(black)
harness
connector
from
fuel
pump
.

3
.
Connect
an
ammeter
and
an
insulated
jumper
wire
be-

tween
terminals
in
connector
and
corresponding
pump

terminals
.
See
Fig
.
12
.

FUEL
PUMP

Page 192 of 759


160-
8



FUEL
TANK
AND
FUEL
PUMP

UU131
tst5

Fig
.
11
.
Voltage
supply
to
fuel
pump
harness
(black)
connector
being
checked
(arrow)
.

00131ts7

Fig
.
12
.
Test
fuel
pump
for
current
draw
by
attadhing
ammeter
andjumper
wire
as
shown
.

CAUTION-

Do
not
allow
the
test
leads
to
short
to
ground
.

NOTE-

See
600
Electrical
System-General
for
information
on
electricaltests
using
a
digital
multimeter
(DMM)
.

4
.
Run
pump
as
described
in
Operating
fuel
pump
for
tests
.

FUEL
PUMP

5
.
Compare
ammeter
reading
with
specification
listed
in

Table
b
.

Maximum
current



5
.0
amps
consumption

FuelDelivery
Tests

Table
b
.
Fuel
Pump
Current

Checking
fuel
delivery
is
a
fundamental
part
of
trouble-

shooting
and
diagnosing
the
DME
system
.
Fuelpressure
di-

rectly
influences
fuel
delivery
.
An
accurate
fuel
pressure

gauge
will
be
needed
to
make
the
tests
.

There
arethree
significant
fuel
delivery
values
to
bemea-

sured
:

"
System
pressure-created
by
the
fuel
pump
and
main-

tained
by
the
pressure
regulator
.

"
Fuel
delivery
volume-created
by
the
fuel
pump
and
af-

fected
by
restrictions,
suchas
clogged
fuel
filter
.

"
Residual
pressure-the
pressure
maintained
in
the

closed
system
after
the
engine
and
fuel
pump
areshut

off
.

Procedures
for
measuring
the
first
two
quantities
arede-

scribed
here
.

Residual
fuel
pressure
is
checked
using
the
procedurede-

tailed
in
130
Fuel
Injection
.

Relieving
fuel
pressure
and
connecting

fuel
pressure
gauge

WARNING
-

"
Gasoline
is
highly
flammable
and
its
vaporsare
explosive
.
Do
not
smoke
or
work
ona
car
near
heaters
or
other
fire
hazards
when
diagnosing
and
repairing
fuel
system
problems
.
Have
a
fire
extinguisher
available
in
case
of
an
emergency
.

"
When
working
onan
open
fuel
system,
wear
suit-
able
hand
protection
.
Prolonged
contact
with
fuel
can
cause
iflnesses
and
skin
disorders
.

CA
UTION-

Cleanliness
is
essential
when
working
withfuel
circuit
components
.
Thoroughly
clean
the
unionsbefore
disconnecting
fuel
fines

To
prevent
fuel
from
spraying
on
a
hotengine,
system
fuel

pressure
should
be
relieved
before
disconnecting
fuel
lines
.

One
method
is
to
tightly
wrap
a
shop
towel
around
a
fuel
line
fit-
ting
and
loosen
or
disconnect
the
fitting
.

Measuring
fuel
pressure
requires
special
tools
.
Earlier
cars
use
pressure
hose
with
clamps
for
fuel
delivery
.
These
can
be
attached
to
a
fuel
pressure
gauge
below
the
intake
manifold
.

Page 193 of 759


NOTE-



NOTE
-

On
1996
and
later
4-cylinder
cars,
use
BMW
special



"
Use
BMW
pressure
gauge
Part
No
.
133
060,or
an
tool
13
6051
(hose
with
quick
release
coupling)
toat-



equivalent
.
The
fuel
pressure
gauge
should
have
a
tach
pressure
gauge
to
Shraeder
valve
fitting
on
top
of



rangeof
0
to
5bar
(0
to
75
psi)
and
mustbe
securely
the
M44
fuel
rail
.
See
Fig
.
13
.



connected
to
prevent
it
from
coming
loose
under
pres-
sure
.

u012503a

Fig
.
13
.
Fuel
rail
showing
location
of
Shrader
valve
fitting
on
M44
en-
gine
(arrow)
.

Later
model
6-cylinder
fuel
systems
require
BMW
specíal

tool
16
1
050
to
release
fittings
and
connect
the
fuel
gauge
.
See
Fig
.
14
.

0012699

Fig
.
14
.
Fuel
lines
at
rear
of
íntake
manifold
on
M52
engine
.
Use
BMW

special
tool
16
1
050
to
release
fittings
.

If
the
special
tools
arenot
available,
a
length
offuel
line
and

a
T-fitting
can
be
installed
tothe
inlet
fuel
line
and
connected

to
a
fuel
gauge
.

FUEL
TANK
AND
FUEL
PUMP



160-
9

"
On
cars
with
6-cylinder
engine,
thetop
left-side
en-
Bine
cover
will
have
to
be
removed
to
access
the
fuel
rail
.

System
pressure,
testing

System
pressure
is
the
pressure
created
by
the
fuel
pump
and
maintained
by
the
pressure
regulator
.
See
Fig
.
15
.
Sys-
tem
pressure
is
not
adjustable
.

1
.
Remove
fuel
tank
filler
cap
.

Fig
.
15
.
Fuel
pressure
regulator
.
Fuel
pressure
deflects
diaphragm
to
retum
fuel
to
tank
when
pressure
reaches
desired
limit
.

CA
UTION-

The
fuel
pump
is
capable
of
developing
a
higher
pressure
than
that
regulated
by
the
pressure
reg-
ulator
.
In
the
event
the
fuel
pump
check
valve
is
faulty
(stuck
closed),
make
sure
the
fuel
pressure
does
not
rise
aboye
6
.0
bar(87
psi)
.
Damage
to
the
fuel
fines
or
fuel
system
components
could
re-
sult
.

2
.
Connect
in-fine
a
Tfitting
and
fuel
pressure
gauge
to

outlet
hose
atfuel
pump
.

FUEL
PUMP

Page 194 of 759


160-
1
0



FUEL
TANK
AND
FUEL
PUMP

3
.
Operate
fuel
pump
as
described
earlier
under
Operat-

ing
fuel
pump
for
tests
.
Check
that
fuel
pressure
cor-

responds
to
specifications
listed
in
Table
c
.

"
If
system
pressure
is
low,
repeat
test
whilegradually

pinching
off
return
hose
.
Pressure
should
rise
rapidly
.

If
not,fuel
pump
is
most
likely
faulty
.

"
If
system
pressure
is
too
high,
check
return
line
from
pressure
regulator
to
tank
.
Check
for
kinks
in
hose
.
Blow
compressed
air
through
line
to
check
for
block-

ages
.
If
no
faulty
canbe
found,
pressure
regulator
is

most
likely
faulty
.
See
130
Fuel
Injection
for
testing

and
replacementprocedures
.

Table
c
.
Fuel
Pressure
Specifications

Engine



1
Fuel
pressure

4-cylinder
M42/M44



3
.0
:e
0
.06
bar(43
.5
±0
.9
psi)

6-cylinder
M50/S50US



3
.0
:j-
0
.06bar(43
.5
t0
.9
psi)
M52/S52US



3
.5
t
0
.06
bar
(51
t0
.9psi)

CA
UTION-

Do
not
use
compressed
air
above
40
psi
to
blow
out
fines
or
components
.
Interna¡
damage
to
com-
ponents
may
result
.

4
.
When
finished,
disconnect
pressure
gauge
.

FUEL
PUMP

Fuel
delivery
volume,
testing

1
.
Disconnect
return
line
from
fuel
rail
in
engine
compart-

ment
.

2
.
Connect
a
length
of
hose
to
fitting
on
fuel
rail
and
place

open
end
of
hose
in
a
suitable
container
for
catching

fuel
(2-quart
capacity)
.

3
.
Run
fuel
pump
for
exactly
30
seconds
as
described

earlier
under
Operating
fuel
pump
for
tests
and
mea-

sure
fuel
collected
.
Refer
to
Table
d
.

WARNING-



Table
d
.
Fuel
Pump
Delivery
Specifications

Fuel
under
pressure
is
present
duringthe
test
.
Use
I



Engine



Delivery
rate
(30
seconds
@
12V)
hose
clamps
at
all
connections
.
4-cylinder
M42/M44



0
.875
fter
(0
.93
qt)

6-cylinder
M50/S50US



0
.875
fter(0
.93
qt)
M52/S52US



~



1
.12
liter
(1
.16
qt)

4
.
When
finished
testing,
reconnect
fuel
line
.
Tighten
all
hose
clamps
.

NOTE-

It
is
common
practice
to
replace
the
fuel
filter
any
time
the
fuel
pump
unit
is
replaced
.

Page 195 of 759

170
Radiator
and
Cooling
System

GENERAL
.
.
.....
.
...
.
.
.
.
.
....
.
.
.
.
.
.
.
.170-1

Coolant
Pump
and
Thermostat
........
.
.
.
.
170-1

Radiator
and
Expansion
Tank
.........
.
...
170-1

Cooling
Fans
.
....
.
.
.
.
.
.
.
.
.
.....
.
......
170-2

Warnings
and
Cautions
.
.
.
.
.
.
.
.
.
.
.
.
...
.
.
.
170-2

TROUBLESHOOTING
...
.
.
.
...
.
.
.
.
.
.
.
.
.170-2

Cooling
System
Pressure
Test
...
.
.
.
.
.
.
.
.
.
170-3

Thermostat
Quick
Check
.
.
.
.
...
.
.
.
.
.
.
.
.
.
170-3

Temperature
Gauge
Quick
Check
.
.
.
.
.
.
.
.
.
170-3

Cooling
fan,
testing
.
.
.
.
........
.
.
.
.
.
.
.
.
.
170-4

COOLING
SYSTEM
SERVICE
.
.
.
.
.
.
.
.
.
.
170-5

Coolant,draining
and
filling
.
.
......
.
.
.
.
.
..
170-5

Cooling
system,
bleeding

(radiator
with
integral
expansion
tank)
.....
170-6

GENERAL

This
section
covers
repair
and
troubleshooting
information
for
the
engine
cooling
system
.
For
heater
core
and
related
heating
and
air
conditioning
components,
see640
Heating
and
Air
Conditioning
.

Coolant
Pump
and
Thermostat

A
centrifuga¡-type
coolant
pump
is
mounted
to
the
front
of

the
engíne
.
The
belt-driven
pump
circulates
coolant
through

the
system
whenever
the
engíne
is
running
.
A
thermostat
con-

trols
the
flow
of
coolant
into
the
radiator
.

When
the
engíne
is
cold
the
thermostat
is
closed
so
coolant

bypasses
the
radiator,
recirculating
from
the
engíne
directly

back
to
the
pump
.
When
the
engíne
reaches
operating
tem-

perature,
the
thermostat
opens
and
coolant
circulates
through

the
whole
system
including
the
radiator
.

Radiator
and
Expansion
Tank

The
radiator
is
a
crossflow
design
.
A
translucent
expansion

tank
provides
for
coolant
expansion
at
higher
temperatures
and

easy
monitoringof
the
coolant
leve¡
.

On
4-cylinder
modeis,
the
radiator
expansion
tank
is
integral

with
the
radiator
.
See
Fig
.
1
.

RADIATOR
AND
COOLING
SYSTEM



170-1

Belt-driven
cooling
fan,
replacing
.
.......
.
.
.
170-7

Electric
cooling
fan,
replacing
.
.
.
.....
.
.
.
.
.
170-8

Auxiliary
cooling
fan,
replacing
.
.
.....
.
.
.
.
.
170-8

Thermostat,
replacing
.
.
.
.
.
.
.
.
.
.....
.
.
.
.
.
170-9
Coolant
pump,
replacing
..........
.
.
.
.
.
.
170-10

RADIATOR
SERVICE
.....
.
......
.
.
.
.
.
.
170-11

Radiator,
removing
and
installing
....
.
.
.
.
.
.
170-11

TABLES

a
.
Coolant
Temperature
Sensor
Wire
Colors
...
.
..
.
.
170-3b
.
Auxiliary
Cooling
Fan
Switching
Temperatures
.:.
.170-4
c
.
Auxiliary
Cooling
Fan
Temperature
Switch
Tests
..
..
.
...
...
.
.............
.
..
.
.
170-5d
.
Cooling
System
Capacities
..............
..
.
.
.
170-6

A
.
Expansion
tank



C
.
Dualtemperature
fan
switch
B
.
Radiator
drain
screw

Fig
.
1
.
Radiator
assembly
with
integral
expansion
tank
(4-cylinder
engine)
.

On
6-cylinder
models,
a
standalone
expansion
tank
is
used
.

On
cars
with
automatic
transmission,
ATF
is
circulated
through
an
additional
heat
exchanger
(ATF
cooler)
.

GENERAL

Page 196 of 759


170-2



RADIATOR
AND
COOLING
SYSTEM

Cooling
Fans



TROUBLESHOOTING

Belt-driven
coolingfan
.
The
primary
cooling
fan
is
belt-

driven
.
It
is
mounted
to
the
frontof
the
coolant
pump
through
a

fan
clutch
.
The
fan
clutch
is
a
viscous
fluid
coupling
that
con-

trols
the
speed
of
thefan
based
on
engine
compartment
tem-

perature
.

Electric
cooling
fan
.
Models
with
M44
engine
and
stan-

dard
transmission
substitute
an
electric
fan
for
the
belt-driven

viscous
fan
.
This
is
attached
to
the
rear
of
the
radiator
and

controlledvia
the
DME
5
.2
engine
management
system
.

NOTE-

The
electric
cooling
fan
in
these
models
is
activated
by
the
engine
control
module
(ECM)
.

Auxiliary
coolingfan
.
In
al¡
models
a
two-speed
electric

auxiliary
cooling
fan
is
mounted
behind
the
front
grill
and
in

front
of
the
radiator
.
This
fan
is
primarily
used
for
the
A/C
sys-

tem,
but
also
operates
when
the
coolant
temperature
ex-

ceeds
a
predetermined
leve¡
.

Warnings
and
Cautions

The
following
warnings
and
Cautions
should
beobserved

when
working
on
the
cooling
system
.

WARNING
-

"
Atnormal
operating
temperature
the
cooling
sys-
tem
is
pressurized
.
Allow
the
system
to
cool
as
long
as
possible
before
opening-a
minimum
of
an
hour-then
release
the
cap
slowly
to
allow
sale
release
of
pressure
.

"
Releasing
the
cooling
system
pressure
lowers
the
coolants
boiling
point
and
the
coolant
may
boíl
suddenly
.
Use
heavy
gloves
and
wear
eye
and
laceprotection
to
guard
against
scalding
.

"
Use
extreme
care
when
draining
and
disposing
of
engine
coolant
.
Coolant
is
poisonous
and
lethal
to
humans
and
pets
.
Pets
are
attracted
to
coolant
because
of
its
sweet
smell
and
taste
.
Consult
a
veterinarian
immediately
if
coolant
is
ingested
byan
animal
.

CAUTION-

"
Avoidadding
cold
water
to
the
coolant
while
the
engine
is
hot
or
overheated
.
If
it
is
necessary
to
add
coolant
to
ahot
system,
do
so
only
with
the
engine
running
and
coolant
pump
tuming
.

"
Prior
to
disconnecting
the
battery,
read
the
bat-
tery
disconnection
cautions
given
at
the
front
of
this
manual
on
page
viii
.

TROUBLESHOOTING

Most
cooling
system
faults
can
be
grouped
into
one
of
three

categories
:

"
Cooling
system
leaks

"
Poor
coolant
circulation

"
Radiator
cooling
fan
faults

When
investigating
the
cause
of
overheating
or
coolant

loss,
begin
with
a
visual
inspection
.
Be
sure
to
check
the
con-

dition
and
tension
of
the
coolant
pump
drive
belt
.
Check
hoses

for
cracks
or
softness
.
Check
clamps
for
looseness
.
Check

the
coolant
leve¡
and
check
for
evidence
of
coolantleaks
from

the
engine
.

Check
that
the
radiator
fins
are
not
blocked
with
dirt
or
de-

bris
.
Clean
the
radiator
using
low-pressure
water
or
com-

pressed
air
.
Blow
outward,
fromthe
engine
side
out
.

Inspect
the
coolant
pump
by
first
removing
the
drive
belt

from
the
pump
.
Firmly
grasp
opposite
sídes
of
the
pulley
and

check
for
play
in
all
directions
.
Spin
the
pulley
and
check
that

the
shaft
runs
smoothly
.

NOTE-

The
coolant
provides
lubrication
for
the
pump
shaft,
soan
occasional
drop
of
coolant
leaking
from
the
pump
is
acceptable
.
If
coolant
drips
steadily
from
the
vent
hole,
the
pump
should
be
replaced
.

The
cooling
system
becomes
pressurized
at
normal
operat-

ing
temperature,
which
raises
the
boiling
point
of
the
coolant
.

Leaks
may
prevent
the
system
from
becoming
pressurized,

allowing
the
coolant
to
boil
at
a
lower
temperature
.
If
visual
ev-

idence
is
inconclusive,
a
cooling
system
pressure
test
can

help
to
pinpointhard-to-find
leaks
.

If
the
cooling
system
is
full
of
coolant
and
holds
pressure,

the
next
most
probable
cause
of
overheating
are
:

"
Faulty
radiator
fan

"
Loose
or
worn
drive
belt

"
Failed
thermostat
or
coolant
pump

"
Clogged/plugged
radiator
or
coolant
passages
.

NOTE
-

"
Some
early
style
coolant
pumps
were
fitted
wíth
fi-
berlplastic
type
impellers
.
Over
time,
this
impeller
can
wear
away
and
result
in
overheating
.
The
plastic
im-
peller
can
also
slip
or
free-wheel
on
the
pump
shaft
.
If
the
engine
overheats
and
no
other
faults
canbe
found,
theold
style
impeller
may
be
the
cause
of
the
problem
.

"
Only
pumps
with
the
updated
metal
impeller
should
be
used
for
replacement
.

Page:   < prev 1-10 ... 131-140 141-150 151-160 161-170 171-180 181-190 191-200 201-210 211-220 ... 400 next >