air temperature sensor BMW 325i 1994 E36 User Guide

Page 163 of 759


BOSCH
DME
MM
AND
M33
.1

COMPONENT
TESTS
AND
REPAIRS

Consult
Table
a
for
engine
application
information
for
the

Bosch
DME
3
.1
and
3
.3.1
systems
.

The
DME
3
.1
and
DME
3
.3
.1
systems
are
similar
in
opera-

tion,
with
knock
control
and
VANOS
operation
being
the
key

differences
.
DME
3
.1
engines
arenot
equipped
with
VANOS

or
knock
detectors,
while
the
DM
E3
.3
.1
system
is
.

CA
UTION-

Use
onty
a
digital
multimeter
when
testing
wiring
.
Use
of
an
analog
VOM
may
damage
the
engine
control
module
.

Fig
.
25
.
Mass
air
flow
sensor
.
Hot
wire
sensor
usedon
carswith
DME
Electrical
tests
of
the
main
and
fuel
pump
relays
and
the



3
.1
(1992
6-cylinder
models)
.

DME
engine
control
module
(ECM)
are
covered
earlier
in
this

section
.
Fuel
pump
tests
are
covered
in
160
Fuel
Tank
and



CAUTION-
Fuel
Pump
.
Use
only
a
digital
multimeter
when
checking
the
mass
air
flow
sensor
.
An
analog
meter
can
dam-
Mass
Air
Flow
Sensor



age
theair
flow
sensor
.

There
are
two
types
of
mass
air
flow
sensors
used
onthe



1
.
Disconnect
air
flow
sensor
from
air
cleaner
only
.
Leave

cars
covered
by
this
section
.
Testing
procedures
vary
de-



it
connected
to
duct
leading
to
intake
manifold
and

pending
on
type
installed
.
The
airflow
sensor
is
not
adjustable



leave
wiring
harness
connected
.

and
must
only
be
tested
with
a
digital
multimeter
.

Mass
Air
FlowSensor
Variants

"
1992
M50
engine

DME
M3
.1
.
.
.
.
...
..
mass
air
flow
sensor-hot
wire

"
1993-1995
M50
and
S50US

DMEM33
.1)
.
...
...
.
mass
air
flow
sensor-hot
film

Mass
air
flow
sensor
(hot
wire),

testing
and
replacing

When
the
engine
is
running,
a
current
is
used
to
heat
a
thin

wire
in
the
center
of
the
sensor
.
See
Fig
.
25
.
The
current
in
the

wire
is
regulated
to
maintain
a
temperature
of
100°C
more

than
the
air
passing
over
it
.
The
current
used
to
heat
the
wire

is
electronically
conneced
into
a
voltage
measurement
corre-

sponding
to
the
mass
of
intake

r
.

To
keep
the
wire
clean,
it
is
heated
to
a
temperature
of
about

1,000°C
(1,830°F)
for
one
second
.
This
"burn-off"
cycle
takes

place
automatically,
four
seconds
after
the
engine
is
tumed
off
.

lf
thehot
wire
breaks
or
if
there
is
no
output
from
the
air
flow

sensor,
the
ECM
automatically
switches
to
a
"limp-home"

mode
and
tucos
on
the
Check
Engine
light
.
The
engine
can

usually
be
started
and
driven
.
The
air
flow
sensor
has
no
inter-

nal
moving
parts
and
cannot
be
serviced
.

FUEL
INJECTION



130-
1
7

2
.
Start
engine
and
run
it
to
normal
operating
temperature
.

3
.
Rev
engine
toat
least
2,500
rpm,then
shut
it
off
.
Look

through
meter
at
hot
wire
.
After
approximately
four
sec-

onds
wire
should
glow
brightly
for
about
one
second
.

NOTE
-

If
the
wire
glowsas
specified,
then
the
airflow
meter
and
ECM
are
probably
operating
correctly
.
lf
the
wire
does
not
glow,
continue
testing
.

4
.
lf
the
wire
does
not
glow,
remove
air
flow
sensor
and

look
through
it
to
see
if
wire
is
broken
.
lf
wire
is
broken,

meter
will
have
to
be
replaced
.

5
.
Reinstall
air
flow
sensor
and
harness
connector
.
Peel

back
rubber
bootfrom
harness
connector
.
Working

from
rear
of
connector,
connect
digital
voltmeter
across

terminals
1
and
4
.
See
Fig
.
26
.

6
.
Start
and
rev
engine
toat
least
2,500
rpm,thenshut
it

off
.
After
about
4
seconds,
voltage
should
riseto
about

4
volts
for
about
one
second
.
lf
voltage
is
present,
but

wire
does
not
glow,
air
flow
sensor
is
faulty
and
should

be
replaced
.

7
.
lf
voltage
is
not
present
in
step
6,
turn
ignition
key
on

and
check
for
voltage
and
ground
at
sensor
.
There

should
beground
at
pin
4
.
There
should
be
positive
(+)

battery
voltage
at
pin
2
.

BOSCH
DME
M3
.1
AND
M32
.1
COMPONENT
TESTS
AND
REPAIRS

Page 164 of 759


130-18



FUEL
INJECTION
The
engine
coolant
temperature
(ECT)
sensor
sends
con-

tinuous
engine
coolant
temperature
information
to
the
ECM
.
Fig
.
26
.
Mass
air
flow
sensor
terminalidentifcation
on
carswith
DME



As
temperature
increases
sensor
resistance
decreases
.
M3
.1
fuel
injection
.

Mass
air
flow
sensor
(hot
film),

testing
and
replacing

MOTE-

A
burn-off
cycle
is
not
used
on
hot
film
sensors
.

8
.
With
ignition
off,
disconnect
harness
connector
from
air



ECT
Sensor
Location
flow
sensor
.
Using
a
digital
multimeter,
check
resis-



"
M50/S50US
engine
............
left
side
of
cylinder
tance
at
terminals
listed
.



head
under
intake
manifold

Air
Flow
Sensor
Test
Values
(DMEM3
.1)

"
Terminals
5
and
6
.
.
.
.........
..
.
..
....
3-4
ohms

If
any
faults
are
found,
check
wiring
lo
and
from
the
ECM
.
Make
ECM
pinout
test
as
listed
in
See
Table
i
.
Main
power
to
air
flow
sensor
comes
from
DME
main
relay
.

On
cars
with
DME
M3
.3
.1
a
hot
film
mass
air
flow
sensor
is
used
.
When
the
engine
is
running,
a
current
is
used
lo
heat
a
thinfilm
in
the
center
of
the
sensor
.
This
current
is
electroni-
cally
converted
into
a
voltage
measurement
corresponding
to
the
mass
of
intake
air
.

If
thehot
film
breaks
or
if
there
is
no
output
from
the
air
flow
sensor,
the
ECM
automatically
switches
to
a
"limp-home"
mode
and
tucos
on
the
Check
Engine
light
.
The
engine
can
usually
be
started
and
driven
.
The
air
flow
sensor
has
no
inter-
nal
moving
parts
and
cannot
be
senricedor
adjusted
.

CA
UTION-

Use
only
a
digital
multimeter
when
checking
the
mass
air
flow
sensor
.
An
analogmetercan
dam-
age
the
air
flow
sensor
.

BOSCH
DME
M3
.
1
AND
M32
.1
COMPONENT
TESTS
AND
REPAIRS

1
.
Disconnect
harnessconnector
from
air
flow
sensor
.

2
.
Turn
ignition
on
and
check
for
voltage
and
ground
at

connector
.
There
should
beground
at
pin
1
.
There

should
be
positive
(+)
battery
voltage
at
pin
3
.
If
any
faults
are
found,
check
wiring
to
and
from
ECM
.
Make
ECM
pinout
test
.
See
Table
j
.

NOTE-

Positive
(+)
battery
voltage
to
air
flow
sensor
comes
from
DME
main
relay
when
the
ignition
is
switch
on
orengine
running
.

Engine
coolant
temperature
(ECT)
sensor,

testing
and
replacing

0012704
Fig
.
27
.
Engine
coolant
temperature
(ECT)
sensor
(A)
is
located
be-
neath
top
engine
cover
(B)
and
crankcase
vent
hose
(C)
.
M52
engine
shown
.
M50
is
similar
.

1
.
Check
ECM
reference
voltage
to
sensor
:
"
Disconnect
harnessconnector
from
ECT
sensor
.
"
Turn
ignition
keyon
.
"
Check
for
5
volts
between
supply
voltage
wire
(brown/red)
wire
of
harness
connector
and
ground
.
"
Turn
ignition
key
off
.
"
If
voltage
is'
not
present
or
incorrect,
check
wiring
from
ECM
and
check
referencevoltage
output
at
ECM
(pin
78)
.
See
Table
i
(DM
E
3
.1)
or
Table
j
(DME
3
.3
.1)

2
.
Check
ECT
sensor
resistance
:

"
With
harnessconnector
disconnected,
check
resis-
tance
acrosssensor
terminals
.
"
Compare
tests
results
to
values
in
Table
f
.

Page 165 of 759


Table
f
.
Engine
Coolant
TemperatureSensor
or

Intake
Air
TemperatureSensor
Test
Values

(DME
3
.113
.3
.1)

Test
temperatures



Resistance
(k
ohms)

14±
2°F
(-10
±
1'C)



7-11
.6

68±
2°F
(20
±
1'C)



2
.1
-2
.9

17612°F
(80
t
V
C)



0
.27-0
.40

NOTE

The
test
values
listed
represent
only
three
test
points
from
a
continuous
resistance
NTC
sensor
.
Check
the
full
linear
response
to
increasing
temperatures
as
the
engine
warms
up
.

3
.
If
ECT
sensor
fails
these
tests,
it
is
faulty
and
should
be

replaced
.
If
no
faults
are
found,
reconnect
electrical

harness
.

WARNING
-

Do
not
replace
the
ECT
sensor
unless
the
engine
is

cold
.
Hot
coolant
can
scald
.

NOTE-

Use
"



a
new
copper
sealing
washer
when
installing
sensor
.
Replace
any
lost
coolant
.

Tightening
Torque

"
Engine
coolant
temperature
sensor

to
cylinder
head
.........
..
.
..
...
13
Nm
(10
ft-lb)

Intake
air
temperature
(IAT)
sensor,

testing
and
replacing

The
intake
air
temperature
(IAT)
sensor
signal
is
usedasa

correction
factor
for
fuel
injection
and
ignition
timing
.
Thissen-

sor
is
mounted
in
the
intake
manifold
behind
the
throttle
posi-

tion
switch
.
See
Fig
.
28
.

Check
TPS
function
by
disconnecting
theharnessconnec-
1
.
Check
that
ECM
reference
voltage
is
reaching
IAT
sen-



tor
and
testing
continuity
across
the
terminalswhile
changing
sor
:



the
throttle
position
.
Resistance
test
values
are
listed
below
.
If

"
Disconnect
IAT
sensor
harness
connector
.



the
resuits
are
incorrect,
replace
the
throttle
position
sensor
.

"
Turn
ignition
keyon
.



See
Fig
.
29
.

"
Check
for
5
volts
between
supply
voltage
wire
of
har-

ness
connector
and
ground
.
NOTE-
"
Turn
ignition
key
off
.
The
throttle
position
sensor
is
not
adjustable
.
If
test
re-
sults
are
incorrect,
the
sensor
should
be
replaced
.

IAT
Sensor
Supply
Voltage

"
M50/S50US
engines
.
........
grey
wire
and
ground

FUEL
INJECTION



130-19

Fig
.
28
.
Intake
air
temperature
sensor
location
on
M50/S50US
engine
(arrow)
.

If
voltage
is
not
present
or
incorrect,
check
wiring
from
ECM

and
check
reference
voltage
signal
at
ECM
(pin
77)
.
See
Ta-

ble
i
or
Table
j
.

2
.
Check
IAT
sensor
resistance
:

"
With
harness
connector
disconnected,
check
resis-

tance
acrosssensor
terminals
.
Compare
tests
resuits
to
values
in
Table
f
given
earlier
.

"
If
IAT
sensor
fafs
thistest
it
is
faulty
and
should
be
re-

placed
.

3
.
If
no
faults
are
found,
reconnect
electrical
harness
.

Throttle
position
sensor
(TPS),

testing
and
replacing

The
throttle
position
sensor
(TPS)
is
mounted
on
the
side
of

the
throttle
housing
and
is
directly
connected
to
the
throttle

valve
shaft
.
The
ECM
sends
a
voltage
signal
to
the
potentiom-

eter-type
sensor
and
monitors
the
voltage
that
comes
back
.

BOSCH
DME
M3
.
1
AND
M32
.1
COMPONENT
TESTS
AND
REPAIRS

Page 168 of 759


130-
2
2



FUEL
INJECTION

Mass
air
flow
sensor,
replacing

1
.
Disconnect
harness
connector
and
intake
air
bootfrom

air
flow
sensor
.
See
Fig
.
32
.

Fig
.
32
.
To
detach
air
flow
sensor,
disconnect
harness
connector
(A)
;



3
.
Installation
is
reverse
of
removal
.
unclip
retainíng
clips
to
aír
filter
housing
(B)
;
andremove
large
hose
clamp
at
air
intake
bellows
(C)
.
M44
engine
with
traction



"
Use
a
new
copper
sealing
washer
when
installing
sen-

control
shown
.



sor
.
"
Replace
any
lost
coolant
.

2
.
Detachtwo
large
clipsat
air
filter
housing
and
work
air

flow
sensor
out
of
rubber
seal
in
filter
housing
.
Tightening
Torque

3
.
Installation
is
reverse
of
removal
.



"
Engine
coolant
temperature

"
For
ease
of
installation,
lubricate
large
rubber
seal
in



to
cylinder
head
.............
.
..
.
13
Nm
(10
ft-Ib)

air
filter
housing
with
silicone
lubricant
or
equivalent
.
"
No
adjustment
to
air
flow
sensor
is
possible
.
"
Carefully
check
that
all
hoses
and
seals
are
seated



Intake
air
temperature
(IAT)
sensor,

properly
.



replacing

Engine
coolant
temperature
(ECT)
sensor,

replacing

The
engine
coolant
temperature
(ECT)sensor
is
a
dual
temperature
sensor
.
One
circuít
provides
coolant
temperature

information
to
the
ECM
while
the
other
circuít
provides
coolant
temperature
information
to
the
instrument
cluster
.

WARNING
-

Do
not
replace
the
ECT
sensor
unless
the
engine
is
cold
.
Hot
coolant
can
scald
.

1
.
Disconnect
harness
connector
from
ECT
sensor
.
See
Fig
.
33
.

2
.
Unscrew
temperature
sensorfrom
cylinder
head
and
remove

BOSCH
DME
M5
.2
COMPONENT
REPLACEMENT

U1111
bis4a

Fig
.
33
.
M44
engine
coolant
temperature
(ECT)
sensor
located
above

oil
filter
(arrow)
.

The
intake
air
temperature
(IAT)
sensoron
cars
with
M44

engine
is
mounted
in
thetop
section
of
the
intake
air
filter

housing
.
See
Fig
.
34
.

1
.
Remove
electrical
harness
connector
from
IAT
sensor
.

2
.
Unclip
temperature
sensor
and
remove
from
air
filter

housing
.

3
.
Installation
is
reverse
of
removal
.

Throttle
position
sensor
(TPS),
replacing

The
throttle
position
sensor
is
located
on
the
side
of
the
throttle
housing
.
See
Fig
.
35
.

1
.
Unplug
harness
connector
from
sensor
.

Page 169 of 759


001ía4
i

Fig
.
34
.
Intake
air
temperature
(IAT)
sensor
in
top
section
of
air
filter
housing
.

¡die
speed
control
valve,
replacing

side
of
the
throttle
body
.
See
Fig
.
35
.

1
.
Disconnect
harness
connector
from
¡die
valve
.

0012725

Fig
.
35
.
M44
engine
:
Throttle
housing
showing
(A)
throttle
position
sensor
(fPS)
and
(B)
¡die
speed
control
valve
.

2
.
Remove
twomountingscrews
holding
sensor
to
throttle

housing
.

The
¡die
speed
valve
on
the
M44
engine
is
located
on
the

FUEL
INJECTION



130-23

2
.
Disconnect
vacuum
hose
and
retaining
screws
.

3
.
Pull
¡die
speed
control
valve
from
its
fittings
.

4
.
Installation
is
reverse
of
rémoval
.
Always
replace
0-

rings
and
seals
.

NOTE

Poor
driveability
may
be
notíced
after
installing
a
re-
placement
¡dio
control
valve
.
After
about10
minutes
of
driving,
the
idie
speed
should
retum
to
normal
.

SIEMENS
MS
41
.1

COMPONENT
REPLACEMENT

On-Board
Diagnostics
II
(OBD
II)
is
incorporated
into
the
Si-

emens
MS
41
.1
engine
management
systems
used
in
the

M52
and
S52US
engine
.
Refer
to
Fig
.
36
.

OBD
11
is
capable
of
detecting
a
fui¡
range
offaults
.
When

faults
are
detected,
a
Diagnostic
Trouble
Code
(DTC)
is

stored
in
the
system
ECM
.
The
Check
Engine
warning
light
will
also
come
on
if
an
emissions-related
fault
is
detected
.
The

most
efficient
way
to
diagnose
the
Siemens
OBD
II
system
is

by
using
a
specialized
scan
tool
.
The
OBD
II
system
is
capa-

ble
of
storing
hundreds
of
faults,
making
diagnostics
with
a
scan
tool
the
only
viable
method
.
Therefore,
system
diagnos-

tics
is
not
covered
here
.

NOTE
-

"
The
OBD
11
fault
memory
(including
an
illuminated

Check
Engine
light)
can
only
be
reset
using
the
spe-
cial
scan
tool
.
Removing
the
connector
from
the
ECM
or
disconnecting
the
battery
will
not
erase
the
fault
memory
.

"
The
16-pin
OBD
11
diagnostic
connector
is
located
on

the
lower
left
dash
panel
.
Refer
to
Fig
.
1
.

"
BMW
special
scan
tool
ora
"generic"
OBD
11scan
tool

must
be
used
to
access
DTCs
.
3
.
Installation
is
reverse
of
removal
.
No
adjustment
is
nec
essary
.



"
Table
1
lists
engine
control
module
(ECM)
pinouts
forthe
MS
41
.1
systems
.

SIEMENS
MS
41
.
1
COMPONENT
REPLACEMENT

Page 171 of 759


Mass
air
flow
sensor,
replacing

1
.
Disconnect
harness
connector
and
intake
air
boots

from
air
flow
sensor
.
See
Fig
.
37
.

Fig
.
37
.
Mass
air
flow
sensor
(arrow)
on
M52
engine
.

2
.
Installation
is
reverse
of
removal
.

"
No
adjustment
to
aír
flow
sensor
is
possible
.

"
Check
intake
hoses
for
cracks
and
vacuum
leaks
.

Engine
coolant
temperature(ECT)
sensor,

replacing

The
ECT
sensor
is
a
dual
temperature
sensor
.
One
circuit

provides
coolant
temperature
information
to
the
ECM
while

the
other
circuit
provides
coolant
temperature
information
to

the
instrument
cluster
.

1
.
Remove
left-side
top
engine
cover
.

4
.
Remove
sensor
.

5
.
Installation
is
reverse
of
removal
.

"
Replace
any
lost
coolant
.

0012703

"
Use
a
new
copper
sealing
washer
when
installing
new

Tightening
Torque

"
Engine
coolant
temperature

to
cylinder
head
.....
..
.
...
......
13
Nm
(10
ft-Ib)

FUEL
INJECTION



130-
25

0012704b

Fig
.
38
.
M52
engine
:
Engine
coolant
temperature
(ECT)
sensor
(A)
is
located
beneath
top
engine
cover
(8)
and
crankcase
vent

hose
(C)
.

Intake
air
temperature
(IAT)
sensor,

replacing

The
intake
air
temperature
(IAT)
sensor
for
the
M52/S52US

engine
is
mounted
on
the
bottom
of
the
intake
manifold
.
See
Fig
.

39
.

2
.
Unclip
crankcase
venting
hose
from
cylinder
head
cov-

er
.
See
Fig
.
38
.



Fig
.
39
.
M52/S52US
engine
:
Intake
air
temperaturesensor
location
in

bottom
of
intake
manifold(arrow)
.
Throttle
housing
shown
re

3
.
Under
intake
manifold,
disconnect
harness
connector



moved
.

fromsensor
.

1
.
Disconnect
intake
air
bootfrom
throttle
housing
.
Unbolt

throttle
housing
and
¡ay
aside
.
(It
is
not
necessary
to

disconnect
throttle
cable
or
electrical
harnessconnec-

tors
from
throttle
housing
.)

sensor
.



2
.
Remove
electrical
harness
connector
from
IAT
sensor
.

3
.
Unclip
temperature
sensor
and
remove
from
intake

manifold
.

4
.
Installation
is
reverse
of
removal
.
Use
a
new
gasket
at

the
throttle
housing
.

SIEMENS
MS
41
.1
COMPONENT
REPLACEMENT

Page 174 of 759


130-
2
8



FUEL
INJECTION

Tableh
.
ECM
Pin
Assignment-Bosch
DME
M1
.7

Pin
Signal
Componenttfunction



Signal

1



Output



Fuel
pump
relay
control



Fuel
pump
relay,
terminal
85

2



Not
used

3



Output



Cyl
.
2
and
cyl
.
4
fuel
injection
valve
control



Cyl
.
2
and
cyl
.
4
fuel
injection
valves
4



Not
used

5



Not
used

6



Ground



Ground,
fuel
injection
valveoutputstages



Ground
point

7



Not
used

8



Output



"Check
engine"
indicator
control



Instrument
cluster

9



Not
used

10



Not
used

11



Output



DKV
potentiometer
signal



Transmission
control
module
(EGS)

12



Input



Throttleposition
sensor



Throttleposition
Signal

13



Not
used

14



Input



Volume
air
flow
sensor



Volume
air
flow
sensor
(signal
ground)

15



Input



Cyl
.
1-2
knock
sensor



Cyl
.
1-2
knock
sensor

16



Input



Camshaft
position
sensor
(cylinder
identification)



Camshaft
position
sensor
(cylinder
identification)

17



Output



ti
measurement
signal
(fuel
consumption)



Instrument
cluster

18



Output



Intakeair
resonance
changeover
valve
(DISA)



Intake
air
resonance
changeover
valve
19



-



Not
used

20



Not
used

21



Not
used

22



Not
used

23



Not
used

24



Output



Cyl
.
3
ignition
coil
control



Cyl
.
3
ignition
coil

25



Output



Cyl
.
1
ignition
coil
control



Cyl
.
1
ignition
coil

26



Input



Battery
voltage



B
+junction
point

27



Output



Engine
control
module
relay
control



Engine
control
module
relay,
terminal
85
28



Ground



Ground
for
electronics
and
shielding
of
sensors



Ground
point

29



Output



Idle
speed
control
valve
control



Idle
speed
control
valve

30



Not
used

31



Not
used

32



Output



Cyl
.
1
and
cyl
.
3
fuel
injection
valve
control



Cyl
.
1
and
cyl
.
3
fuel
injection
valves

33



Not
used
34



Ground



Ground,
output
stages
(except
for
ignition
and
fuel



Ground
point
injection
valves)

35



Not
used

36



Output



Evaporative
emissionvalve
control



Evaporative
emission
valve

37



Output



Oxygen
sensor
heater
control



Oxygen
sensor
relay,
terminal
85
38



Not
used
39



Not
used
40



I
Not
used

41



I
Input



,
Volume
Air
Flow
sensor



Volume
air
flow
sensor
(voltage
varies
with
engine
load)

42



1
Input



1
Cyl
.
3-4
knock
sensor



1
Cyl
.
3-4
knock
sensor

43



Ground



Ground
for
sensors



Engine
coolant
temperature
sensor,
cyl
.
1-2
knock
sensor,
cyl
.
3-4
knock
sensor,
and
throttle
position
sensor

44



1
Input



1
Camshaft
position
sensor
(cylinder
identification)



1
Camshaft
position
sensor
(cylinder
identification)

ECM
PIN
ASSIGNMENTS

Page 175 of 759

Tableh
.
ECM
Pin
Assignment--Bosch
DME
M1
.7

Pin



1
Signal



1
Component/function



1
Signal

45
Notused

46
Notused

47
Notused

48



Output



A/C
compressor
cut-out



Compressor
control
relay,
terminal
85
49
Notused

50
Notused

51



Output



Cyl
.
4
ignition
coil
control



Cyl
.
4
ignition
coil

52



Output



Cyl
.
2
ignition
coil
control



Cyl
.
2
ignition
coil

53



Not
used
54



Input



Battery
voltage
from
engine
control
module



Engine
control
module
relay,
terminal
87a

55



Ground



Ground,
ignition



Ground
point

56



Input



Ignition
switch,
terminal
15



Ignition
switch,
terminal
15
57
Notused

58



Not
used

59



Output



Throttleposition
sensor
and
volume
air
flow
sensor



Reference
voltage
(5
VDC)

60



Input



Programming
voltage



Data
link
connector

61
Notused

62
Notused

63
Notused

64



Input



Ignition
timing
intervention



Transmission
control
module
(EGS)

65



Input



Drive
range
P/N



Automatic
transmission
range
switch

66
Notused

67



Input



Crankshaft
position
RPM
sensor



Crankshaft
position
RPM
sensor

68



Input



Crankshaft
position
RPM
sensor



Crankshaft
position
RPM
sensor

69
Notused

70



Input



Oxygen
sensor
signal



Heated
oxygen
sensor

71



Ground



Oxygen
sensor
signal
ground



Heated
oxygen
sensor

72
Notused

73



Input



Vehicle
speed
signal



Instrument
cluster

74



Output



Engine
speed
signal



Instrument
cluster

75



Not
used
76



Input



Volume
air
flow
sensor



Volume
air
flow
sensor

77



Input



Intake
air
temperature
sensor
(IAT)



Intake
air
temperature
sensor
(IAT)

78



Input



Engine
coolant
temperature



Engine
coolant
temperature
sensor

79
Notused

80



Not
used

81



Input



Drive-away
protection
signal
(code)



On-boardcomputer

82



Not
used
83
Notused

84



Not
used
85



Input



A/C
pressure



Pressure
switch

86



Input



A/C
switch



Integrated
climate
regulation
control
module

87



Output



RxD
diagnosisdata
line



Data
link
connector

88



Output-Input



TxD
diagnosisdata
line



l
Data
link
connector

FUEL
INJECTION



130-
2
9

ECM
PIN
ASSIGNMENTS

Page 176 of 759


130-
3
0



FUEL
INJECTION

Pin
Signal
Component/function



Signal

ECM
PIN
ASSIGNMENTS

Table
1.
ECM
Pin
Assignment-Bosch
DME
M3
.1

1



output



Fuel
pump
relay
control



Fuel
pump
relay
switches
with
engine
runningor
cranking
(crankshaft
position
Signal
mustbe
present
for
relay
switchover)

2



1
output



1
Idle
speed
control
valve



1
Pulsad
ground-
close
signal
(seealsopin29)

3



output



Fuel
injectorcontrol,
cyl
.
1



Pulsedground
(injection
pulsewidth
in
ms)
with
engine
running

4



output



Fuel
injectorcontrol,
cyl
.
3



Pulsedground
(injection
pulsewidth
in
ms)
with
engine
running
5



output



Fuel
injector
control,
cyl
.
2



Pulsedground
(injection
pulse
width
in
ms)
with
enginerunning

6



ground



Ground



Ground
for
fuel
injector
output
stages

7
vacant
-



-

8



output



Check
Engine



Check
éngine
lamp
control
ground

9
vacant
-



-

10
vacant
-



-

11



output



Throttle
valve
position



Load
signal
to
transmission
control
module
12



input



Throttle
position
sensor



Voltage
varies
with
throttle
position

13



output



Mass
air
flow
sensor



Air
flow
sensor
hotwire
burn
off
(voltage
for
0
.5
seconds
after
shutdown)

14



ground



Mass
air
flow
sensor



Ground
for
air
flow
sensor

15
vacant
-



-

16



input



Cylinder
identification
sensor



A/C
voltage
pulse
per
camshaft
revolution
(between
pin
16
and
44)
17



output



Fuel
consumption
(ti)



Fuel
consumption
output
(KVA
Signal)
to
instrument
cluster

18
vacant
-



-

19
vacant
-



-

20
vacant
-



-

21vacant
-



-

22
vacant
-



-

23



output



Ignition
control
(terminal
1),
cyl
.
no
.
2



Primary
Signal,
ignition
coil
cyl
.
no
.
2

24



output



Ignition
control
(terminal
1),
cyl
.
n
o
.
3



Primary
signal,
ignition
coil
cyl
.
no
.
3

25



output



Ignition
control
(terminal
1),
cyl
.
n
o
.
1



Primary
signal,
ignitioh
coil
cyl
.
no
.
1

26



input



Power
supply
(terminal
30)



Battery
voltage
(B+)
at
al¡
times
(terminal
30)

27



output



Main
relay
control



Main
relay
activation
(to
relay
terminal
85)

28



ground



Ground



Ground
for
ECM
and
sensor
shielding

29



output



Idle
speed
control
valve



Pulsed
ground-
open
signal
(see
also
pin
2)

30
vacant
-



-

31



output



Fuel
injector,cyl
.
no
.
5



Pulsedground
(injection
pulsewidth
in
ms),
cyl
.
no
.
5

32



output



Fuel
injector,cyl
.
no
.
6



Pulsedground
(injection
pulse
width
in
ms),
cyl
.
no
.
6

33



output



Fuel
injector,cyl
.
no
.
4



Pulsedground
(injection
pulsewidth
in
ms),
cyl
.
no
.
4

34



ground



Ground



Ground
for
output
stages

35
vacant

36



output



Evaporative
purgevalve
control



Pulsed
ground
with
engine
at
normal
temperature
and
varying
engine
load

37



output



Oxygen
sensor
heater
relay
control



Oxygen
sensor
heater
relayactivation
(ground
at
terminal
85)

38
vacant
-



-

39
vacant
-



-

40
vacant



-

41



input



Mass
air
flow
sensor



Voltage
(+)

42
vacant
-



-

43



ground



Ground



Ground
for
temperatura
sensors
(ECT
sensor,
IAT
sensor,
TP
sensor)

44



input



Cylinder
identification
sensor



A/C
voltagepulseper
camshaft
revolution
(between
pin
16
and
44)

Page 177 of 759


Table
i
.
ECM
Pin
Assignment-Bosch
DME
M3
.1

Pin



Signal



Component/function



2

ignal

FUEL
INJECTION



130-
3
1

45
vacant
-

46
vacant
-



-

47
vacant
-



-

48



output



A/C
compressor
control



A/C
compressor
disabled
via
compressor
control
relay

49
vacant
-



-

50



output



Ignition
control
(terminal
1),cyl
.
n
o
.
4



Primary
signal,
ignition
coil
cyl
.
n
o
.
4

51



output



Ignition
control
(terminal
1),cyl
.
n
o
.
6



Primary
signal,
ignition
coil
cyl
.
no
.
6

52



output



Ignition
control
(terminal
1),cyl
.
n
o
.
5



Primary
signal,
ignitioncoil
cyl
.
no
.
5

53
vacant



-

54



input



Power
supply



Battery
voltage
(+)
from
main
relay
terminal
87
55



ground



Ground



Ground
for
ignition
control

56



input



Power
supply
(terminal
15)



Batteryvoltage
(+)
with
key
on
or
engine
running

57
vacant
-



-

58
vacant
-



-

59



output



Throttleposition
sensor



Throttleposition
sensorsupply
voltage
(5
VDC)

60



input



Data
link
connector



Programming
voltage

61
vacant
-



-

62
vacant
-



-

63
vacant
-



-

64



input



Ignition
timing
intervention



from
A/T
control
module
(only
active
during
gearshift)

65



input



Automatic
transmission
(A/T)
range
switch



Transmission
park
or
neutral
signal

66
vacant
-



-

67



input



Engine
speed/crankshaft
position
sensor



Crankshaft
position/rpm
(voltage
(VAC)
between
pins
67
and
68)

68



input



Engine
speed/crankshaft
position
sensor



Crankshaft
position/rpm
(voltage
(VAC)
between
pins
67
and
68)

69
vacant
-



-

70



input



Oxygen
sensor



Oxygen
sensor
signal
(0-1
VDC
fluctuating
with
engine
running)

71



ground



Oxygen
sensor



Oxygen
sensor
signal
ground

72
vacant
-



-

73



input



Road
speed



Road
speed
signal
from
instrument
cluster

74



output



Engine
speed
(TD)



Engine
speed
(TD)
signalto
instrument
cluster

75
vacant
-



-

76
vacant
-



-

77



input



Intakeair
temperature
(IAT)
sensor



Intake
air
temperature
(0-5
V,
temperaturedependent)

78



input



Engine
coolant
temperature
(ECT)
sensor



Engine
coolant
temperature
(0-5V,
temperature
dependent)

79
vacant
-



-

80
vacant
-



-

81



input



On-boardcomputer



Drive-away
protection
enable

82
vacant
-



-

83
vacant
-



-

84
vacant
-



-

85



input



A/C
pressure
switch



From
Integrated
climate
control
module
via
A/C
pressure
switch

86



input



A/C
compressor
on



From
Integrated
climate
control
module
87



input



Diagnostic
connector
(RxD)



Diagnostic
RxD
(receive)signal
to
pin
15
in
Data
link
connector

88



input/output



Diagnostic
connector
(TxD)



Diagnostic
TxD
(transmit)
signal
to
pin
20
in
Data
link
connector

ECM
PIN
ASSIGNMENTS

Page:   < prev 1-10 11-20 21-30 31-40 41-50 51-60 ... 70 next >