Temperatura BMW 325i 1998 E36 Workshop Manual

Page 138 of 759


121-2



BATTERY,
STARTER,
ALTERNATOR

CHARGING
SYSTEM
TROUBLESHOOTING



Static
currentdraw,
checking

Charging
system
diagnostics
requires
special
test
equip-

ment
.
If
the
test
equipment
is
not
available,
charging
system

fault
diagnosis
can
be
performedby
an
authorized
BMW
deal-

eror
other
qualified
repair
shop
.
A
general
troubleshooting

guide
is
given
in
Table
a
.

Charging
System
Quick-Check

As
a
quick-check,
use
a
digital
multimeter
lo
measure
volt-



2
.
Disconnect
battery
negative
(-)
cable
.

age
across
the
battery
terminals
with
the
key
off
and
then

again
with
the
engine
running
.
The
battery
voltage
should
be



CAUTION-
about12
.6
volts
with
key
off
and
approximately
14
.0
volts
with



Prior
to
disconnecting
the
battery,
read
the
battery
the
engine
running
.
If
the
voltage
does
not
increase
when
the



disconnection
cautions
given
at
the
front
of
this
engine
is
running,there
is
a
fault
in
the
charging
system
.



manual
onpaga
viii
.

NOTE
-

The
regulated
voltage
(engine
running)
should
be
be-
tween
13
.5
and
14
.5,
depending
on
temperatura
and
operating
conditions
.
If
the
voltage
is
higher
than
14
.8,
the
voltage
regulator
is
most
Mely
faulty
.

Check
for
clean
and
tight
battery
cables
.
Check
the
ground

cable
running
from
the
negative
(-)
battery
terminal
lo
the

chassis
and
the
ground
cable
running
from
the
engine
lo
the

chassis
.
Check
the
alternator
drive
belt
condition
and
tension
.

If
the
battery
discharges
over
time,
there
may
be
a
constant

drain
or
current
draw
on
the
battery
.
A
small
static
drain
on
the

battery
is
normal,
but
a
largedrain
will
cause
the
battery
lo

quickly
discharge
.
Make
a
static
current
draw
test
asthe
first

step
when
experiencing
battery
discharge
.

1
.
Make
sure
ignition
and
al¡
electrical
accessories
are

switched
off
.

3
.
Connect
a
digital
ammeter
between
negative
battery

post
and
negative
battery
cable
lo
measure
current
.

See
Fig
.
1
.
Wait
at
least
one
minuta
lo
get
an
accurate

reading
.

A
range
of
about
0
lo
100
milliamps
is
normal,
dependingon

the
number
of
accessories
that
need
constant
power
.
A
current

of
400
milliamps
(0.4
amp)
or
more
may
indicate
a
problem
.

Table
a
.
Battery,
Starter
and
Charging
System
Troubleshooting

Symptom



1



Probable
Cause



1



Correctiva
Action

1
.
Engine
cranks
slowlyor
not



a
.
Battery
cables
loose,
dirty
orcor-



a
.
Clean
or
replace
cables
.
See020
Maintenance
Program
.
a
tall,
solenoíd
clicks
when



roded
.
starter
is
operated
.



b
.
Battery
discharged
.



b
.
Charge
battery,
test
and
replace
if
necessary
.
c
.
Body
ground
straploose,
dirty
or



c
.
Inspect
ground
strap,
clean,
tighten
or
replace
if
necessary
.
corroded
.
d
.
Poor
connection
at
starter
motor



d
.
Check
connections,
test
for
voltage
at
starter
.
Test
for
voltage
at
terminal
30
.



neutral
safety
or
clutch
interlock
switch
.
e
.
Starter
motor
or
solenoid
faulty
.



e
.
Test
starter
.

2
.
Battery
will
not
stay



a
.
Short
circuit
draining
the
battery
.



a
.
Test
for
excessive
current
drainwith
everything
electrical
in
the
charged
more
than
a
few



vehicle
off
.
days
.



b
.
Short
driving
trips
and
high
elec-



b
.
Evaluate
driving
style
.
Where
possible,
reduce
electrical
con
trical
drain
on
charging
system



sumption
when
making
short
trips
.
does
not
allow
battery
to
re-
charge
.
c
.
Drive
belt(s)
worn
or
damaged
.



c
.
Inspect
or
replace
multi-ribbed
belt(s)
.
See
020
Maintenance
Program
.
d
.
Battery
faulty
.



d
.
Test
battery
and
replace
íf
necessary
.
e
.
Battery
cables
loose,
dirty
orcor-



e
.
Clean
or
replace
cables
.
See
020
Maintenance
Program
.
rodad
.
f
.
Alternatoror
voltage
regulator



f
.
Test
alternator
and
voltage
regulator
.
faulty
.

3
.
Battery
losing
water
.



1
a
.
Battery
overcharging
.



1
a
.
Test
voltage
regulator
for
proper
operation
.

4
.
Lights
dim,
light
intensity



a
.
Drive
belt(s)
worn
or
damaged
.



a
.
Inspect
or
replace
multi-ribbed
belt(s)
.
See
020
Maintenance
varies
with
engine
speed
.



Program
.
b
.
Alternatoror
voltage
regulator



b
.
Test
alternator
and
voltage
regulator
.
faulty
.
c
.
Body
ground
straps
loose,
dirty
or



c
.
Inspect
ground
straps,
clean,
tighten
or
replace
as
necessary
.
corroded
.

CHARGING
SYSTEM
TROUBLESHOOTING

Page 176 of 759


130-
3
0



FUEL
INJECTION

Pin
Signal
Component/function



Signal

ECM
PIN
ASSIGNMENTS

Table
1.
ECM
Pin
Assignment-Bosch
DME
M3
.1

1



output



Fuel
pump
relay
control



Fuel
pump
relay
switches
with
engine
runningor
cranking
(crankshaft
position
Signal
mustbe
present
for
relay
switchover)

2



1
output



1
Idle
speed
control
valve



1
Pulsad
ground-
close
signal
(seealsopin29)

3



output



Fuel
injectorcontrol,
cyl
.
1



Pulsedground
(injection
pulsewidth
in
ms)
with
engine
running

4



output



Fuel
injectorcontrol,
cyl
.
3



Pulsedground
(injection
pulsewidth
in
ms)
with
engine
running
5



output



Fuel
injector
control,
cyl
.
2



Pulsedground
(injection
pulse
width
in
ms)
with
enginerunning

6



ground



Ground



Ground
for
fuel
injector
output
stages

7
vacant
-



-

8



output



Check
Engine



Check
éngine
lamp
control
ground

9
vacant
-



-

10
vacant
-



-

11



output



Throttle
valve
position



Load
signal
to
transmission
control
module
12



input



Throttle
position
sensor



Voltage
varies
with
throttle
position

13



output



Mass
air
flow
sensor



Air
flow
sensor
hotwire
burn
off
(voltage
for
0
.5
seconds
after
shutdown)

14



ground



Mass
air
flow
sensor



Ground
for
air
flow
sensor

15
vacant
-



-

16



input



Cylinder
identification
sensor



A/C
voltage
pulse
per
camshaft
revolution
(between
pin
16
and
44)
17



output



Fuel
consumption
(ti)



Fuel
consumption
output
(KVA
Signal)
to
instrument
cluster

18
vacant
-



-

19
vacant
-



-

20
vacant
-



-

21vacant
-



-

22
vacant
-



-

23



output



Ignition
control
(terminal
1),
cyl
.
no
.
2



Primary
Signal,
ignition
coil
cyl
.
no
.
2

24



output



Ignition
control
(terminal
1),
cyl
.
n
o
.
3



Primary
signal,
ignition
coil
cyl
.
no
.
3

25



output



Ignition
control
(terminal
1),
cyl
.
n
o
.
1



Primary
signal,
ignitioh
coil
cyl
.
no
.
1

26



input



Power
supply
(terminal
30)



Battery
voltage
(B+)
at
al¡
times
(terminal
30)

27



output



Main
relay
control



Main
relay
activation
(to
relay
terminal
85)

28



ground



Ground



Ground
for
ECM
and
sensor
shielding

29



output



Idle
speed
control
valve



Pulsed
ground-
open
signal
(see
also
pin
2)

30
vacant
-



-

31



output



Fuel
injector,cyl
.
no
.
5



Pulsedground
(injection
pulsewidth
in
ms),
cyl
.
no
.
5

32



output



Fuel
injector,cyl
.
no
.
6



Pulsedground
(injection
pulse
width
in
ms),
cyl
.
no
.
6

33



output



Fuel
injector,cyl
.
no
.
4



Pulsedground
(injection
pulsewidth
in
ms),
cyl
.
no
.
4

34



ground



Ground



Ground
for
output
stages

35
vacant

36



output



Evaporative
purgevalve
control



Pulsed
ground
with
engine
at
normal
temperature
and
varying
engine
load

37



output



Oxygen
sensor
heater
relay
control



Oxygen
sensor
heater
relayactivation
(ground
at
terminal
85)

38
vacant
-



-

39
vacant
-



-

40
vacant



-

41



input



Mass
air
flow
sensor



Voltage
(+)

42
vacant
-



-

43



ground



Ground



Ground
for
temperatura
sensors
(ECT
sensor,
IAT
sensor,
TP
sensor)

44



input



Cylinder
identification
sensor



A/C
voltagepulseper
camshaft
revolution
(between
pin
16
and
44)

Page 179 of 759


Table
j.
ECM
Pin
Assignment-Bosch
DME
M3
.3
.1

Pin



~
Signal



1
Componentffunction



1
signal

FUEL
INJECTION



130-
33

45



ground



Ignition
circuit
shield



Ground
shieldfor
ignition
circuit
monitoring

46



output



Fuel
consumption
(KVA
signal)



To
instrument
cluster

47



output



Crankshaft
rpm



Engine
speed
(TD)
signal
to
instrument
cluster

48



output



A/C
compressor
control



A/C
compressor
relay
terminal
85
49
vacant
-



-

50



output



Ignition
coil
control,
cyl
.
1



Primary
signal,
ignition
coil
1

51



output



Ignition
coil
control,
cyl
.
2



Primary
signal,
ignition
coil
2

52



output



Ignition
coil
control,
cyl
.
3



Primary
signal,
ignition
coil
3

53
vacant
-



-

54



input



Power
supply



Battery
voltagefrom
main
relay
(terminal
87a)

55



ground



Ground



Ground
for
ignition
control

56



input



Power
supply
(terminal15)



Batteryvoltage
with
key
on
or
engine
running

57



input



Ignition
timing
intervention



From
A/T
control
module
58
vacant
-



-

59



output



Throttleposition
sensor
(TPS)



Voltage
supply
to
TPS
(5
VDC)

60



input



Programming
voltage



Data
link
connector

61
vacant
-



-

62
vacant
-



-

63
vacant
-



-

64



input



A/C
on
signal



From
integrated
climate
control
module
65



input



A/C
pressure
signal



From
integrated
climate
control
module
via
A/C
pressure
switch

66



input



On-board
computer



Drive-away
protection
enable
(starter
immobilization
relay)

67
vacant
-



-

68
vacant
-



-

69



input



Knock
sensor
#2
(cyl
.
4,5,
6)



Knock
sensor
#2
signal

70



input



Knock
sensor
#1
(cyl
.
1,2,
3)



Knock
sensor
#1
signal

71



ground



Ground



Ground
for
knock
sensors
and
shields

72
vacant
-



-

73



input



Throttleposition
sensor
(TPS)



Throttleposition
signal

74
vacant
-

75
vacant
-



-

76
vacant
-

77



input



Intakeair
temperatura



Intakeair
temperatura
sensor
(0-5
VDC)

78



input



Engine
coolant
temperature



Engine
coolant
temperature
sensor
(0-5
VDC)

79
vacant
-

80
vacant
-



-

81



input



Automatic
transmission
gear
positionlneutral



A/T
parkor
neutral
position
signal
safetyswitch

82
vacant
-



-

83
vacant
-



-

84
vacant
-



-

85
vacant
-



-

86
vacant
-



-

87



input



Diagnostic
connector
(RxD)



Diagnostic
RxD
(receive)
signal
to
pin
15
in
Data
link
connector

88



input/output



Diagnostic
connector
(TxD)



Diagnostic
TxD
(transmit)
signal
to
pin
20
in
Data
link
connector

ECM
PIN
ASSIGNMENTS

Page 181 of 759


Table
k
.
ECM
Pin
Assignment-Bosch
DME
M5
.2
(continued)

Pin



I
Signal



1
Componentltunction



1
Signal
45



I
output



I
Mass
air
flow
meter



I
Intake
airSignal

46



output



Oxygen
sensor
(monitoring
sensor)



Oxygen
sensor
control

47



not
used



-

48



not
used



-

49



output



Ignition
coil
control,
cyl
.
1



Primary
signal,
ignition
coil
1

50



output



Ignition
coil
control,
cyl
.
2



Primary
signal,
ignition
coil
2
51



not
used



-

52



not
used



-

53



input



Throttleposition
sensor



Throttleposition
Signal

54



input



Power
supply



Batteryvoltage
from
main
relay
(terminal
87)

55



ground



Ground



Ground
for
ECM

56



input



Power
supply
(terminal
15)



Battery
voltage
with
key
on
or
engine
running

57



output



Activate
cooling
fan
(man
.
trans
.)
control



Normal
speed
relay

58



not
used



-



-

59



not
used



-



-

60



input



Programming
voltage



Programming
voltage
via
data
link
connector,
pin
18

61



output



Evaporative
emissionvalve



Evaporative
emission
valve
control

62
vacant
-



-

63



output



Fuel
pump
relay



Fuel
pump
relay
control

64



not
used



-

65



not
used



-



-

66



not
used



-



-

67



not
used



-



-

68



input



Signal
above
80°C(man
.
tran
.)



Double
temperature
switch

69



input



Automatic
climate
control



Automatíc
climate
control

70



input



Knock
sensor
#1
(cyl
.
1,2)



Knock
sensor
#1
Signal

71



ground



Ground



Ground
for
analog
signals
and
knock
sensors

72



not
used



-



-

73



not
used



-



-

74



input



Engine
coolant
temperature
sensor



Engine
coolant
temperatura
Signal

75



not
used



-



-

76



not
used



-



-

77



output



Oxygen
sensor
(regulating
sensor)



Oxygen
sensor
control

78



input



Crankshaft/rpm
sensor



Crankshaft
position/rpmSignal

79



input



ABS
or
traction
control



ABS
or
AST
control

80



input



Engine
speed



Engine
speed
Signal
81



not
used



-



-

82



not
used



-



-

FUEL
INJECTION



130-
3
5

83



input



On-board
computar



From
On-boardcomputer
(terminal
4)

84



not
used



-



-

85



not
used



-



-

86



not
used



-



-

87



input



Diagnostic
connector
(RxD)



Diagnostic
RxD
(receive)signal
to
pin
15
in
Data
link
connector

88



output



I
Diagnostic
connector
(TxD)



Diagnostic
TxD
(transmit)
signal
to
pin
17in
Data
link
connector

ECM
PIN
ASSIGNMENTS

Page 205 of 759


Fig
.
19
.
Coolant
pump
being
removed
.
Thread
two
M6
bolts
(arrows)
in
evenly
to
withdraw
pump
.
(Thermostat
and
hoseshavebeen
removed
tor
visual
access
.)

8
.
Installation
is
reverse
of
removal
.

"
Be
sure
to
replace
O-ring
and
gaskets
.

"
Coat
O-ring
with
lubricant
during
installation
.

Tightening
Torque

"
Coolant
pump
to
timing
chaincover

M6
...
.
...................
..
.
.
10
Nm
(89
in-lb)

M8
.
..
.
....................
.
.
.
22
Nm
(17
ft-Ib)

"
Coolant
pump
pulley

to
coolant
pump
.................
10
Nm
(89
in-lb)

RADIATOR
SERVICE

Radiator,
removing
and
installing

1
.
Drain
radiator
as
described
earlier
.

WARNING
-

Allow
cooling
system
to
cool
before
opening
ordraining
system
.

2
.
Remove
primary
cooling
fan
(belt-driven
or
electric)
as

described
earlier
.

3
.
Disconnect
coolingfan
and
leve¡
sensor
harness
con-

nectors
from
bottom
of
radiator,
where
applicable

4
.
Disconnect
harness
connector
from
auxiliary
fandual

temperature
switch
.
See
Fig
.
20
.

5
.
Disconnect
all
coolant
hoses
from
radiator
.

RADIATOR
AND
COOLING
SYSTEM



170-11

0012500

Fig
.
20
.
Cooling
fan
dual
temperatura
switch
(arrow)
on
right
sido
of
radiator
.

6
.
Where
applicable,
disconnectautomatic
transmission
fluid
(ATF)
cooler
lines
from
radiator
.
See
Fig
.
21
.

Fig
.
21
.
Automatic
transmission
fluid
(ATF)
linos
at
radiator
.

7
.
Carefully
pryout
radiator
retaining
clips
from
top
of
ra-

diator
.
See
Fig
.
22
.

8
.
Pul¡
radiator
up
and
out
of
car
.

NOTE-

The
radiator
rests
ontwo
rubber
mounts
.
Check
that

the
mounts
do
not
stick
to
the
bottomof
the
radiator
.

RADIATOR
SERVICE

Page 326 of 759


510-4



EXTERIOR
TRIM,
BUMPERS

Fig
.
8
.



Bumper
cover
retaining
screws
(arrows)
in
left
wheel
weil
.

7
.
Disconnect
harnessconnectors
at
outside
temperature



0013052

sensor
at
rear
of
left
side
of
bumperand
temperatura



Fig
.
9
.



Front
bumper
impact
absorber
mounting
nuts
(A)
and

switch
at
rear
of
right
side
of
bumper
(if
applicable)
.



bumper
bracket
hardware
(B)
.

8
.
Slide
bumper
straight
off
sida
brackets
.

9
.
Installation
is
reverse
of
removal,
notingthe
following
:



When
removing
and
installing
therear
bumper
or
its
compo-

"
Slide
side
brackets
on
bumper
and
body
carefully
to-



nents,
referto
Fig
.
10
.

gether
.

"
Make
sure
tabs
on
trim
strip
engage
slots
in
bumper



1
.
Raise
and
properly
support
vehicle
.

correctly
.

Tightening
Torque

"
Bumper
to
bumper

bracket
(M8
nut)
............
...
.
.
22
Nm
(16
ft-Ib)

2
.
Working
under
bumper,
remove
screws
or
expansion

Front
bumper
impact
absorber,replacing



rivetsat
corners
and
middle
of
lower
bumper
panel
.
Pull

panel
backward,
uncoupling
it
from
bumper
cover
.
See

Thebumper
mounting
bracket
and
impact
absorber
mount-



Fig
.
11
.

ing
hardware
are
accessible
with
the
Font
bumper
removed,
as
described
above
.
See
Fig
.
9
.



3
.
Remove
bumper
cover
expansion
rivets
and
screws
in-

side
left
and
right
rear
wheel
wells
.

NOTE
-

Install
the
bumper
bracket
boltwith
thread
locking
com-
pound
suchas
Loctite
8
270
or
equivalent
.

Tightening
Torques

"
Bumper
bracket
to
impact
absorber

(M10
nut)
.
..
.
...
.............:.
55
Nm
(41
ft-Ib)
"
Impact
absorber
to
chassis
(M6
nut)
...
9
Nm
(7
ft-Ib)

BUMPERS

Rear
bumper,
removing
and
installing

WARNING
-

Make
sure
that
the
car
is
firmly
supported
on
jack

stands
designad
for
the
purpose
.
Place
the
jack

stands
beneath
a
structural
chassis
point
.
Do
not

place
jack
stands
under
suspension
parts
.

4
.
Remove
left
and
right
bumper
bracket
mounting
bolts

and
remove
bumper
.
See
Fig
.
12
.

5
.
Installation
is
reverse
of
removal
.

NOTE-

Install
the
bumper
bracket
bolt
with
thread
locking
com-
pound
suchas
Loctite®270
or
equivalent
.