transmission BMW M3 1993 E36 Service Manual

Page 177 of 759


Table
i
.
ECM
Pin
Assignment-Bosch
DME
M3
.1

Pin



Signal



Component/function



2

ignal

FUEL
INJECTION



130-
3
1

45
vacant
-

46
vacant
-



-

47
vacant
-



-

48



output



A/C
compressor
control



A/C
compressor
disabled
via
compressor
control
relay

49
vacant
-



-

50



output



Ignition
control
(terminal
1),cyl
.
n
o
.
4



Primary
signal,
ignition
coil
cyl
.
n
o
.
4

51



output



Ignition
control
(terminal
1),cyl
.
n
o
.
6



Primary
signal,
ignition
coil
cyl
.
no
.
6

52



output



Ignition
control
(terminal
1),cyl
.
n
o
.
5



Primary
signal,
ignitioncoil
cyl
.
no
.
5

53
vacant



-

54



input



Power
supply



Battery
voltage
(+)
from
main
relay
terminal
87
55



ground



Ground



Ground
for
ignition
control

56



input



Power
supply
(terminal
15)



Batteryvoltage
(+)
with
key
on
or
engine
running

57
vacant
-



-

58
vacant
-



-

59



output



Throttleposition
sensor



Throttleposition
sensorsupply
voltage
(5
VDC)

60



input



Data
link
connector



Programming
voltage

61
vacant
-



-

62
vacant
-



-

63
vacant
-



-

64



input



Ignition
timing
intervention



from
A/T
control
module
(only
active
during
gearshift)

65



input



Automatic
transmission
(A/T)
range
switch



Transmission
park
or
neutral
signal

66
vacant
-



-

67



input



Engine
speed/crankshaft
position
sensor



Crankshaft
position/rpm
(voltage
(VAC)
between
pins
67
and
68)

68



input



Engine
speed/crankshaft
position
sensor



Crankshaft
position/rpm
(voltage
(VAC)
between
pins
67
and
68)

69
vacant
-



-

70



input



Oxygen
sensor



Oxygen
sensor
signal
(0-1
VDC
fluctuating
with
engine
running)

71



ground



Oxygen
sensor



Oxygen
sensor
signal
ground

72
vacant
-



-

73



input



Road
speed



Road
speed
signal
from
instrument
cluster

74



output



Engine
speed
(TD)



Engine
speed
(TD)
signalto
instrument
cluster

75
vacant
-



-

76
vacant
-



-

77



input



Intakeair
temperature
(IAT)
sensor



Intake
air
temperature
(0-5
V,
temperaturedependent)

78



input



Engine
coolant
temperature
(ECT)
sensor



Engine
coolant
temperature
(0-5V,
temperature
dependent)

79
vacant
-



-

80
vacant
-



-

81



input



On-boardcomputer



Drive-away
protection
enable

82
vacant
-



-

83
vacant
-



-

84
vacant
-



-

85



input



A/C
pressure
switch



From
Integrated
climate
control
module
via
A/C
pressure
switch

86



input



A/C
compressor
on



From
Integrated
climate
control
module
87



input



Diagnostic
connector
(RxD)



Diagnostic
RxD
(receive)signal
to
pin
15
in
Data
link
connector

88



input/output



Diagnostic
connector
(TxD)



Diagnostic
TxD
(transmit)
signal
to
pin
20
in
Data
link
connector

ECM
PIN
ASSIGNMENTS

Page 179 of 759


Table
j.
ECM
Pin
Assignment-Bosch
DME
M3
.3
.1

Pin



~
Signal



1
Componentffunction



1
signal

FUEL
INJECTION



130-
33

45



ground



Ignition
circuit
shield



Ground
shieldfor
ignition
circuit
monitoring

46



output



Fuel
consumption
(KVA
signal)



To
instrument
cluster

47



output



Crankshaft
rpm



Engine
speed
(TD)
signal
to
instrument
cluster

48



output



A/C
compressor
control



A/C
compressor
relay
terminal
85
49
vacant
-



-

50



output



Ignition
coil
control,
cyl
.
1



Primary
signal,
ignition
coil
1

51



output



Ignition
coil
control,
cyl
.
2



Primary
signal,
ignition
coil
2

52



output



Ignition
coil
control,
cyl
.
3



Primary
signal,
ignition
coil
3

53
vacant
-



-

54



input



Power
supply



Battery
voltagefrom
main
relay
(terminal
87a)

55



ground



Ground



Ground
for
ignition
control

56



input



Power
supply
(terminal15)



Batteryvoltage
with
key
on
or
engine
running

57



input



Ignition
timing
intervention



From
A/T
control
module
58
vacant
-



-

59



output



Throttleposition
sensor
(TPS)



Voltage
supply
to
TPS
(5
VDC)

60



input



Programming
voltage



Data
link
connector

61
vacant
-



-

62
vacant
-



-

63
vacant
-



-

64



input



A/C
on
signal



From
integrated
climate
control
module
65



input



A/C
pressure
signal



From
integrated
climate
control
module
via
A/C
pressure
switch

66



input



On-board
computer



Drive-away
protection
enable
(starter
immobilization
relay)

67
vacant
-



-

68
vacant
-



-

69



input



Knock
sensor
#2
(cyl
.
4,5,
6)



Knock
sensor
#2
signal

70



input



Knock
sensor
#1
(cyl
.
1,2,
3)



Knock
sensor
#1
signal

71



ground



Ground



Ground
for
knock
sensors
and
shields

72
vacant
-



-

73



input



Throttleposition
sensor
(TPS)



Throttleposition
signal

74
vacant
-

75
vacant
-



-

76
vacant
-

77



input



Intakeair
temperatura



Intakeair
temperatura
sensor
(0-5
VDC)

78



input



Engine
coolant
temperature



Engine
coolant
temperature
sensor
(0-5
VDC)

79
vacant
-

80
vacant
-



-

81



input



Automatic
transmission
gear
positionlneutral



A/T
parkor
neutral
position
signal
safetyswitch

82
vacant
-



-

83
vacant
-



-

84
vacant
-



-

85
vacant
-



-

86
vacant
-



-

87



input



Diagnostic
connector
(RxD)



Diagnostic
RxD
(receive)
signal
to
pin
15
in
Data
link
connector

88



input/output



Diagnostic
connector
(TxD)



Diagnostic
TxD
(transmit)
signal
to
pin
20
in
Data
link
connector

ECM
PIN
ASSIGNMENTS

Page 183 of 759


Table
I
.
ECM
Pin
Assignment-Siemens
DME
MS
41
.1
(continued)

Pin



I
Signal



I
Component/function



1
Signal

FUEL
INJECTION



130-
37

47
-

48



input



Crankshaft
position
sensor
(Hall
effect)



Crankshaft
position
sensor
control

49



input



Power
supply
(terminal
15)



Batteryvoltage
with
key
onor
engine
running
50



output



Solenoid
valve
(running
losses)



Running
losses

51



output



Carbon
canister
valve



Carbon
canister
valve
control

52vacant
-

53



output



Idle
speed
control
valve



Pulsed
ground-close
signal
(seealsopin29)
54



input



Power
supply



Battery
voltagefrom
main
relay
(terminal
87)

55
vacant
-

56
-

57



input



Knock
sensor
(cyl
.
1-3)



Knock
sensor
input
Signal

58



output



Knock
sensor
(cyl
.
1-3)



Knock
sensor
control

59



input



Knock
sensor
(cyl
.
4-6)



Knock
sensor
input
Signal

60



input/output



Diagnostic
connector
(TxD)



Diagnostic
TxD
(transmit)
signal
to
pin
18
in
Data
link
connector
61



output



Oxygen
sensor
heater
(monitoring
sensor)



Oxygen
sensor
heater
ground

62



output



Secondary
air
injection



Secondary
air
injection
control
valve

63



output



Knock
sensor
(cyl
.
4-6)



Knock
sensor
control

64



input



Camshaft
position/rpm
sensor



Camshaft
position/rpm
sensor
control

65



input



Camshaft
position/rpm
sensor



Camshaft
position/rpm
sensor
control

66
-

67



output



Oxygen
sensor



Oxygen
sensor
reference
voltage

68



output



Evaporative
purge
valve
control



Pulsed
ground
with
engine
at
normal
temperature
and
varyingengine
load

69



output



Fuel
pump
relay
control



Fuel
pump
relay
switches
with
engine
runningorcranking
(crankshaft
position
signal
must
be
present
for
relay
switchover)

70
vacant
-



-

71



output



Oxygen
sensor
heater
(regulating
sensor)



Oxygen
sensor
heater
ground

72



output



Oxygen
sensor
(monitoring
sensor)



Oxygen
sensor
referencevoltage

73



input



Main
relay
control



Main
relay
activation
(terminal
85)

74



output



A/C
compressor
control



A/C
compressor
relay
control

75



input



Oxygen
sensor



Oxygen
sensor
signal

76



not
used



-



-

77



input



Oxygen
sensor
(regulating
sensor)



Oxygen
sensor
signal

78



input



Oxygen
sensor
(monitoring
sensor)



Oxygen
sensor
signal

79



output



Oxygen
sensor
(regulating
sensor)



Oxygen
sensor
referencevoltage

80



Traction
control



AST
module

81



Traction
control



AST
module
82



Traction
control



AST
module
83



output



Crankshaft
position
sensor
(Hall
effect)



Crankshaft
position
sensor
control

84
vacant
-



-

85



output



Automatic
transmission



Automatic
transmission
control
module

86



input



Automatic
transmission



Automatic
transmissíon
control
module

87



input



Power
supply



Battery
voltage
from
main
relay
(terminal
87)

88



input/output



Diagnostic
connector
(TxD)



Diagnostic
TxD
(transmit)
signal
to
pin
17
in
Data
link
connector

ECM
PIN
ASSIGNMENTS

Page 195 of 759

170
Radiator
and
Cooling
System

GENERAL
.
.
.....
.
...
.
.
.
.
.
....
.
.
.
.
.
.
.
.170-1

Coolant
Pump
and
Thermostat
........
.
.
.
.
170-1

Radiator
and
Expansion
Tank
.........
.
...
170-1

Cooling
Fans
.
....
.
.
.
.
.
.
.
.
.
.....
.
......
170-2

Warnings
and
Cautions
.
.
.
.
.
.
.
.
.
.
.
.
...
.
.
.
170-2

TROUBLESHOOTING
...
.
.
.
...
.
.
.
.
.
.
.
.
.170-2

Cooling
System
Pressure
Test
...
.
.
.
.
.
.
.
.
.
170-3

Thermostat
Quick
Check
.
.
.
.
...
.
.
.
.
.
.
.
.
.
170-3

Temperature
Gauge
Quick
Check
.
.
.
.
.
.
.
.
.
170-3

Cooling
fan,
testing
.
.
.
.
........
.
.
.
.
.
.
.
.
.
170-4

COOLING
SYSTEM
SERVICE
.
.
.
.
.
.
.
.
.
.
170-5

Coolant,draining
and
filling
.
.
......
.
.
.
.
.
..
170-5

Cooling
system,
bleeding

(radiator
with
integral
expansion
tank)
.....
170-6

GENERAL

This
section
covers
repair
and
troubleshooting
information
for
the
engine
cooling
system
.
For
heater
core
and
related
heating
and
air
conditioning
components,
see640
Heating
and
Air
Conditioning
.

Coolant
Pump
and
Thermostat

A
centrifuga¡-type
coolant
pump
is
mounted
to
the
front
of

the
engíne
.
The
belt-driven
pump
circulates
coolant
through

the
system
whenever
the
engíne
is
running
.
A
thermostat
con-

trols
the
flow
of
coolant
into
the
radiator
.

When
the
engíne
is
cold
the
thermostat
is
closed
so
coolant

bypasses
the
radiator,
recirculating
from
the
engíne
directly

back
to
the
pump
.
When
the
engíne
reaches
operating
tem-

perature,
the
thermostat
opens
and
coolant
circulates
through

the
whole
system
including
the
radiator
.

Radiator
and
Expansion
Tank

The
radiator
is
a
crossflow
design
.
A
translucent
expansion

tank
provides
for
coolant
expansion
at
higher
temperatures
and

easy
monitoringof
the
coolant
leve¡
.

On
4-cylinder
modeis,
the
radiator
expansion
tank
is
integral

with
the
radiator
.
See
Fig
.
1
.

RADIATOR
AND
COOLING
SYSTEM



170-1

Belt-driven
cooling
fan,
replacing
.
.......
.
.
.
170-7

Electric
cooling
fan,
replacing
.
.
.
.....
.
.
.
.
.
170-8

Auxiliary
cooling
fan,
replacing
.
.
.....
.
.
.
.
.
170-8

Thermostat,
replacing
.
.
.
.
.
.
.
.
.
.....
.
.
.
.
.
170-9
Coolant
pump,
replacing
..........
.
.
.
.
.
.
170-10

RADIATOR
SERVICE
.....
.
......
.
.
.
.
.
.
170-11

Radiator,
removing
and
installing
....
.
.
.
.
.
.
170-11

TABLES

a
.
Coolant
Temperature
Sensor
Wire
Colors
...
.
..
.
.
170-3b
.
Auxiliary
Cooling
Fan
Switching
Temperatures
.:.
.170-4
c
.
Auxiliary
Cooling
Fan
Temperature
Switch
Tests
..
..
.
...
...
.
.............
.
..
.
.
170-5d
.
Cooling
System
Capacities
..............
..
.
.
.
170-6

A
.
Expansion
tank



C
.
Dualtemperature
fan
switch
B
.
Radiator
drain
screw

Fig
.
1
.
Radiator
assembly
with
integral
expansion
tank
(4-cylinder
engine)
.

On
6-cylinder
models,
a
standalone
expansion
tank
is
used
.

On
cars
with
automatic
transmission,
ATF
is
circulated
through
an
additional
heat
exchanger
(ATF
cooler)
.

GENERAL

Page 196 of 759


170-2



RADIATOR
AND
COOLING
SYSTEM

Cooling
Fans



TROUBLESHOOTING

Belt-driven
coolingfan
.
The
primary
cooling
fan
is
belt-

driven
.
It
is
mounted
to
the
frontof
the
coolant
pump
through
a

fan
clutch
.
The
fan
clutch
is
a
viscous
fluid
coupling
that
con-

trols
the
speed
of
thefan
based
on
engine
compartment
tem-

perature
.

Electric
cooling
fan
.
Models
with
M44
engine
and
stan-

dard
transmission
substitute
an
electric
fan
for
the
belt-driven

viscous
fan
.
This
is
attached
to
the
rear
of
the
radiator
and

controlledvia
the
DME
5
.2
engine
management
system
.

NOTE-

The
electric
cooling
fan
in
these
models
is
activated
by
the
engine
control
module
(ECM)
.

Auxiliary
coolingfan
.
In
al¡
models
a
two-speed
electric

auxiliary
cooling
fan
is
mounted
behind
the
front
grill
and
in

front
of
the
radiator
.
This
fan
is
primarily
used
for
the
A/C
sys-

tem,
but
also
operates
when
the
coolant
temperature
ex-

ceeds
a
predetermined
leve¡
.

Warnings
and
Cautions

The
following
warnings
and
Cautions
should
beobserved

when
working
on
the
cooling
system
.

WARNING
-

"
Atnormal
operating
temperature
the
cooling
sys-
tem
is
pressurized
.
Allow
the
system
to
cool
as
long
as
possible
before
opening-a
minimum
of
an
hour-then
release
the
cap
slowly
to
allow
sale
release
of
pressure
.

"
Releasing
the
cooling
system
pressure
lowers
the
coolants
boiling
point
and
the
coolant
may
boíl
suddenly
.
Use
heavy
gloves
and
wear
eye
and
laceprotection
to
guard
against
scalding
.

"
Use
extreme
care
when
draining
and
disposing
of
engine
coolant
.
Coolant
is
poisonous
and
lethal
to
humans
and
pets
.
Pets
are
attracted
to
coolant
because
of
its
sweet
smell
and
taste
.
Consult
a
veterinarian
immediately
if
coolant
is
ingested
byan
animal
.

CAUTION-

"
Avoidadding
cold
water
to
the
coolant
while
the
engine
is
hot
or
overheated
.
If
it
is
necessary
to
add
coolant
to
ahot
system,
do
so
only
with
the
engine
running
and
coolant
pump
tuming
.

"
Prior
to
disconnecting
the
battery,
read
the
bat-
tery
disconnection
cautions
given
at
the
front
of
this
manual
on
page
viii
.

TROUBLESHOOTING

Most
cooling
system
faults
can
be
grouped
into
one
of
three

categories
:

"
Cooling
system
leaks

"
Poor
coolant
circulation

"
Radiator
cooling
fan
faults

When
investigating
the
cause
of
overheating
or
coolant

loss,
begin
with
a
visual
inspection
.
Be
sure
to
check
the
con-

dition
and
tension
of
the
coolant
pump
drive
belt
.
Check
hoses

for
cracks
or
softness
.
Check
clamps
for
looseness
.
Check

the
coolant
leve¡
and
check
for
evidence
of
coolantleaks
from

the
engine
.

Check
that
the
radiator
fins
are
not
blocked
with
dirt
or
de-

bris
.
Clean
the
radiator
using
low-pressure
water
or
com-

pressed
air
.
Blow
outward,
fromthe
engine
side
out
.

Inspect
the
coolant
pump
by
first
removing
the
drive
belt

from
the
pump
.
Firmly
grasp
opposite
sídes
of
the
pulley
and

check
for
play
in
all
directions
.
Spin
the
pulley
and
check
that

the
shaft
runs
smoothly
.

NOTE-

The
coolant
provides
lubrication
for
the
pump
shaft,
soan
occasional
drop
of
coolant
leaking
from
the
pump
is
acceptable
.
If
coolant
drips
steadily
from
the
vent
hole,
the
pump
should
be
replaced
.

The
cooling
system
becomes
pressurized
at
normal
operat-

ing
temperature,
which
raises
the
boiling
point
of
the
coolant
.

Leaks
may
prevent
the
system
from
becoming
pressurized,

allowing
the
coolant
to
boil
at
a
lower
temperature
.
If
visual
ev-

idence
is
inconclusive,
a
cooling
system
pressure
test
can

help
to
pinpointhard-to-find
leaks
.

If
the
cooling
system
is
full
of
coolant
and
holds
pressure,

the
next
most
probable
cause
of
overheating
are
:

"
Faulty
radiator
fan

"
Loose
or
worn
drive
belt

"
Failed
thermostat
or
coolant
pump

"
Clogged/plugged
radiator
or
coolant
passages
.

NOTE
-

"
Some
early
style
coolant
pumps
were
fitted
wíth
fi-
berlplastic
type
impellers
.
Over
time,
this
impeller
can
wear
away
and
result
in
overheating
.
The
plastic
im-
peller
can
also
slip
or
free-wheel
on
the
pump
shaft
.
If
the
engine
overheats
and
no
other
faults
canbe
found,
theold
style
impeller
may
be
the
cause
of
the
problem
.

"
Only
pumps
with
the
updated
metal
impeller
should
be
used
for
replacement
.

Page 198 of 759


170-
4



RADIATOR
AND
COOLING
SYSTEM
A
quick
testat
the
coolant
temperature
gauge
sender
can



The
auxiliary
cooling
fan
comes
on
when
coolant
tempera

determine
if
the
gauge
is
functioning
correctly
.



ture
exceeds
a
predetermined
leve¡
or
whenever
the
air
condi-

tioning
is
on
.
A
dual-range
temperature
switch
for
cooling
fan
lf
the
gauge
needie
remains
at
the
rest
position
with
theen-



control
is
mounted
on
the
right
side
of
the
radiator
.
See
Fig
.
3
.
gine
warm,
remove
the
harness
connector
from
the
sender
and
jumper
the
correct
terminals
in
the
connector
to
simulate
a
high
engine
temperature
.
See
Table
a
.
Turn
the
ignition
on
.

If
the
gauge
needle
moves
upward,
the
sender
is
faulty
.
If
the

gauge
does
not
respond,
the
wiring
to
the
gauge
is
broken
(open
circuit)
or
the
gauge
itselfis
faulty
.

WARNING
-

1996
and
laten
models
are
OBD
11
compliant
.
Dis-
connecting
electrical
connectors
wíth
the
ignition
turned
on
may
set
fault
codes
in
the
ECM
.
It
is
rec-
ommended
that
you
leave
the
diagnosis
of
faults
in
the
coolant
temperature
sensorsystem
to
the
BMW
dealer
service
department
which
has
specialized
OBD
11
scan
tool
equipment
.

If
the
gauge
needle
reads
too
high
when
the
engine
is
cold,
remove
the
harness
connector
from
the
sender
.
Turn
the
igni-

tion
on
.
lf
the
gauge
needle
position
does
not
change,
the
wir-

ing
or
the
gauge
is
shorted
to
ground
.
If
the
gauge
needle

drops,
the
sender
is
faulty
and
should
be
replaced
.
When
re-

placing
a
faulty
coolant
temperature
sender,
the
gasket
ring
on
the
sender
should
also
be
replaced
.

Tightening
Torque

"
Temperature
gauge
sender
to
engine
18
Nm
(13
ft-Ib)

Cooling
fan,
testing

NOTE-

OnM44
engines
with
manual
transmission,
the
primary
electric
cooling
fan
is
mounted
on
the
engine
side
of
the
radiator
and
is
controlled
by
the
engine
control
module
(ECM)
.
Troubleshooting
thiscircuit
should
be
left
to
an
authorized
BMW
dealer
with
the
proper
diagnostic
equipment

An
otherwise
sound
cooling
system
may
still
overheat,
par-
ticularly
with
prolonged
idling,
due
to
a
failure
of
the
coolíng

fan(s)
.

The
belt-driven
cooling
fan
is
controlled
by
a
temperature
dependent
viscous
clutch
.
A
failed
fan
clutch
may
affect
air
flow
through
the
radiator
resulting
in
overheating
orpossibly
overcooling
.
Speed

Low
sp
High
s

With
the
engine
off,
check
thefan
clutch
by
spinning
thefan
.



eed
The
fan
should
spin
on
the
clutch
with
some
resistance
.



peed
Check
for
signs
of
leaking
fluid
from
the
clutch
.
If
thefan
free-
wheels
with
no
resistance,
cannot
be
tu
rned
by
hand,
or
there
are
signs
of
oil
leakage,
the
clutch
should
be
replaced
.

TROUBLESHOOTING

Fig
.
3
.



Radiatorcooling
fan
temperature
switch
(arrow)
.

WARNING
-

"
Use
caution
when
testing
the
electric
cooling
fan(s)
and
coolant
temperature
switch
.
Keep
hands
and
wires
clear
of
thefan
blades
.
The
cool-
ing
fan(s)
can
run
any
time
the
ignition
is
ON
.

"
For
greatest
safety,
coolíng
fan
and
coolant
tem-perature
switch
tests
shouldbe
performed
on
acoldengine
with
the
air
conditioning
off
.

Table
b
.
Auxiliary
Cooling
Fan
Switching

Temperatures

Switching
temperature
196°F(91°C)
210°F(99°C)

0012506

If
a
faulty
thermostat,
trapped
air,
or
a
restriction
in
the
sys-
tem
is
not
allowing
the
coolant
to
circulate
through
the
radia-
tor,
the
temperature
switch
will
not
close
and
the
auxiliary
cooling
fan
will
not
run
.
Before
making
the
tests
described
be-
low,
make
sure
the
thermostat
is
operating
correctly
as
de-
scribed
earlier
.
The
normal
switching
temperatures
for
the

dual
-speed
switch
are
listed
in
Table
b
.

Page 205 of 759


Fig
.
19
.
Coolant
pump
being
removed
.
Thread
two
M6
bolts
(arrows)
in
evenly
to
withdraw
pump
.
(Thermostat
and
hoseshavebeen
removed
tor
visual
access
.)

8
.
Installation
is
reverse
of
removal
.

"
Be
sure
to
replace
O-ring
and
gaskets
.

"
Coat
O-ring
with
lubricant
during
installation
.

Tightening
Torque

"
Coolant
pump
to
timing
chaincover

M6
...
.
...................
..
.
.
10
Nm
(89
in-lb)

M8
.
..
.
....................
.
.
.
22
Nm
(17
ft-Ib)

"
Coolant
pump
pulley

to
coolant
pump
.................
10
Nm
(89
in-lb)

RADIATOR
SERVICE

Radiator,
removing
and
installing

1
.
Drain
radiator
as
described
earlier
.

WARNING
-

Allow
cooling
system
to
cool
before
opening
ordraining
system
.

2
.
Remove
primary
cooling
fan
(belt-driven
or
electric)
as

described
earlier
.

3
.
Disconnect
coolingfan
and
leve¡
sensor
harness
con-

nectors
from
bottom
of
radiator,
where
applicable

4
.
Disconnect
harness
connector
from
auxiliary
fandual

temperature
switch
.
See
Fig
.
20
.

5
.
Disconnect
all
coolant
hoses
from
radiator
.

RADIATOR
AND
COOLING
SYSTEM



170-11

0012500

Fig
.
20
.
Cooling
fan
dual
temperatura
switch
(arrow)
on
right
sido
of
radiator
.

6
.
Where
applicable,
disconnectautomatic
transmission
fluid
(ATF)
cooler
lines
from
radiator
.
See
Fig
.
21
.

Fig
.
21
.
Automatic
transmission
fluid
(ATF)
linos
at
radiator
.

7
.
Carefully
pryout
radiator
retaining
clips
from
top
of
ra-

diator
.
See
Fig
.
22
.

8
.
Pul¡
radiator
up
and
out
of
car
.

NOTE-

The
radiator
rests
ontwo
rubber
mounts
.
Check
that

the
mounts
do
not
stick
to
the
bottomof
the
radiator
.

RADIATOR
SERVICE

Page 206 of 759


170-12



RADIATOR
AND
COOLING
SYSTEM

Fig
.
22
.
Radiator
retaining
clip
being
removed
.
Push
down
and
pulí
screwdriver
forward
to
release
clip
.

9
.
Installation
is
reverse
of
removal
.

"
Fill
radiator
and
cooling
system
as
described
under
Coolant,
draining
and
filling
.
"
Check
ATF
leve¡
and,
if
necessary,
top
up
.
See
240
Au-
tomatic
Transmission
.

RADIATORSERVICE

Page 208 of 759


180-2



EXHAUST
SYSTEM

a

EXHAUST
SYSTEM
REPLACEMENT

Fig
.
2
.



Exhaust
systemon
1992-1995
6-cylinder
engines
.
3251
(M50)
exhaust
system
shown
.

E~

)l-,malo
m~=

i

32592-95

1
.



Front
pipe
with
catalytic
convertor



6
.



Bracket



11
.



Bracket/clamp
(2)



16
.



Rear
pipewith
muffler
2
.



Gasket
(2)



7
.



Bracket
(2)



12
.



Rubber
mounting
ring
(2)



17
.



Rubber
mount
3
.



Exhaust
manifold



8
.



Bracket



13
.



Flange



18
.



Support4
.



Exhaust
manifold



9
.



Bracket



14
.



Gasket
(48mm)



19
.



Bracket
5
.
Manifold
gasket



10
.
Oxygen
sensor



15
.
Gasket
(48mm)

eme°"



k
:I>
-
8a

1
.



Exhaust
manifold



7
.



Front
pipe
with
catalytic
con-



9
.



Bolt
(M8X90)



14
.



Brackets
(rear
muffier)
2
.



Nut
(M10)



vertor



10
.



Compression
spring



15
.



Rear
muffler
and
pipe
3
.
Gasket
(clty
.
2)



8
.



Oxygen
sensor
(regulating)



11
.



Self-lockingnut
(M8



16
.



Bracket
(transmission)
4
.
Gasket



-tightento
55
Nm
(41
ft-Ib)



-always
replace



17
.



Brackets
(transmission)
5
.



Nut



8a
.



Oxygen
sensor
(monitoring)



12
.



Bracket
(rear
pipe)
6
.



Bolt
(M8X55)



-tightento
55
Nm
(41
ft-Ib)



13
.



Rubber
mounting
ring
(9ty
2)

Fig
.
3
.



Exhaust
systemon
1996-1998
4-cylinder
(M44)
engine
.1992-1995
4-cylinder
engine
exhaust
system
is
similar
.

Page 209 of 759


1
.



Gaskets



5
.



Front
pipe
with
catalytic
con-



8
.



Flange
2
.



Exhaust
manifold



verter



9
.



Bolt
(M8x55)

3
.
Exhaust
manifold



6
.
Oxygen
sensor
(monitoring)



10
.
Rubber
mounting
ring
(48mm)
4
.



Oxygen
sensor
(regulating)



7
.



Nut
(M8)



11
.



Rear
pipewith
mufflers

Fig
.
4
.



Exhaust
systemon
1996-1998
6-cylinder
engines
.
M3
(S50US)
exhaust
system
shown
.

Exhaust
system,
removing
and
installing



NOTE-

The
automatic
transmission
will
be
supported
by
the

This
section
covers
removing
the
exhaust
system
as
a
com-



rear
crossmember
once
the
brace
is
removed
.

plete
unit
.
Once
the
system
is
removed
from
the
car,
individual

pipes
and
mufflers
can
be
more
easily
replaced
.

1.
With
exhaust
system
fully
cold,raise
and
support
car

for
access
to
exhaustsystem
.

WARNING
-

Do
not
work
undera
lifted
car
unless
it
is
solidly

supported
on
jack
stands
designed
for
that
pur-
pose
.
Never
work
under
a
car
that
is
supported
solely
by
a
jack
.

2
.
Disconnect
oxygen
sensor
connector(s)
.

NOTE
-

On
1996
and
later
cars
with
multiple
oxygen
sensors,

label
the
oxygen
sensor
connectorsbefore
disconnect-
ing
.

4
.
Where
applicable,
remove
support
brace
from
trans-

mission
.
See
Fig
.
5
.

EXHAUSTSYSTEM



180-
3

3
.
Loosen
andremove
bolts
holding
front
exhaust
pipes
to

exhaust
manifolds
.



transmission
.
See
Fig
.
6
.

0011940

Fig
.
5
.



Crossbracemounting
bolts
(arrows)
.

5
.
Disconnect
exhaust
support
bracket
assembly
from

6
.
Supportexhaustsystem
from
below
and
dísconnect

rubbersupports/rubber
rings
from
exhaust
system
.
Re-

move
exhaust
system
from
below
.
See
Fig
.
7
.

EXHAUST
SYSTEM
REPLACEMENT

Page:   < prev 1-10 ... 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 ... 220 next >