Camshaft BMW M3 1993 E36 Workshop Manual

Page 3 of 759


General
Data
and



010
FundamentalsfortheDo-lt-YourselfOwner

Maintenance



020
Maintenance
Program

Engine

Transmission

Suspension,

Steering
and

Brakes

4
Body

100
Engine-General

110



Engine
Removal
and
Installation
113



Cylinder
Head
Removal
and
Installation
116



Cylinder
Head
and
Valvetrain
117



Camshaft
Timing
Chain

119



Lubrication
System

200
Transmission-General
210
Clutch
230
Manual
Transmission

510



Exterior
Trim,
Bumpers



520



Seats

Bo
y
Equipment



512
DoorWTdws



540



nr
t

513



InteriorTrim



541



Convertible
Top

515



Central
Locking
and
Anti-Theft

600



Electrical
System-General



620



Instruments

Electrical
S



stem
610
Electrical
Component
Locations



630
Exterior
Lighting

611



Wipers
and
Washers



640



Heating
and
Air
Conditioning

6



612



Switches
and
Electrical
Accessories



650



Radio

Equipment
and



720
SeatBelts

Accessories



721
Airbag
System
(SRS)

Electrical
Wiring

Diagrams

Foreword
.
...
.
.
.
..................
.
.
.
.....
.
............
.
...
.
.
.
.
.
................
.
.
.
.....
.
......
.
................
.
.
.
.....
v

Warnings
and
Cautions
.....
.
...
.
.
.
.
.
..........
.
...
.
.
.
.
.
......
.
.........
.
.
.
...
.
.
.
......
.
.
.
.
.
............
.
.
.
.
.
.
.vii

Index
..............
.
.
.
.....
.
............
.
...
.
.
.
.
.
........
.
...
.
.
.
.
.
.......
.
......
.
...
.
.
.
.
.
.
.
........
.
.
.
..
back
of
book

300



Suspension,
Steering
and



330



RearSuspension

Brakes-General



331



Final
Drive

310



Front
Suspension



340



Brakes

320



Steering
and
Wheel
Alignment

400
Body-General



411
Doors

410



Fenders,
Engine
Hood



412



Trunk
Lid

120



Ignition
System
121



Battery,Starter,
Alternator
130



Fue¡
Injection
160



Fuel
Tank
and
Fuel
Pump
170



Radiator
and
Cooling
System180



Exhaust
System

240



Automatic
Transmission
250



Gearshift
Linkage

260
Driveshaft

Page 34 of 759


020-
1
2



MAINTENANCE
PROGRAM

6-cylinder
engines
use
a
coil-on-plug
configuration,
and
re-



Battery
cablesshould
be
tight
.
The
terminals,
the
cable
moval
of
thetop
engine
cover
(between
the
camshafts)
and
ig-



clamps,
and
the
battery
case
should
be
freeof
the
white
deposits
nition
cofs
are
necessary
.
See
Fig
.
12
.
Blow
away
any
dust
or



that
indicate
corrosion
and
acid
salts
.
Even
a
thin
¡ayer
of
dust
dirt
around
the
ignition
coils,
and
then
remove
the
coils
.
Blow



containing
conductive
acid
salts
can
cause
battery
discharge
.
away
any
dustor
dirt
around
the
sparkplugs
.
Remove
the
spark

plugs
.



To
remove
battery
corrosion,
begin
by
disconnecting
theca-

bles
.
Disconnect
the
negative
(-)
cable
first
.
Clean
the
terminal

posts
and
the
cable
clamps
with
a
wire
brush
.
Clean
the
main
chassis
ground
terminal
next
to
the
battery
.
Corrosion
can
be
washedaway
with
a
baking
soda
and
water
solution
that
will
neutralize
the
acid
.
Apply
the
solution
carefully,
though,since
ít
will
also
neutralize
the
acid
inside
the
battery
.
Reconnect
the
ca-
ble
clamps,
positive
(+)
cable
first
.
Lightly
coat
the
outside
of
the

terminals,
hold
down
screws,
and
clamps
with
petroleum
jelly,
grease,
or
a
commercial
battery
terminal
corrosion
inhibitor
.

Fig
.
12
.
Ignition
coil
being
removed
from
spark
plug
on
M52
engine
.

NOTE-

If
necessary,
see
120
Ignition
System
for
more
details
on
coil
removal
.

B11004

Lightlylubricate
the
new
spark
plug
threads
with
a
small
amount
of
anti-seize
compound
.
Thread
the
plugs
into
the
cyl-
inder
head
byhand
to
prevent
cross-threading
.

Tightening
Torque

"
Spark
plug
to
cylinder
head
.......
25
Nm
(18
ft-ib)

Idie
Speed

Engine
¡dle
speed
canchange
due
to
a
number
of
factors,
in-
cluding
normal
wear
.
The
idle
speed
is
electronically
adaptive
and
non-adjustable
.
See
130
Fuel
Injection
for
more
information
.

Battery,
checking
and
cleaning

The
battery
is
located
in
the
right
side
of
the
luggage
com-
partment
.
Simple
maintenance
of
the
battery
and
its
terminal
connections
will
ensure
maximum
starting
performance,
espe-
cially
in
winter
when
colder
temperaturesreduce
battery
power
.

ENGINE
COMPARTMENT
MAINTENANCE

WARNING
-

"
Prior
to
disconnecting
the
battery,
read
the
bat-
tery
disconnection
cautions
given
at
the
front
of
this
manualonpage
viii
.

"
Battery
acid
is
extremely
dangerous
.
Take
care
to
keep
it
from
contacting
eyes,
skin,
or
clothing
.
Wear
eye
protection
.
Extinguish
all
smoking
ma-
terials
and
do
not
worknear
any
oyen
flames
.

Battery
electrolyte
should
be
maintained
at
the
correct
level
just
above
the
battery
plates
and
their
separators
.
The
correct
leve¡
is
approximately
5
mm
(
1
/4
in
.)
above
thetop
of
battery
plates
orto
thetop
of
the
indicator
marks
(if
applicable)
.
The
battery
plates
and
the
indicator
marks
can
beseen
once
the
fill-
er
caps
are
removed
.
If
the
electrolyte
level
is
low,
replenish
it
by
adding
distilled
water
only
.

Battery,
repiacing

Batteries
are
rated
by
ampere
hours
(Ah),
the
number
of
hoursa
specific
current
draín
can
be
sustained
before
complete
discharge,
or
by
cold
cranking
amps
(CCA),
the
number
of
amps
available
to
crank
the
engine
in
cold
weather
conditions
.
In
general,
replacement
batteries
should
alwaysbe
rated
equal
or
higherthan
the
original
battery
.

CAUTION-

Prior
to
disconnecting
the
battery,
read
the
battery
disconnection
cautions
given
at
the
front
of
thls
manual
on
page
viii
.

The
battery
is
held
in
place
bya
single
hand
screw
and
píate
.
A
secure
battery
hold-down
is
important
in
order
to
prevent
vi-
brations
and
road
shock
from
damaging
the
battery
.

NOTE-
NOTE-
"
Always
disconnect
the
negative
()
cable
first,
and
Design
characteristics
of
the
convertible
body
cause
vi-



connect
ft
last
While
changing
batteries,
clean
away
brations
in
the
trunk
area
.
Therefore,
E36
convertibles



any
corrosion
in
or
around
the
battery
tray
.
require
a
specialbattery
designed
for
constant
vibra-
tion
.
When
repiacing
the
battery,
be
sure
the
replace-



"
Design
characteristics
of
the
convertible
body
cause
ment
is
designed
specffically
for
the
convertible
.



vibrations
to
oscillate
in
the
trunk
area
.
Therefore,
the
convertible
model
uses
a
specialbattery
designed
for
this
constant
vibration
.

Page 42 of 759


020-20



MAINTENANCE
PROGRAM

Seat
Belts



Washing
Chassis

Dirt
and
other
abrasive
particles
will
damage
seat
belt
web-



Periodic
washing
of
the
underside
of
the
car,
especially
in

bing
.
If¡t
is
necessary
to
clean
seat
belts,
use
a
mild
soap
solu-



winter,
will
help
prevent
accumulation
of
road
salt
and
rust
.
The

tion
.
Bleach
and
other
strong
cleaning
agents
may
weaken
the



besttime
to
wash
the
underside
is
just
after
the
car
has
been

belt
webbing
and
should
be
avoided
.



driven
in
wet
conditions
.
Spray
the
chassis
with
a
powerful
jet
of

water
.
Commercial
or
self-service
car
washes
may
not
be
best

WARNING-



for
this,
as
they
may
recycle
the
salt-contaminated
water
.

Do
not
clean
the
seat
belt
webbing
using
dry
clean-
ing
or
other
chemicals
.
Allow
wet
belts
to
dry
before
allowing
them
to
retract
.



Speeial
Cleaning

The
condition
of
the
belt
webbing
and
the
function
of
the
re-

tractor
mechanisms
should
be
inspected
.
See720
Seat
Belts
for
seat
belt
inspection
information
.

Exterior
Washing

The
longer
dirt
isleft
on
the
paint,
the
greater
the
risk
of
dam-
aging
the
glossy
finish,
either
by
scratching
or
by
the
chemical
effect
dirt
particles
may
have
on
the
paintedsurface
.

Do
not
wash
the
car
in
direct
sunlight
.
If
the
engine
hood
is

warm,
allow
it
to
cool
.
Beads
of
water
not
only
leavespots
when
dried
rapidly
by
the
sun
or
heat
from
the
engine,
but
also
can
act
as
small
magnifyingglasses
and
burn
spots
into
the
finish
.
Wash
thecar
with
a
mixture
of
lukewarmwater
and
a
car
wash
product
.
Rinse
using
plenty
of
clear
water
.
Wipe
the
body
dry
witha
soft
cloth
towel
or
chamois
to
prevent
water-spotting
.

Waxing

For
a
long-lasting,protective,
and
glossy
finish,
apply
a
hard
wax
after
thecar
has
been
washed
and
dried
.
Use
carnauba
or
synthetic
based
products
.
Waxing
is
not
needed
after
every
washing
.
You
can
tell
when
waxing
is
required
by
looking
at
the
finísh
when
it
is
wet
.
If
the
water
coats
the
paint
in
smooth
sheets
instead
of
forming
beads
that
rol¡
off,
a
new
coat
of
wax
is
needed
.
Wax
shouldnot
be
applied
to
black
trim
pieces,
rub-
ber,or
other
plastic
parts
.

Polishing

Use
paintpolish
only
if
the
finish
assumes
a
dull
lock
after
long
service
.
Polish
can
beused
to
remove
tar
spots
and
tar-
nish,
but
afterwards
a
coat
of
wax
should
be
applied
to
protect
the
clean
finish
.
Do
not
use
abrasive
polish
or
cleaners
on
alu-
minum
trimor
accessories
.

BODYAND
INTERIOR
MAINTENANCE

Cylinder
Head
and
Valvetrain

The
aluminum
cylinder
head
uses
chain-driven
double

overhead
camshafts
and
four
valves
per
cylinder
.
See
Fig
.
1
.
Tha
rvfinriar
hand
nmnlnve
n
ernceflnier
rineinn
fnr
nronter

Tar
spots
canbe
removed
with
a
bugand
tar
remover
.
Never

use
gasoline,
kerosene,
nail
polish
remover,
or
other
unsuitable

solvents
.
Insect
spots
also
respond
to
tar
remover
.
A
bit
of
bak-

ing
soda
dissolved
in
the
wash
water
will
facilitate
their
removal
.
This
method
can
also
beused
to
remove
spotting
from
tree
sap
.

Interior
Care

Dirt
spots
can
usually
be
removed
with
lukewarm
soapy
wa-
ter
or
a
dry
foam
cleaner
.
Use
spot
remover
for
grease
and
o¡I

spots
.
Do
not
pour
the
(quid
directly
on
the
carpetor
fabric,
but
dampen
a
clean
cloth
and
rub
carefully,starting
at
the
edge
of
the
spot
and
working
inward
.
Do
not
use
gasoline,
naptha,
or

other
flammable
substances
.

Leather
Upholstery
and
Trim

Leather
upholstery
and
trim
should
be
periodically
cleaned
using
a
slightly
damp
cotton
or
wool
cloth
.
The
idea
is
to
get
rid
of
the
dirtin
the
creases
and
pores
that
can
cause
brittleness
and
premature
aging
.
On
heavily
soiled
areas,
usea
mild
deter-
gent
(such
as
Woolite®)
or
other
specially
formulated
leather
r

cleaners
.
Use
two
tablespoons
to
one
quart
of
cold
water
.
Dry

the
trim
and
upholstery
completely
using
a
soft
cloth
.
Regular
use
of
agood
quality
leather
conditioner
will
reduce
drying
and
crackingof
the
leather
.

1
.
Camshafts
2
.
Rocker
arms
3
.
Hydraulic
valve
adjusters
(HVA)
4
.
Valve
and
conical
valve
spring

Page 44 of 759


100-2
ENGINE-GENERAL

Cylinder
Head
and
Valvetrain

The
aluminum
cylinder
head
uses
chain-driven
double
overhead
camshafts
and
four
valves
per
cylinder
.
See
Fig
.
1
.

The
cylinder
head
employs
a
crossflow
design
for
greater

power
and
efficiency
.
Intake
air
enters
the
combustion
cham-

ber
from
one
side
while
exhaust
gasses
exit
from
the
other
.

Oílways
in
the
head
provide
lubrication
for
the
camshafts)
and
valvetrain
.

Fig
.
1
.



M52
twin-cam,
4-valve-per-cylinder
engine
with
hydraulíc
lift-
ers
.

On
all
engines
exceptthe
M44
engine,
valveclearance
is
by
seif-adjusting
hydraulic
lifters
.
On
M44
engines,
instead
of
hy-

draulic
lifters,
hydraulic
pedestaisare
used
in
combination
with
roller
rocker
arms
to
actuate
the
valves
.
Hydraulic
pedes-
tals
have
the
same
function
as
hydraulic
lifters,
which
ís
to
maintain
zero
valve
clearance,
reduce
valve
noise,
and
elimí-
nate
routíne
adjustment
.
See
Fig
.
2
.

VANOS
(Variable
Valve
Timing)

GENERAL

1
.
Camshafts
2
.
Rocker
arms
3
.
Hydraulic
valve
adjusters
(HVA)
4
.
Valve
and
conical
valve
spring

4

Fig
.
2
.



Cross
sectionof
M44
twin-cam,
4-valve-per-cylinder
head
.
Note
function
of
hydraulíc
pedestal
in
combination
with
rock-er
arm
(with
roller
bearing
for
reduced
friction)
.

The
main
components
of
the
VANOS
system
arethe
piston

housing
with
integral
spool
valve
and
solenoid,
and
the
modi-

fied
intake
camshaft
and
sprocket
assembly
.
See
Fig
.
3
.

1993
and
later
6-cylinder
engines
are
equipped
with
a
vari-



B11001

able
intake
valve
timing
system,
known
as
VANOS
(from
the
German
words
Variable
Nockenwellen
Steuerung)
.
The



Fig
.
3
.
VANOS
(variable
intake
valve
timing)
systemusedon
M52
en-
VANOS
system
electro-hydraulically
adjusts
intake
valve
tim-



gine
.
When
solenoid
is
actuated,
oíl
pressure
is
directed
to
ingfor
enhanced
mid-range
performance
.
The
VANOS
sys-



front
side
of
gear
cup
piston
.
This
forces
gear
cup
finto
camtem
is
controlled
by
the
engine
control
module
(ECM),
using



shaft
to
advance
intake
valve
timing
.
enginespeed,engine
load
and
engine
temperature
asthe
pri-
mary
inputs
.



When
the
engine
is
running,
the
piston
housing
is
supplied
with
pressurized
engine
oil
víathe
solenoid-actuatedspool
At
low
speeds,
the
intake
valves
open
late
to
ensure
smooth



valve
.
Depending
on
the
position
of
the
spool
valve,
oil
isdi
engine
operation
.
At
mid-rangespeeds,
thevalves
open
early



rected
to
either
the
front
or
back
side
of
the
gear
cup
piston
.
(valvetiming
advanced,
VANOS
actuated)
for
increased
torque,
improved
driveability,
and
reduced
emissions
.
And
at



When
the
solenoid
isin
the
off
position,
engine
oíl
is
direct-
high
speeds,
the
valves
again
open
late
for
optimum
power



ed
to
the
back
side
of
the
piston
.
This
holds
the
gear
cup
for-
and
performance
.



ward
and
valve
timing
is
maintained
at
the
normal
"late"
position
.
When
the
solenoid
is
energized,
the
spoolvalve
is
moved
forward
and
oil
pressure
is
directed
to
the
front
side
of
the
piston
.
This
in
turn
moves
thegear
cup
further
into
the

Page 45 of 759

camshaft
secondary
drive,
causing
thecamshaft
to
"advance"

12
.5°
.
The
helical
gears
are
cut
so
that
forward
motion
of
the

gear
cup
is
transiated
into
rotational
motion
of
the
camshaft
.

See
117
Camshaft
Timing
Chain
for
testing
and
repair
infor-
mation
on
the
VANOS
system
.

DISA
(Dual
Resonance
Intake
System)

DISA,usedon
4-cylinder
engines,
is
a
dual
intake
runner

system
that
effectively
provides
the
advantages
of
both
short

and
long
intake
runners
within
the
same
engine
.
For
best
per-

formance,
long
intake
runners
aremost
beneficial
atlow-
and
mid-engine
speeds
(below
4,200
rpm),
and
short
intake
run-
ners
enhance
torque
at
high
engine
speeds
(above4,200
rpm)
.

NOTE-

The
term
DISA
comes
from
the
German
words
Differ-
enzierte
Sauganlage,
and
can
roughty
be
transiated
as
a
differing
intake
manifold
configuration
.

The
DISA
solenoid
valve
is
controlled
by
the
DME
control

module,
using
engine
speed
as
the
primary
input
.
The
main

components
of
the
system
are
the
modified
twin-section
in-

takemanifoldwith
change-over
valve,
the
twin-barrel
throttle

body,
and
the
electrical/pneumatic
actuating
components
.

See
Fig
.
4
.

r

I

I

I

?
,
in
UpPer,
take
-1
manifold

1
-1
Throttle
housing
(Heated)

q
:lZU

Fig
.
4
.



DISA
system
components
.
DISA
changes
the
intake
runner

length
based
on
engine
speed
.

The
DISA
system
electro-pneumatically
changes
the
intake
runner
length
through
the
twin-section
intake
manifold
and
a
change-over
butterfly
valve
.
The
change-over
valve
is
located
at
a
point
in
the
intake
manifold
where
four
pipes
come
into
two
.
When
the
change-over
valve
is
closed,
the
4-way
primary
intake
manifold
and
the
2-way
ram
air
manifold
areconnected
to
make
the
"long"
configuration
.
When
the
change-overvalve
opens,
intake
air
flow
is
redirected
through
only
the
short
4-

way
primary
intake
manifold
.

The
change-over
valve
is
held
in
the
normally
open
position
bya
spring
.
Thisallows
for
an
open
valve
in
the
event
of
sys-
tem
failure
.
During
low
andmid
enginespeeds,
the
DME
con-

trol
module
supplies
power
to
the
solenoid
valve,
which
in
turn

allows
vacuum
to
be
applied
lo
the
vacuum
diaphragm
.
This

causes
the
valve
to
close
(long-pipe
configuration)
.
When
en-
gine
speed
reaches
approximately
4,800
rpm,
the
DME
con-
trol
module
electrically
signals
the
solenoid
valve
and
the
valve
opens,
creating
the
short
pipe
configuration
:

Further
detafs
on
DISA
canbefound
in
130
Fuel
Injection
.

Engine
Management
System

Al¡
enginescoveredby
this
manual
usean
advanced
engine

management
system
called
Digital
Motor
Electronics
(DME)
.

In
the
DME
system,
advancedOn-Board
Diagnostics
(OBD),

fuel
injection,
ignition,
and
otherfunctions,
are
combined
under

the
control
of
theEngine
Control
Module
(ECM)
.
See
Fig
.
5
.

-



Lower
intake
manifold

DISAvacuum
'
~servo

EíY1z

ENGINE-GENERAL
100-
3

le

-
DISA
solenoid
valve

0012591

/
with
butterfly
va¡

GENERAL

Page 46 of 759


100-4
ENGINE-GENERAL

'



TEMP

PRECAT



POST
CAT



OXYGENSENSOR
HEATING

#
.
THROTTLE
POSITION



FUEL
INJECTOR
CONTROL
(SEQUENTIAL)

OPERATING
POWER



00

CAMSHAFT
POSITION
SENSOR

ECM



I
MAIN
GROUND

RELAY



J_



-



AC
COMPRESSOR
RELAY
CONTROL

TERMINAL
15

MEMORY
POWER
FUEL
PUMP
RELAY
CONTROL
AUX
GROUND
P

CRANKSHAFT
POSITION
dESENSOR

INTAKE
AIR

ENGINE
COOLANT
TEMP

FUEL
TANK
PRESSURE
SENSOR

S-EML
S-MSR

ASC
S-ASC

VEHICLE
SPEED

LOW
FUEL
LEVEL

A/C
SWITCH
ON
(AC)
E36
IHKA
COMPRESSOR"ON"

SIGNAL
(KO)

INDIVIDUAL
SERIAL
NUMBER

MS41
.1

SECONDARY
AIR
1NJECTION
AIR
PUMP®
RELAY
CONTROL

IDLE
CONTROL
VALVE



'M

FUEL
INJECTION
(TI)

ENGINE
SPEED
(TD)

Fig
.
5
.



Siemens
MS
41
.1
OBD
II
engine
management
systemusedon
1996
and
later
M52
engines
.

GENERAL

IGNITION
COILS
CONTROL

L
r"Q
if~
CIYVFIYC



CHE
AMP
CONTROL
ENGINE

THROTTLE
POSITION

6

ECM
RELAY
CONTROL

ASC

THROTTLE
..
:
.
.
..
-11



1Q\\\
POTENTIOMETER
POWER

CAN



TCM
II



SCAN
(DES
;
ER

DIAGNOSIS

OBD
II
I
II

GENERIC
SCANTOOL



0012596

Page 52 of 759


100-
1
0
ENGINE-GENERAL

Table
d
.
OBD
I
Fault
(Blink)
Codes
(continued)

(1992-1995
modeis
only)

Graphic
representation
of
flashing
Check
Engine
light
fault
code
:
1221
-
;
5
Seconds
.
;--~
2
.5
r
----------------
Check
Engine
light
on

Fault
code
and
meaning



Corrective
action

Check
Engine
light
off

Code
1243
:
Crankshaft
position
sensor
(DME
3
.3
.1
only)



Test
crankshaft
position/rpm
sensor
and
wiring
from
sensor
lo
DME

control
module
.
Repair
Group
120

Code
1244
:
Camshaft
position
sensor
(DME
3
.3
.1
only)



Test
camshaft
position
sensor
and
wiring
fromsensor
to
DME
con-
trol
module
.
Repair
Group
130

Code
1245
:
Electronic
transmission
control
intervention
(DME
3
.3
.1



Check
wiring
between
DME
control
module
and
auto
.
transmission
only)



control
module

Code
1247
:
Ignition
secondary
monitor
(DME
3
.3
.1
only)



Check
secondary
voltage
lo
ignition
coils
.
Check
wiringat
ignition

coils
.
Repair
Group
120

Code
1251
:
Fuel
injector
#1
(DME
3
.113
.3
.1
only)



1
Test
injector
operation/signal
lo
injector
.
Repair
group130

Code
1252
:
Fuel
injector
#2
(DME
3
.113
.3
.1
only)



Test
injector
operation/signal
lo
injector
.
Repair
group130

Code
1253
:
Fuel
injector
#3
(DME
3
.1/3
.3
.1
only)



Test
injector
operation/signal
to
injector
.
Repair
group130

Code
1254
:
Fuel
injector
#4
(DME
3
.1/3
.3
.1
only)



Test
injector
operation/signal
to
injector
.
Repair
group
130

Code
1255
:
Fuel
injector
#5
(DME
3
.1/3
.3
.1
only)



Test
injector
operation/signal
to
injector
.
Repair
group130

Code
1256
:
Fuel
injector
#6
(DME
3
.1/3
.3
.1
only)



Test
injector
operation/signal
lo
injector
.
Repair
group130

Code
1261
:
Fuel
pump
control



Test
fuel
pump
relay
and
fuel
pump
circuit
.
Repairgroup
160

Code
1262
:
Idle
speed
control



Test
idleair
controlvalve
and
signalto
valve
.
Repair
Group
130

Code
1263
:
Fuel
tank
evaporative
(EVAP)
system



Test
EVAP
purge
valve
.
Repair
Group
160

Code
1264
:
Oxygen
sensor
heater



1
Test
oxygen
sensorheater
and
heater
relay
.
Repair
group
130

Code
1265
:
Check
engine
lamp
(DME
3
.3.1
only)



1
Test
for
faulty
bulb
or
wiring
.
Electrical
Wiring
Diagrams

Code
1266
:
VANOS
(DME
3
.3
.1
only)



1
Test
VANOS
solenoid
.
Check
for
signal
to
VANOS
solenoid
.

Code
1267
:
Air
pump
relay
control
(DME
3
.3
.1
only)



Test
air
pump
relay
and
wiring
(where
applicable)
Electrical
Wiring
Diagrams
Code
1271
:
Ignition
coil
#1
(DME
3
.3.1
only)



Test
ignitioncoil
and
wiring
toignitioncoil
.
Repair
Group
120

Code
1272
:
Ignition
coil
#2
(DME
3
.3.1
only)



Test
ignitioncoil
and
wiring
loignitioncoil
.
Repair
Group
120

Code
1273
:
Ignition
coil
#3
(DME
3
.3.1
only)



Test
ignitioncoil
and
wiring
loignitioncoil
.
Repair
Group
120

Code
1274
:
Ignítion
coil
#4
(DME
3
.3.1
only)



Test
ignitioncoil
and
wiring
toignitioncoil
.
Repair
Group
120

Code
1275
:
Ignitioncoil
#5
(DME
3
.3.1
only)



Test
ignition
coil
and
wiring
loignitioncoil
.
Repair
Group
120

Code
1276
:
Ignition
coil
#6
(DME
3
.3.1
only)



Test
ignitioncoil
and
wiring
loignitioncoil
.
Repair
Group
120

Code
1281
:
DME
control
module
memory
supply
(DME
3
.3
.1
only)



Check
voltage
supply
from
battery
lo
DME
control
module
.
Electri-

Code
1282
:
Fault
code
memory
(DME
3
.3.1
only)



Check
DME
control
module
inputs/outputs
.
Control
module
may
be
faulty
.
Repair
Group
130

Code
1283
:
Fuel
injector
output
stage
(DME
3
.3
.1
only)



Check
DME
control
module
inputs/outputs
.
Control
module
may
be
faulty
.
Repair
Group
130

DRIVEABILITY
TROUBLESHOOTING

cal
Wiring
Diagrams

Page 70 of 759


113-4



CYLINDER
HEAD
REMOVAL
AND
INSTALLATION

20
.
Disconnect
main
engine
wiring
harness
connector
.
La-

bel
and
disconnect
harness
connectors
for
crankshaft

and
camshaft
sensors
.
See
Fig
.
8
.

0012504

Fig
..
Crankcase
vent
valve
(A),
camshaft
and
crankshaft
sensor
harness
connectors
(B),
locating
bushings
(C),
main
engine
wiring
harnessconnector
(D)
.
M44
engine
shown
.

NOTE-

Early
engines
do
not
havea
maín
disconnect
at
the
lower
intake
manifold
harness
.
lf
necessary,
remove
the
cable
ducting
bolts
and
set
harness
ducting
aside
.

21
.
Remové
lower
section
of
intake
manifold
.

"
Remove
Y
shaped
supportbracket
from
underside
of
manifold
.
(See
Fig
.
6
.)
"
Unbolt
support
brackets
from
alternator
and
starter
.
"
Remove
nuts
holding
manifold
to
cylinder
head
and
pull
manifold
back
until
harness
connectors
for
oil

pressure
switch
and
coolant
temperature
sensorare

accessible
.
Label
and
disconnect
connectors,
then
re-

move
manifold
and
set
aside
.

Timing
chains,
uncoupling



26
.
Lock
crankshaft
in
TDC
position
by
insertíng
BMW
spe-

22
.
On
M42
engines,
remove
thermostat
housing
from
up-



cial
tool
no
.
11
2
300
through
bore
and
into
hole
infly-

per
timing
chaincover
.



wheel
or
driveplate
.
See
Fig
.
11
.

23
.
On
late
M44
engines
(January
1997
and
later),
remove



NOTE-
secondary
air
injection
check-valve
from
front
of
engine



"
If
necessary,
remove
plug
from
locating
bore
in
lower
and
lay
aside
.



edge
of
bell
housing
to
insert
locking
tool
.

24
.
Remove
cylinder
identification
sensor
from
upper
tim-
ing
chaincover
.
Remove
upper
timing
chaincover
.
See
Fig
.
9
.

25
.
Set
engine
to
approximate
TDC
by
rotating
in
normal
operating
direction
until
camshaft
lobes
at
cylinder
no
.
1
are
facing
each
other
.
See
Fig
.
10
.

CYLINDER
HEAD,
4-CYLINDER

Fig
.
9
.



Upper
timing
chain
cover
bolts
(arrows)
.
Remove
secondary
air
injection
check
valve
fromhose
(A)
on
M44
engine
.
Re-
move
cylinder
identification
sensor
from
chaincover
(B)
.

0011998

Fig
.
10
.
Engine
set
to
approximate
TDC
.
Cylinder
no
.
1
camshaft
lobes
face
in
and
arrows
on
sprockets
poínt
up
(arrows)
.

"
Confirm
that
the
locking
tool
has
been
correctly
in-
stalled
by
trying
to
rotate
the
crankshaft
.

27
.
Lock
camshafts
at
TDC
by
mounting
BMW
specíal
tool
no
.
113
240
over
square
ends
of
camshafts
.
See
Fig
.
12
.

NOTE-

Check
that
tool
is
squarely
seated
on
cylinder
head
gasket
surface
.
If
necessary,
rotate
camshafts
slightly
using
an
open-end
wrench
at
hex
oncamshafts
.

Page 71 of 759


Fig
.
11
.
BMW
special
tool
no
.
11
2300
installed
through
bellhousin
and
finto
flywheel
(arrow)
tolockcrankshaft
at
TDC
.

Fig
.
12
.
BMW
special
tool
no
.
11
3
240
installed
on
rear
of
camshafts
tohold
them
at
TDC
.
(M44
engine
shown
.
Other
engínes
are

similar
.)

CAUTION-

The
camshafts
must
be
locked
in
the
TDC
position

using
the
special
service
tool,
or
equivalent,
be-

fore
removing
the
timing
chaín
.
The
tool
holds
the
camshafts
parallel
to
each
other
and
perpendicu-
larto
the
valve
covergasket
surface
.

CYLINDER
HEAD
REMOVAL
AND
INSTALLATION



113-5

6011966

28
.
Remove
hydraulic
chain
tensiones
from
right
side
ofcyl-

inder
head
.
See
Fig
.
13
.

Fig
.
13
.
Hydraulic
chain
tensioner
(arrow)
.

NOTE-

It
is
not
necessary
to
remove
the
cam
sprockets
from

the
chainuntessthese
parts
are
being
reptaced
.
tire
tie
each
sprocket
to
the
chain
to
keep
the
sprockets
timed
to
each
other
.
Keeping
the
sprockets
timed
will
símplífy
instaftation
.

uu
11999

Fig
.
14
.
Chainguide
and
guide
adjusting
sleeve
(arrow)
.
Allen-head
retaining
screwhasbeen
removed
.
Use
slotted
screwdriver
to
loosen
adjusting
sleeve
.

29
.
Remove
mounting
bolts
from
left
and
right
camshaft

sprockets
.
Then
remove
camshaft
sprockets
from
cam-



_



Cylinder
head
assembly,
removing

shafts
.
On
M44
engines,
note
orientation
of
sensor



31
.
Remove
crankshaft
locking
tool
(BMW
special
tool
no
.
wheel
.



11
2
300)
.
Usingthe
crankshaft
vibration
damper
bolt,

30
.
Remove
upper
bolt
from
left
chainguide
.
Loosen
chain



turn
engine
opposite
its
normal
direction
of
rotation

guide
adjusting
sleeve
approximately
two
turns
.
See



(counterclockwise
asviewed
from
the
front)
approxi

Fig
.
14
.



mately
45°
.
This
prevents
accidental
contact
between

valves
and
pistons
during
installation
.

CYLINDER
HEAD,
4-CYLINDER

Page 72 of 759


113-
6



CYLINDER
HEAD
REMOVAL
AND
INSTALLATION

32
.
Using
Torx
E12
socket,
remove
cylinder
head
bolts
in



2
.
Check
gasket
surface
of
cylinder
head
and
cylinder

the
sequence
indicated
.
See
Fig
.
15
.
Remove
cylinder



block
for
warpage
using
a
straight
edge
.

head
and
head
gasket
.
Discard
head
boits
.



3
.
On
M42
engine
:
Be
sure
oil
feed
check
valve
and
spac-

er
are
correctly
positioned
in
block
.
See
Fig
.
16
.

0012502

Fig
.
15
.
Cylinder
head
bolt
loosening
sequence
.
Use
Torx
El
2
socket
.

Cylinder
head,
installing

(4-cylinder
engine)

CAUTION-

If
the
camshafts
were
removedrínstalled
while
the
cylinder
head
was
off,
a
minimum
wafting
time
ís
requíred
after
installing
the
camshafts
.
When
the
camshafts
are
removed,
the
hydraulic
lifters
canexpand
.
This
expansion
can
cause
fncreased
valve
lift,
resultíng
in
open
valves
and
pfston
con-
tact

Cylinder
head
installation
waiting
times

"
Ator
above
68°F
(20°C)
...............
10
minutes
"50-68°F
(10-20°C)
.
.
..
...............
30
minutes

"
32-50°F
(0-10°C)
..
.
..
...............
75
minutes

1
.
Clean
cylinder
head
and
gasket
surfaces
of
cylinder
block
and
al¡
timing
chain
covers
.

"
Remove
al¡
foreign
matter
and
any
¡¡quid
from
bolt
holes,
then
clean
with
a
thread
chaser
.

CAUTION-

Do
not
useametal
scraper
or
wire
brush
to
clean
the
alumfnum
cylinder
head
or
pistons
.
If
neces-
sary,
useahard
wooden
or
plastic
scraper
.
Also
available
are
abrasivediscs
to
be
used
ín
conjunc-
tionwíth
an
electric
dril¡
.
Be
sure
to
use
the
correct
disc
for
the
type
of
metalbeingcleaned
.

CYLINDER
HEAD,
4-CYLINDER

Fig
.
16
.
Oil
feed
check
valve
and
spacer
used
on
M42
engine
.
Install
check
valvewíth
collar
(arrow)
facing
down
.

CAUTION-

If
the
check
valve
is
not
installed
correctly,
oil
flow
to
the
cylinder
head
would
be
restrícted
.

4
.
Place
new
cylinder
head
gasket
on
surface
of
cylinder

block
.
Check
that
two
locating
dowels
are
correctly
po-

sitioned
in
block
and
not
damaged
.

CAUTION-

The
word
"OBEN",
prfnted
on
the
gasket,
should
face
up
.

5
.
Place
new
rubber
profile
gasket
in
groove
of
front
cover
.

6
.
With
camshafts
locked
in
TDC
positionwith
BMW
spe-
cial
tool
as
described
earlier,
set
cylinder
head
in
posi-
tion
.

CAUTION-

"
The
camshafts
mustbe
focked
in
the
TDC
posi-
tion
at
the
rear
of
the
cylinder
head
with
BMW
specfal
tool
no
.
113240
before
installing
the
cyl-
inder
head
.

"
Make
sure
the
crankshaft,
which
had
been
rotat-
ed
approximately
45°
opposite
the
dfrection
of
engine
rotation,
is
still
in
thatposition
before
low-
ering
the
cyffnder
head
ínto
position
.

"
Torx-type
cylinder
head
bolts
should
not
be
re-
used
.
They
are
stretch-type
bolts
and
must
al-
waysbe
replaced
whenever
loosened
.

Page:   1-10 11-20 21-30 31-40 41-50 ... 100 next >