key BMW M3 1998 E36 Owner's Manual

Page 161 of 759

u0
I
.[
Ia

Fig
.
21
.
Air
flow
sensor
harness
connector
terminal
identification
.

4
.
Replacing
air
flow
sensor
:

"
Remove
large
band
clamp
attaching
air
boot
to
sensor
.

"
Remove
airfiltertop
cover,
then
remove
airflow
sensor

mounting
nuts
inside
cover
.

"
Reconnect
air
boot
and
harness
connector
.

Engine
coolant
temperature
(ECT)
sensor,

testing
and
replacing

The
engine
coolant
temperature
(ECT)
sensor
sends
con-

tinuous
engine
coolant
temperature
information
to
the
ECM
.

As
temperature
increases,
sensor
resistance
decreases
.

"
With
harness
connector
disconnected,
check
resis-

tance
across
sensor
terminals
.

"
Compare
tests
results
to
values
in
Table
d
.

FUEL
INJECTION



130-
1
5

0011984

Fig
.
22
.
M42
engine
coolant
temperature
(ECG
sensor
(arrow)
.

Table
d
.
Engine
Coolant
Temperature
Sensoror

Intake
Air
TemperatureSensor
Test
Values

(DME
1
.7)

Test
temperatures



Resistance
(k
ohms)
',

14±2°F(-10t1°C)



7-11
.6

68±2°F
(20
t
1
°C)



2
.1
-2
.9

176
±
2°F
(80
t
V
C)



0
.27-0
.40

The
ECT
sensor
is
located
under
number
one
intake
run-



'

ner
.
See
Fig
.
22
.
NOTE-

1
.
Check
ECM
referente
voltage
to
sensor
:



The
test
values
listed
represent
only
three
test
points
from
a
continuous
resistance
NTC
sensor
.
Check
the
"
Disconnect
harness
connectorfrom
ECT
sensor
.



full
linear
response
to
increasing
temperature
as
the
"
Turn
ignition
key
on
.



engine
warms
up
.
"
Check
for
5
volts
between
supply
voltage
(brown/red)

wire
of
harness
connector
and
ground
.



3
.
If
ECT
sensor
fails
these
tests,
it
is
faulty
and
should
be

"
Turn
ignition
key
off
.



replaced
.
If
no
faults
are
found,
reconnect
electrical
"
If
voltage
is
not
present
or
incorrect,
check
wring
from



harness
.

ECM
and
check
ECT
sensor
reference
voltage
output

at
ECM
.
See
Table
h
.
NOTE-

2
.
Check
ECT
sensor
resistance
:



Use
a
new
copper
sealing
washer
when
installing
sen-
sor
.
Reptace
any
lost
coolant
.

WARNING
-

Do
not
replace
the
ECT
sensor
unlessthe
engine
is

cold
.
Hot
coolant
can
scald
.

Tightening
Torque

"
ECT
sensor
to
cylinder
head
.....
..
13
Nm
(10
ft-Ib)

BOSCH
DME
M1
.7
COMPONENT
TESTS
AND
REPAIRS

Page 162 of 759


130-
1
6



FUEL
INJECTION

Throttie
position
sensor
(TPS),



Idie
speed
control
valve,
testing
and
replacing



testing
and
replacing

The
throttie
position
sensor
(TPS)
is
mounted
on
the
side
of



¡die
speed
is
maintained
by
the
ECM
via
the
¡die
speed
con-

the
throttie
housing
and
is
directly
connected
to
the
throttie



trol
valve
.
See
Fig
.
24
.
¡die
speed
is
adaptive
through
the
valve
shaft
.
The
ECM
sends
a
voltage
signal
to
the
potentiom-



ECM
and
no
¡die
speed
adjustments
can
be
made
.
Before
eter-type
sensor
and
monitors
the
voltage
that
comes
back
.



testing
the
valve,
confirm
that
the
throttie
position
sensor(TPS)
is
working
correctly
.

Check
TPS
function
by
disconnecting
the
harnessconnec-

tor
and
checking
reference
voltage
and
sensor
resistance
.

See
Table
e
and
Fig
.
23
.
If
voltage
is
not
present,
check
the

output
voltage
signal
from
the
ECM
and
check
the
wiring
be-
tween
the
sensor
and
the
ECM
.
If
the
sensor
resistance
is
in-
correct,
replace
the
throttie
position
sensor
.

NOTE
-

The
throttie
position
sensor
is
not
adjustable
.
If
test
re-
sults
are
íncorrect,
the
sensor
should
be
replaced
.

Table
e
.
Throttle
Position
Sensor
Tests

(DME
1
.7)

Testconditions



1
Terminais



1
Test
value

Harness
connec-



(
1
and
ground
in



15
VDC
(approx
.)
tor
disconnected,



harness
connector
ignition
on

0013235

Fig
.
23
.
Throttieposition
sensor
terminal
identification
on
M42
engine
.

Harnessconnec-



I
1
and
3
at
sensor



(
4k
ohms
(approx
.)
tor
disconnected,



terminais
ignition
off
Connector
dis-



1
and
2
at
sensor



Continuously
vari-
connected,
igni-



terminais



able
from
1-4
k
tion
off
.
Throttle



ohms
(approx
.)
with
rotated
from
¡die



out
interruption
to
fui]
position

BOSCH
DME
Ml
.
7
COMPONENT
TESTS
AND
REPAIRS

Fig
.
24
.
¡die
speed
control
valve
(arrow)
on
M42
engine
.

NOTE
-

"
The
tests
given
below
are
electrical
checks
only
.
They
do
not
check
the
mechanical
operation
of
the
valve
or
if
the
valve
is
sticking
or
worn
.
If
the
valve
is
suspect,
substituting
a
known
good
valve
is
the
best
way
to
check
for
amechanical
fault
.

1
.
Check
battery
(+)
voltage
to
valve
:

0013226

"
Disconnect
harness
connector
from
valve
.
"
Check
for
battery
voltage
at
terminal
2
(red/white
wire)
.
"
If
voltage
is
not
present
check
wiring
between
valve
and
main
relay
(terminal
87)
.

2
.
Check
that
ECM
signal
is
reaching
valve
:

"
With
engine
running,
check
that
¡die
speed
control
valve
is
audibly
buzzing
.
"
If
valve
is
not
working,
disconnect
wiring
harness
con-
nector
.

"
Connect
12V
probe
light
across
connector
terminais
.
"
Turn
ignition
key
on
;
probe
should
light
.
lf
probe
does
nof
light,
check
the
wiring
from
the
ECM
(pin
29)
to
the
valve
.
See
Table
h
.
lf
probe
does
light
but
¡die
quality
is
poor,
the
valve
is
most
likely
sticking
and
or
worn
and
should
be
replaced
.

Page 163 of 759


BOSCH
DME
MM
AND
M33
.1

COMPONENT
TESTS
AND
REPAIRS

Consult
Table
a
for
engine
application
information
for
the

Bosch
DME
3
.1
and
3
.3.1
systems
.

The
DME
3
.1
and
DME
3
.3
.1
systems
are
similar
in
opera-

tion,
with
knock
control
and
VANOS
operation
being
the
key

differences
.
DME
3
.1
engines
arenot
equipped
with
VANOS

or
knock
detectors,
while
the
DM
E3
.3
.1
system
is
.

CA
UTION-

Use
onty
a
digital
multimeter
when
testing
wiring
.
Use
of
an
analog
VOM
may
damage
the
engine
control
module
.

Fig
.
25
.
Mass
air
flow
sensor
.
Hot
wire
sensor
usedon
carswith
DME
Electrical
tests
of
the
main
and
fuel
pump
relays
and
the



3
.1
(1992
6-cylinder
models)
.

DME
engine
control
module
(ECM)
are
covered
earlier
in
this

section
.
Fuel
pump
tests
are
covered
in
160
Fuel
Tank
and



CAUTION-
Fuel
Pump
.
Use
only
a
digital
multimeter
when
checking
the
mass
air
flow
sensor
.
An
analog
meter
can
dam-
Mass
Air
Flow
Sensor



age
theair
flow
sensor
.

There
are
two
types
of
mass
air
flow
sensors
used
onthe



1
.
Disconnect
air
flow
sensor
from
air
cleaner
only
.
Leave

cars
covered
by
this
section
.
Testing
procedures
vary
de-



it
connected
to
duct
leading
to
intake
manifold
and

pending
on
type
installed
.
The
airflow
sensor
is
not
adjustable



leave
wiring
harness
connected
.

and
must
only
be
tested
with
a
digital
multimeter
.

Mass
Air
FlowSensor
Variants

"
1992
M50
engine

DME
M3
.1
.
.
.
.
...
..
mass
air
flow
sensor-hot
wire

"
1993-1995
M50
and
S50US

DMEM33
.1)
.
...
...
.
mass
air
flow
sensor-hot
film

Mass
air
flow
sensor
(hot
wire),

testing
and
replacing

When
the
engine
is
running,
a
current
is
used
to
heat
a
thin

wire
in
the
center
of
the
sensor
.
See
Fig
.
25
.
The
current
in
the

wire
is
regulated
to
maintain
a
temperature
of
100°C
more

than
the
air
passing
over
it
.
The
current
used
to
heat
the
wire

is
electronically
conneced
into
a
voltage
measurement
corre-

sponding
to
the
mass
of
intake

r
.

To
keep
the
wire
clean,
it
is
heated
to
a
temperature
of
about

1,000°C
(1,830°F)
for
one
second
.
This
"burn-off"
cycle
takes

place
automatically,
four
seconds
after
the
engine
is
tumed
off
.

lf
thehot
wire
breaks
or
if
there
is
no
output
from
the
air
flow

sensor,
the
ECM
automatically
switches
to
a
"limp-home"

mode
and
tucos
on
the
Check
Engine
light
.
The
engine
can

usually
be
started
and
driven
.
The
air
flow
sensor
has
no
inter-

nal
moving
parts
and
cannot
be
serviced
.

FUEL
INJECTION



130-
1
7

2
.
Start
engine
and
run
it
to
normal
operating
temperature
.

3
.
Rev
engine
toat
least
2,500
rpm,then
shut
it
off
.
Look

through
meter
at
hot
wire
.
After
approximately
four
sec-

onds
wire
should
glow
brightly
for
about
one
second
.

NOTE
-

If
the
wire
glowsas
specified,
then
the
airflow
meter
and
ECM
are
probably
operating
correctly
.
lf
the
wire
does
not
glow,
continue
testing
.

4
.
lf
the
wire
does
not
glow,
remove
air
flow
sensor
and

look
through
it
to
see
if
wire
is
broken
.
lf
wire
is
broken,

meter
will
have
to
be
replaced
.

5
.
Reinstall
air
flow
sensor
and
harness
connector
.
Peel

back
rubber
bootfrom
harness
connector
.
Working

from
rear
of
connector,
connect
digital
voltmeter
across

terminals
1
and
4
.
See
Fig
.
26
.

6
.
Start
and
rev
engine
toat
least
2,500
rpm,thenshut
it

off
.
After
about
4
seconds,
voltage
should
riseto
about

4
volts
for
about
one
second
.
lf
voltage
is
present,
but

wire
does
not
glow,
air
flow
sensor
is
faulty
and
should

be
replaced
.

7
.
lf
voltage
is
not
present
in
step
6,
turn
ignition
key
on

and
check
for
voltage
and
ground
at
sensor
.
There

should
beground
at
pin
4
.
There
should
be
positive
(+)

battery
voltage
at
pin
2
.

BOSCH
DME
M3
.1
AND
M32
.1
COMPONENT
TESTS
AND
REPAIRS

Page 164 of 759


130-18



FUEL
INJECTION
The
engine
coolant
temperature
(ECT)
sensor
sends
con-

tinuous
engine
coolant
temperature
information
to
the
ECM
.
Fig
.
26
.
Mass
air
flow
sensor
terminalidentifcation
on
carswith
DME



As
temperature
increases
sensor
resistance
decreases
.
M3
.1
fuel
injection
.

Mass
air
flow
sensor
(hot
film),

testing
and
replacing

MOTE-

A
burn-off
cycle
is
not
used
on
hot
film
sensors
.

8
.
With
ignition
off,
disconnect
harness
connector
from
air



ECT
Sensor
Location
flow
sensor
.
Using
a
digital
multimeter,
check
resis-



"
M50/S50US
engine
............
left
side
of
cylinder
tance
at
terminals
listed
.



head
under
intake
manifold

Air
Flow
Sensor
Test
Values
(DMEM3
.1)

"
Terminals
5
and
6
.
.
.
.........
..
.
..
....
3-4
ohms

If
any
faults
are
found,
check
wiring
lo
and
from
the
ECM
.
Make
ECM
pinout
test
as
listed
in
See
Table
i
.
Main
power
to
air
flow
sensor
comes
from
DME
main
relay
.

On
cars
with
DME
M3
.3
.1
a
hot
film
mass
air
flow
sensor
is
used
.
When
the
engine
is
running,
a
current
is
used
lo
heat
a
thinfilm
in
the
center
of
the
sensor
.
This
current
is
electroni-
cally
converted
into
a
voltage
measurement
corresponding
to
the
mass
of
intake
air
.

If
thehot
film
breaks
or
if
there
is
no
output
from
the
air
flow
sensor,
the
ECM
automatically
switches
to
a
"limp-home"
mode
and
tucos
on
the
Check
Engine
light
.
The
engine
can
usually
be
started
and
driven
.
The
air
flow
sensor
has
no
inter-
nal
moving
parts
and
cannot
be
senricedor
adjusted
.

CA
UTION-

Use
only
a
digital
multimeter
when
checking
the
mass
air
flow
sensor
.
An
analogmetercan
dam-
age
the
air
flow
sensor
.

BOSCH
DME
M3
.
1
AND
M32
.1
COMPONENT
TESTS
AND
REPAIRS

1
.
Disconnect
harnessconnector
from
air
flow
sensor
.

2
.
Turn
ignition
on
and
check
for
voltage
and
ground
at

connector
.
There
should
beground
at
pin
1
.
There

should
be
positive
(+)
battery
voltage
at
pin
3
.
If
any
faults
are
found,
check
wiring
to
and
from
ECM
.
Make
ECM
pinout
test
.
See
Table
j
.

NOTE-

Positive
(+)
battery
voltage
to
air
flow
sensor
comes
from
DME
main
relay
when
the
ignition
is
switch
on
orengine
running
.

Engine
coolant
temperature
(ECT)
sensor,

testing
and
replacing

0012704
Fig
.
27
.
Engine
coolant
temperature
(ECT)
sensor
(A)
is
located
be-
neath
top
engine
cover
(B)
and
crankcase
vent
hose
(C)
.
M52
engine
shown
.
M50
is
similar
.

1
.
Check
ECM
reference
voltage
to
sensor
:
"
Disconnect
harnessconnector
from
ECT
sensor
.
"
Turn
ignition
keyon
.
"
Check
for
5
volts
between
supply
voltage
wire
(brown/red)
wire
of
harness
connector
and
ground
.
"
Turn
ignition
key
off
.
"
If
voltage
is'
not
present
or
incorrect,
check
wiring
from
ECM
and
check
referencevoltage
output
at
ECM
(pin
78)
.
See
Table
i
(DM
E
3
.1)
or
Table
j
(DME
3
.3
.1)

2
.
Check
ECT
sensor
resistance
:

"
With
harnessconnector
disconnected,
check
resis-
tance
acrosssensor
terminals
.
"
Compare
tests
results
to
values
in
Table
f
.

Page 165 of 759


Table
f
.
Engine
Coolant
TemperatureSensor
or

Intake
Air
TemperatureSensor
Test
Values

(DME
3
.113
.3
.1)

Test
temperatures



Resistance
(k
ohms)

14±
2°F
(-10
±
1'C)



7-11
.6

68±
2°F
(20
±
1'C)



2
.1
-2
.9

17612°F
(80
t
V
C)



0
.27-0
.40

NOTE

The
test
values
listed
represent
only
three
test
points
from
a
continuous
resistance
NTC
sensor
.
Check
the
full
linear
response
to
increasing
temperatures
as
the
engine
warms
up
.

3
.
If
ECT
sensor
fails
these
tests,
it
is
faulty
and
should
be

replaced
.
If
no
faults
are
found,
reconnect
electrical

harness
.

WARNING
-

Do
not
replace
the
ECT
sensor
unless
the
engine
is

cold
.
Hot
coolant
can
scald
.

NOTE-

Use
"



a
new
copper
sealing
washer
when
installing
sensor
.
Replace
any
lost
coolant
.

Tightening
Torque

"
Engine
coolant
temperature
sensor

to
cylinder
head
.........
..
.
..
...
13
Nm
(10
ft-lb)

Intake
air
temperature
(IAT)
sensor,

testing
and
replacing

The
intake
air
temperature
(IAT)
sensor
signal
is
usedasa

correction
factor
for
fuel
injection
and
ignition
timing
.
Thissen-

sor
is
mounted
in
the
intake
manifold
behind
the
throttle
posi-

tion
switch
.
See
Fig
.
28
.

Check
TPS
function
by
disconnecting
theharnessconnec-
1
.
Check
that
ECM
reference
voltage
is
reaching
IAT
sen-



tor
and
testing
continuity
across
the
terminalswhile
changing
sor
:



the
throttle
position
.
Resistance
test
values
are
listed
below
.
If

"
Disconnect
IAT
sensor
harness
connector
.



the
resuits
are
incorrect,
replace
the
throttle
position
sensor
.

"
Turn
ignition
keyon
.



See
Fig
.
29
.

"
Check
for
5
volts
between
supply
voltage
wire
of
har-

ness
connector
and
ground
.
NOTE-
"
Turn
ignition
key
off
.
The
throttle
position
sensor
is
not
adjustable
.
If
test
re-
sults
are
incorrect,
the
sensor
should
be
replaced
.

IAT
Sensor
Supply
Voltage

"
M50/S50US
engines
.
........
grey
wire
and
ground

FUEL
INJECTION



130-19

Fig
.
28
.
Intake
air
temperature
sensor
location
on
M50/S50US
engine
(arrow)
.

If
voltage
is
not
present
or
incorrect,
check
wiring
from
ECM

and
check
reference
voltage
signal
at
ECM
(pin
77)
.
See
Ta-

ble
i
or
Table
j
.

2
.
Check
IAT
sensor
resistance
:

"
With
harness
connector
disconnected,
check
resis-

tance
acrosssensor
terminals
.
Compare
tests
resuits
to
values
in
Table
f
given
earlier
.

"
If
IAT
sensor
fafs
thistest
it
is
faulty
and
should
be
re-

placed
.

3
.
If
no
faults
are
found,
reconnect
electrical
harness
.

Throttle
position
sensor
(TPS),

testing
and
replacing

The
throttle
position
sensor
(TPS)
is
mounted
on
the
side
of

the
throttle
housing
and
is
directly
connected
to
the
throttle

valve
shaft
.
The
ECM
sends
a
voltage
signal
to
the
potentiom-

eter-type
sensor
and
monitors
the
voltage
that
comes
back
.

BOSCH
DME
M3
.
1
AND
M32
.1
COMPONENT
TESTS
AND
REPAIRS

Page 177 of 759


Table
i
.
ECM
Pin
Assignment-Bosch
DME
M3
.1

Pin



Signal



Component/function



2

ignal

FUEL
INJECTION



130-
3
1

45
vacant
-

46
vacant
-



-

47
vacant
-



-

48



output



A/C
compressor
control



A/C
compressor
disabled
via
compressor
control
relay

49
vacant
-



-

50



output



Ignition
control
(terminal
1),cyl
.
n
o
.
4



Primary
signal,
ignition
coil
cyl
.
n
o
.
4

51



output



Ignition
control
(terminal
1),cyl
.
n
o
.
6



Primary
signal,
ignition
coil
cyl
.
no
.
6

52



output



Ignition
control
(terminal
1),cyl
.
n
o
.
5



Primary
signal,
ignitioncoil
cyl
.
no
.
5

53
vacant



-

54



input



Power
supply



Battery
voltage
(+)
from
main
relay
terminal
87
55



ground



Ground



Ground
for
ignition
control

56



input



Power
supply
(terminal
15)



Batteryvoltage
(+)
with
key
on
or
engine
running

57
vacant
-



-

58
vacant
-



-

59



output



Throttleposition
sensor



Throttleposition
sensorsupply
voltage
(5
VDC)

60



input



Data
link
connector



Programming
voltage

61
vacant
-



-

62
vacant
-



-

63
vacant
-



-

64



input



Ignition
timing
intervention



from
A/T
control
module
(only
active
during
gearshift)

65



input



Automatic
transmission
(A/T)
range
switch



Transmission
park
or
neutral
signal

66
vacant
-



-

67



input



Engine
speed/crankshaft
position
sensor



Crankshaft
position/rpm
(voltage
(VAC)
between
pins
67
and
68)

68



input



Engine
speed/crankshaft
position
sensor



Crankshaft
position/rpm
(voltage
(VAC)
between
pins
67
and
68)

69
vacant
-



-

70



input



Oxygen
sensor



Oxygen
sensor
signal
(0-1
VDC
fluctuating
with
engine
running)

71



ground



Oxygen
sensor



Oxygen
sensor
signal
ground

72
vacant
-



-

73



input



Road
speed



Road
speed
signal
from
instrument
cluster

74



output



Engine
speed
(TD)



Engine
speed
(TD)
signalto
instrument
cluster

75
vacant
-



-

76
vacant
-



-

77



input



Intakeair
temperature
(IAT)
sensor



Intake
air
temperature
(0-5
V,
temperaturedependent)

78



input



Engine
coolant
temperature
(ECT)
sensor



Engine
coolant
temperature
(0-5V,
temperature
dependent)

79
vacant
-



-

80
vacant
-



-

81



input



On-boardcomputer



Drive-away
protection
enable

82
vacant
-



-

83
vacant
-



-

84
vacant
-



-

85



input



A/C
pressure
switch



From
Integrated
climate
control
module
via
A/C
pressure
switch

86



input



A/C
compressor
on



From
Integrated
climate
control
module
87



input



Diagnostic
connector
(RxD)



Diagnostic
RxD
(receive)signal
to
pin
15
in
Data
link
connector

88



input/output



Diagnostic
connector
(TxD)



Diagnostic
TxD
(transmit)
signal
to
pin
20
in
Data
link
connector

ECM
PIN
ASSIGNMENTS

Page 179 of 759


Table
j.
ECM
Pin
Assignment-Bosch
DME
M3
.3
.1

Pin



~
Signal



1
Componentffunction



1
signal

FUEL
INJECTION



130-
33

45



ground



Ignition
circuit
shield



Ground
shieldfor
ignition
circuit
monitoring

46



output



Fuel
consumption
(KVA
signal)



To
instrument
cluster

47



output



Crankshaft
rpm



Engine
speed
(TD)
signal
to
instrument
cluster

48



output



A/C
compressor
control



A/C
compressor
relay
terminal
85
49
vacant
-



-

50



output



Ignition
coil
control,
cyl
.
1



Primary
signal,
ignition
coil
1

51



output



Ignition
coil
control,
cyl
.
2



Primary
signal,
ignition
coil
2

52



output



Ignition
coil
control,
cyl
.
3



Primary
signal,
ignition
coil
3

53
vacant
-



-

54



input



Power
supply



Battery
voltagefrom
main
relay
(terminal
87a)

55



ground



Ground



Ground
for
ignition
control

56



input



Power
supply
(terminal15)



Batteryvoltage
with
key
on
or
engine
running

57



input



Ignition
timing
intervention



From
A/T
control
module
58
vacant
-



-

59



output



Throttleposition
sensor
(TPS)



Voltage
supply
to
TPS
(5
VDC)

60



input



Programming
voltage



Data
link
connector

61
vacant
-



-

62
vacant
-



-

63
vacant
-



-

64



input



A/C
on
signal



From
integrated
climate
control
module
65



input



A/C
pressure
signal



From
integrated
climate
control
module
via
A/C
pressure
switch

66



input



On-board
computer



Drive-away
protection
enable
(starter
immobilization
relay)

67
vacant
-



-

68
vacant
-



-

69



input



Knock
sensor
#2
(cyl
.
4,5,
6)



Knock
sensor
#2
signal

70



input



Knock
sensor
#1
(cyl
.
1,2,
3)



Knock
sensor
#1
signal

71



ground



Ground



Ground
for
knock
sensors
and
shields

72
vacant
-



-

73



input



Throttleposition
sensor
(TPS)



Throttleposition
signal

74
vacant
-

75
vacant
-



-

76
vacant
-

77



input



Intakeair
temperatura



Intakeair
temperatura
sensor
(0-5
VDC)

78



input



Engine
coolant
temperature



Engine
coolant
temperature
sensor
(0-5
VDC)

79
vacant
-

80
vacant
-



-

81



input



Automatic
transmission
gear
positionlneutral



A/T
parkor
neutral
position
signal
safetyswitch

82
vacant
-



-

83
vacant
-



-

84
vacant
-



-

85
vacant
-



-

86
vacant
-



-

87



input



Diagnostic
connector
(RxD)



Diagnostic
RxD
(receive)
signal
to
pin
15
in
Data
link
connector

88



input/output



Diagnostic
connector
(TxD)



Diagnostic
TxD
(transmit)
signal
to
pin
20
in
Data
link
connector

ECM
PIN
ASSIGNMENTS

Page 181 of 759


Table
k
.
ECM
Pin
Assignment-Bosch
DME
M5
.2
(continued)

Pin



I
Signal



1
Componentltunction



1
Signal
45



I
output



I
Mass
air
flow
meter



I
Intake
airSignal

46



output



Oxygen
sensor
(monitoring
sensor)



Oxygen
sensor
control

47



not
used



-

48



not
used



-

49



output



Ignition
coil
control,
cyl
.
1



Primary
signal,
ignition
coil
1

50



output



Ignition
coil
control,
cyl
.
2



Primary
signal,
ignition
coil
2
51



not
used



-

52



not
used



-

53



input



Throttleposition
sensor



Throttleposition
Signal

54



input



Power
supply



Batteryvoltage
from
main
relay
(terminal
87)

55



ground



Ground



Ground
for
ECM

56



input



Power
supply
(terminal
15)



Battery
voltage
with
key
on
or
engine
running

57



output



Activate
cooling
fan
(man
.
trans
.)
control



Normal
speed
relay

58



not
used



-



-

59



not
used



-



-

60



input



Programming
voltage



Programming
voltage
via
data
link
connector,
pin
18

61



output



Evaporative
emissionvalve



Evaporative
emission
valve
control

62
vacant
-



-

63



output



Fuel
pump
relay



Fuel
pump
relay
control

64



not
used



-

65



not
used



-



-

66



not
used



-



-

67



not
used



-



-

68



input



Signal
above
80°C(man
.
tran
.)



Double
temperature
switch

69



input



Automatic
climate
control



Automatíc
climate
control

70



input



Knock
sensor
#1
(cyl
.
1,2)



Knock
sensor
#1
Signal

71



ground



Ground



Ground
for
analog
signals
and
knock
sensors

72



not
used



-



-

73



not
used



-



-

74



input



Engine
coolant
temperature
sensor



Engine
coolant
temperatura
Signal

75



not
used



-



-

76



not
used



-



-

77



output



Oxygen
sensor
(regulating
sensor)



Oxygen
sensor
control

78



input



Crankshaft/rpm
sensor



Crankshaft
position/rpmSignal

79



input



ABS
or
traction
control



ABS
or
AST
control

80



input



Engine
speed



Engine
speed
Signal
81



not
used



-



-

82



not
used



-



-

FUEL
INJECTION



130-
3
5

83



input



On-board
computar



From
On-boardcomputer
(terminal
4)

84



not
used



-



-

85



not
used



-



-

86



not
used



-



-

87



input



Diagnostic
connector
(RxD)



Diagnostic
RxD
(receive)signal
to
pin
15
in
Data
link
connector

88



output



I
Diagnostic
connector
(TxD)



Diagnostic
TxD
(transmit)
signal
to
pin
17in
Data
link
connector

ECM
PIN
ASSIGNMENTS

Page 183 of 759


Table
I
.
ECM
Pin
Assignment-Siemens
DME
MS
41
.1
(continued)

Pin



I
Signal



I
Component/function



1
Signal

FUEL
INJECTION



130-
37

47
-

48



input



Crankshaft
position
sensor
(Hall
effect)



Crankshaft
position
sensor
control

49



input



Power
supply
(terminal
15)



Batteryvoltage
with
key
onor
engine
running
50



output



Solenoid
valve
(running
losses)



Running
losses

51



output



Carbon
canister
valve



Carbon
canister
valve
control

52vacant
-

53



output



Idle
speed
control
valve



Pulsed
ground-close
signal
(seealsopin29)
54



input



Power
supply



Battery
voltagefrom
main
relay
(terminal
87)

55
vacant
-

56
-

57



input



Knock
sensor
(cyl
.
1-3)



Knock
sensor
input
Signal

58



output



Knock
sensor
(cyl
.
1-3)



Knock
sensor
control

59



input



Knock
sensor
(cyl
.
4-6)



Knock
sensor
input
Signal

60



input/output



Diagnostic
connector
(TxD)



Diagnostic
TxD
(transmit)
signal
to
pin
18
in
Data
link
connector
61



output



Oxygen
sensor
heater
(monitoring
sensor)



Oxygen
sensor
heater
ground

62



output



Secondary
air
injection



Secondary
air
injection
control
valve

63



output



Knock
sensor
(cyl
.
4-6)



Knock
sensor
control

64



input



Camshaft
position/rpm
sensor



Camshaft
position/rpm
sensor
control

65



input



Camshaft
position/rpm
sensor



Camshaft
position/rpm
sensor
control

66
-

67



output



Oxygen
sensor



Oxygen
sensor
reference
voltage

68



output



Evaporative
purge
valve
control



Pulsed
ground
with
engine
at
normal
temperature
and
varyingengine
load

69



output



Fuel
pump
relay
control



Fuel
pump
relay
switches
with
engine
runningorcranking
(crankshaft
position
signal
must
be
present
for
relay
switchover)

70
vacant
-



-

71



output



Oxygen
sensor
heater
(regulating
sensor)



Oxygen
sensor
heater
ground

72



output



Oxygen
sensor
(monitoring
sensor)



Oxygen
sensor
referencevoltage

73



input



Main
relay
control



Main
relay
activation
(terminal
85)

74



output



A/C
compressor
control



A/C
compressor
relay
control

75



input



Oxygen
sensor



Oxygen
sensor
signal

76



not
used



-



-

77



input



Oxygen
sensor
(regulating
sensor)



Oxygen
sensor
signal

78



input



Oxygen
sensor
(monitoring
sensor)



Oxygen
sensor
signal

79



output



Oxygen
sensor
(regulating
sensor)



Oxygen
sensor
referencevoltage

80



Traction
control



AST
module

81



Traction
control



AST
module
82



Traction
control



AST
module
83



output



Crankshaft
position
sensor
(Hall
effect)



Crankshaft
position
sensor
control

84
vacant
-



-

85



output



Automatic
transmission



Automatic
transmission
control
module

86



input



Automatic
transmission



Automatic
transmissíon
control
module

87



input



Power
supply



Battery
voltage
from
main
relay
(terminal
87)

88



input/output



Diagnostic
connector
(TxD)



Diagnostic
TxD
(transmit)
signal
to
pin
17
in
Data
link
connector

ECM
PIN
ASSIGNMENTS

Page 191 of 759


Fig
.
9
.



Fuel
pump
relay
terminal
identification
.

Fuel
Pump
Electrical
Tests

Troubleshooting
of
any
fuel
pump
fault
should
begin
with

checking
the
fuel
pump
fuse
and
the
fuel
pump
relay
.
The
DME
main
relay
should
also
be
checked
.

NOTE-

Special
tools
are
requíred
for
some
of
the
tests
de-
scribed
here
.

Fuel
pump
electrical
circuit,
testing

The
fuel
pump
electrical
circuit
diagram
is
shown
in
Fig
.
10
.

3
.
If
fuel
pump
does
not
run,
disconnect
black
harness

connector
from
tank
sender
unit
.
With
jumper
wire
con-

nectedas
described
in
step
2
above,
check
for
positive

(+)
batteryvoltage
at
harness
connector
terminals
.
See
Fig
.
11
.

FUEL
TANK
AND
FUEL
PUMP



160-
7

From
Main
Relay
(+15
power
with
key
in
run



From
B+juretion
point
orstartposition)
(batteryvoRageatalltirnes)

'
.5
RD/Nrr



1
.5
RD

1
.5
GNNI

From
Engine



2
.5
GNNI
Control
Module



15
2
.5
GNNI

Ground
(below
center
console)

Fig
.
10
.
Fuel
pump
electrical
circuit
.

30

-~
Relay
Fuel
Pump

8~T

I



1

s
ám
61
Front
Power
I



a
1
Distribution
Box
I_
16

WIRING
COLOR
CODE

BK
-
BLACK
BR
-
BROWN
Fuel
Pump



RD



-



RED
(in-tank)
M
YL
YELLOWGN
-
GREENBU
-
BLUE
1
VI
-
VIOLET
GY
-
GREY
WT
-
WHITE
PK
-
PINK

0011946

4
.
If
voltage
and
groundare
present,
fuel
pump
is
proba-
bly
faulty
.
If
there
is
no
voltage,
check
wiring
From
fuel
pump
Reay
and
make
sure
Reay
is
functioning
correctly
.

CAUTION-

Fuseandrelaylocationsmayvary
.
Usecara
when



Fuel
pump
power
consumption,
testing

troubleshooting
the
electrical
system
at
the
fuselrelay
panel
.
To
resolve
problems
in
identify-



NOTE-
ing
a
relay,
see
en
authorízed
BMW
dealer
.



"
To
achieveaccurate
testresults,
fhe
battery
voltage
at
the
connector
should
be
approximately
13
volts
.
1.
Remove
rearseat
cushion,
pull
right
side
insulation
mat



Charge
the
battery
asnecessary
.

back
to
expose
fuel
tank
accesscover
.
Remove
cover



.
q
higher
than
normal
power
consumption
usually
fin-
to
expose
wiring
connections
.



dicates
a
worn
fuel
pump,
which
may
cause
intermit-
tentfuel
starvation
due
lo
pump
overheating
and
2
.
Remove
fuel
pump
relay
and
opérate
fuel
pump
as
de-



seizure
.
The
only
remedy
is
pump
replacement
.
Be
scribed
under
Operating
fuel
pump
for
tests
earlier
.



sure
to
check
that
thereturn
fine
and
the
pump
pickup
Pump
should
run
.
Disconnect
jumper
wire
when
fin-



are
not
obstructed
before
replacing
the
pump
.

ished
.
1
.
Remove
rear
seat
cushion,
pull
right
side
insulation
mal
back
to
expose
fuel
tank
accesscover
.
Remove
cover
to
expose
wiring
connections
.

2
.
Disconnect
(black)
harness
connector
from
fuel
pump
.

3
.
Connect
an
ammeter
and
an
insulated
jumper
wire
be-

tween
terminals
in
connector
and
corresponding
pump

terminals
.
See
Fig
.
12
.

FUEL
PUMP

Page:   < prev 1-10 11-20 21-30 31-40 41-50 next >