engine DAEWOO MATIZ 2003 Service Repair Manual

Page 109 of 1184

ENGINE CONTROLS 1F–11
DAEWOO M-150 BL2
The fault identified by the diagnostic test is currently
active.
The fault has been active during this ignition cycle.
The operating conditions at the time of the failure.
Remember, a fuel trim Diagnostic Trouble Code (DTC)
may be triggered by a list of vehicle faults. Make use of
all information available (other DTCs stored, rich or lean
condition, etc.) when diagnosing a fuel trim fault.
COMPREHENSIVE COMPONENT
MONITOR DIAGNOSTIC OPERATION
Comprehensive component monitoring diagnostics are
required to monitor emissions-related input and output
powertrain components.
Input Components
Input components are monitored for circuit continuity
and out-of-range values. This includes rationality check-
ing. Rationality checking refers to indicating a fault when
the signal from a sensor does not seem reasonable, i.e.
Throttle Position (TP) sensor that indicates high throttle
position at low engine loads or Manifold Absolute Pres-
sure (MAP) voltage. Input components may include, but
are not limited to, the following sensors:
Vehicle Speed Sensor (VSS).
Crankshaft Position (CKP) sensor.
Throttle Position (TP) sensor.
Engine Coolant Temperature (ECT) sensor.
Camshaft Position (CMP) sensor.
MAP sensor.
In addition to the circuit continuity and rationality check,
the ECT sensor is monitored for its ability to achieve a
steady state temperature to enable closed loop fuel con-
trol.
Output Components
Output components are diagnosed for proper response
to control module commands. Components where func-
tional monitoring is not feasible will be monitored for cir-
cuit continuity and out-of-range values if applicable.
Output components to be monitored include, but are not
limited to the following circuit:
Idle Air Control (IAC) Motor.
Controlled Canister Purge Valve.
A/C relays.
Cooling fan relay.
VSS output.
Malfunction Indicator Lamp (MIL) control.
Refer to “Engine Control Module” and the sections on
Sensors in General Descriptions.
Passive and Active Diagnostic Tests
A passive test is a diagnostic test which simply monitors
a vehicle system or component. Conversely, an activetest, actually takes some sort of action when performing
diagnostic functions, often in response to a failed pas-
sive test. For example, the Electric Exhaust Gas Recir-
culation (EEGR) diagnostic active test will force the
EEGR valve open during closed throttle deceleration
and/or force the EEGR valve closed during a steady
state. Either action should result in a change in manifold
pressure.
Intrusive Diagnostic Tests
This is any Euro On-Board test run by the Diagnostic
Management System which may have an effect on ve-
hicle performance or emission levels.
Warm-Up Cycle
A warm-up cycle means that engine at temperature
must reach a minimum of 70C (160F) and rise at least
22C (40F) over the course of a trip.
Freeze Frame
Freeze Frame is an element of the Diagnostic Manage-
ment System which stores various vehicle information at
the moment an emissions-related fault is stored in
memory and when the MIL is commanded on. These
data can help to identify the cause of a fault.
Failure Records
Failure Records data is an enhancement of the EOBD
Freeze Frame feature. Failure Records store the same
vehicle information as does Freeze Frame, but it will
store that information for any fault which is stored in
Euro On-Board memory, while Freeze Frame stores in-
formation only for emission-related faults that command
the MIL on.
COMMON EOBD TERMS
Diagnostic
When used as a noun, the word diagnostic refers to any
Euro On-Board test run by the vehicle’s Diagnostic Man-
agement System. A diagnostic is simply a test run on a
system or component to determine if the system or com-
ponent is operating according to specification. There are
many diagnostics, shown in the following list:
Misfire.
Oxygen sensors (O2S)
Heated oxygen sensor (HO2S)
Electric Exhaust Gas Recirculation (EEGR)
Catalyst monitoring
Enable Criteria
The term “enable criteria” is engineering language for
the conditions necessary for a given diagnostic test to
run. Each diagnostic has a specific list of conditions
which must be met before the diagnostic will run.
“Enable criteria” is another way of saying “conditions re-
quired.”

Page 110 of 1184

1F–12 ENGINE CONTROLS
DAEWOO M-150 BL2
The enable criteria for each diagnostic is listed on the
first page of the Diagnostic Trouble Code (DTC) descrip-
tion under the heading “Conditions for Setting the DTC.”
Enable criteria varies with each diagnostic and typically
includes, but is not limited to the following items:
Engine speed.
Vehicle speed
Engine Coolant Temperature (ECT)
Manifold Absolute Pressure (MAP)
Barometric Pressure (BARO)
Intake Air Temperature (IAT)
Throttle Position (TP)
High canister purge
Fuel trim
A/C on
Trip
Technically, a trip is a key-on run key-off cycle in which
all the enable criteria for a given diagnostic are met, al-
lowing the diagnostic to run. Unfortunately, this concept
is not quite that simple. A trip is official when all the en-
able criteria for a given diagnostic are met. But because
the enable criteria vary from one diagnostic to another,
the definition of trip varies as well. Some diagnostics are
run when the vehicle is at operating temperature, some
when the vehicle first starts up; some require that the
vehicle cruise at a steady highway speed, some run only
when the vehicle is at idle. Some run only immediately
following a cold engine start-up.
A trip then, is defined as a key-on run-key off cycle in
which the vehicle is operated in such a way as to satisfy
the enable criteria for a given diagnostic, and this diag-
nostic will consider this cycle to be one trip. However,
another diagnostic with a different set of enable criteria
(which were not met) during this driving event, would not
consider it a trip. No trip will occur for that particular
diagnostic until the vehicle is driven in such a way as to
meet all the enable criteria.
Diagnostic Information
The diagnostic charts and functional checks are de-
signed to locate a faulty circuit or component through a
process of logical decisions. The charts are prepared
with the requirement that the vehicle functioned correct-
ly at the time of assembly and that there are not multiple
faults present.
There is a continuous self-diagnosis on certain control
functions. This diagnostic capability is complimented by
the diagnostic procedures contained in this manual. The
language of communicating the source of the malfunc-
tion is a system of diagnostic trouble codes. When a
malfunction is detected by the control module, a DTC is
set, and the Malfunction Indicator Lamp (MIL) is illumi-
nated.
Malfunction Indicator Lamp (MIL)
The Malfunction Indicator Lamp (MIL) is required by
Euro On-Board Diagnostics (EOBD) to illuminate under
a strict set of guidelines.
Basically, the MIL is turned on when the Engine Control
Module (ECM) detects a DTC that will impact the vehicle
emissions.
The MIL is under the control of the Diagnostic Execu-
tive. The MIL will be turned on if an emissions-related
diagnostic test indicates a malfunction has occurred. It
will stay on until the system or component passes the
same test for three consecutive trips with no emissions
related faults.
Extinguishing the MIL
When the MIL is on, the Diagnostic Executive will turn
off the MIL after three consecutive trips that a “test
passed” has been reported for the diagnostic test that
originally caused the MIL to illuminate. Although the MIL
has been turned off, the DTC will remain in the ECM
memory (both Freeze Frame and Failure Records) until
forty (40) warm-up cycles after no faults have been com-
pleted.
If the MIL was set by either a fuel trim or misfire-related
DTC, additional requirements must be met. In addition
to the requirements stated in the previous paragraph,
these requirements are as follows:
The diagnostic tests that are passed must occur with
375 rpm of the rpm data stored at the time the last
test failed.
Plus or minus ten percent of the engine load that was
stored at the time the last test failed. Similar engine
temperature conditions (warmed up or warming up)
as those stored at the time the last test failed.
Meeting these requirements ensures that the fault which
turned on the MIL has been corrected.
The MIL is on the instrument panel and has the following
functions:
It informs the driver that a fault affecting the vehicle’s
emission levels has occurred and that the vehicle
should be taken for service as soon as possible.
As a system check, the MIL will come on with the key
ON and the engine not running. When the engine is
started, the MIL will turn OFF.
When the MIL remains ON while the engine is run-
ning, or when a malfunction is suspected due to a
driveability or emissions problem, an EOBD System
Check must be performed. The procedures for these
checks are given in EOBD System Check. These
checks will expose faults which may not be detected
if other diagnostics are performed first.

Page 111 of 1184

ENGINE CONTROLS 1F–13
DAEWOO M-150 BL2
Data Link Connector (DLC)
The provision for communicating with the control mod-
ule is the Data Link Connector (DLC). The DLC is used
to connect to a scan tool. Some common uses of the
scan tool are listed below:
Identifying stored DTCs.
Clearing DTCs.
Performing output control tests.
Reading serial data.
DTC TYPES
Each Diagnostic Trouble Code (DTC) is directly related
to a diagnostic test. The Diagnostic Management Sys-
tem sets DTCs based on the failure of the tests during a
trip or trips. Certain tests must fail two consecutive trips
before the DTC is set. The following are the three types
of DTCs and the characteristics of those codes:
Type A
Emissions related.
Requests illumination of the Malfunction Indicator.
Lamp (MIL) of the first trip with a fail.
Stores a History DTC on the first trip with a fail.
Stores a Freeze Frame (if empty).
Stores a Fail Record.
Updates the Fail Record each time the diagnostic test
fails.
Type B
Emissions related.
“Armed” after one trip with a fail.
“Disarmed” after one trip with a pass.
Requests illumination of the MIL on the second con-
secutive trip with a fail.
Stores a History DTC on the second consecutive trip
with a fail (The DTC will be armed after the first fail).
Stores a Freeze Frame on the second consecutive
trip with a fail (if empty).
Type Cnl
Non-Emissions related.
Does not request illumination of any lamp.
Stores a History DTC on the first trip with a fail .
Does not store a Freeze Frame.
Stores Fail Record when test fails.
Updates the Fail Record each time the diagnostic test
fails.
Type E
Emissions related.
“Armed” after two consecutive trip with a fail.
“Disarmed” after one trip with a pass.Requests illumination of the MIL on the third consec-
utive trip with a fail.
Stores a History DTC on the third consecutive trip
with a fail (The DTC will be armed after the second
fail).
Stores a Freeze Frame on the third consecutive trip
with a fail (if empty).
Important: For 0.8 SOHC engine eight fail records can
be stored. Each Fail Record is for a different DTC. It is
possible that there will not be Fail Records for every
DTC if multiple DTCs are set.
Special Cases of Type B Diagnostic Tests
Unique to the misfire diagnostic, the Diagnostic Execu-
tive has the capability of alerting the vehicle operator to
potentially damaging levels of misfire. If a misfire condi-
tion exists that could potentially damage the catalytic
converter as a result of high misfire levels, the Diagnos-
tic Executive will command the MIL to “flash” as a rate of
once per seconds during those the time that the catalyst
damaging misfire condition is present.
Fuel trim and misfire are special cases of Type B diag-
nostics. Each time a fuel trim or misfire malfunction is
detected, engine load, engine speed, and Engine Cool-
ant Temperature (ECT) are recorded.
When the ignition is turned OFF, the last reported set of
conditions remain stored. During subsequent ignition
cycles, the stored conditions are used as a reference for
similar conditions. If a malfunction occurs during two
consecutive trips, the Diagnostic Executive treats the
failure as a normal Type B diagnostic, and does not use
the stored conditions. However, if a malfunction occurs
on two non-consecutive trips, the stored conditions are
compared with the current conditions. The MIL will then
illuminate under the following conditions:
When the engine load conditions are within 10% of
the previous test that failed.
Engine speed is within 375 rpm, of the previous test
that failed.
ECT is in the same range as the previous test that
failed.
READING DIAGNOSTIC TROUBLE
CODES
The procedure for reading Diagnostic Trouble Code(s)
(DTC) is to use a diagnostic scan tool. When reading
DTC(s), follow instructions supplied by tool manufactur-
er.
Clearing Diagnostic Trouble Codes
Important: Do not clear DTCs unless directed to do so
by the service information provided for each diagnostic
procedure. When DTCs are cleared, the Freeze Frame
and Failure Record data which may help diagnose an in-

Page 112 of 1184

1F–14 ENGINE CONTROLS
DAEWOO M-150 BL2
termittent fault will also be erased from memory. If the
fault that caused the DTC to be stored into memory has
been corrected, the Diagnostic Executive will begin to
count the ‘‘warm-up” cycles with no further faults de-
tected, the DTC will automatically be cleared from the
Engine Control Module (ECM) memory.
To clear DTCs, use the diagnostic scan tool.
It can’t cleared DTCs without the diagnostic scan tool.
So you must use the diagnostic scan tool.
Notice: To prevent system damage, the ignition key
must be OFF when disconnecting or reconnecting bat-
tery power.
The power source to the control module. Examples:
fuse, pigtail at battery ECM connectors, etc.
The negative battery cable. (Disconnecting the nega-
tive battery cable will result in the loss of other Euro
On-Board memory data, such as preset radio tuning.)
DTC Modes
On Euro On-Board Diagnostic (EOBD) passenger cars
there are five options available in the scan tool DTC
mode to display the enhanced information available. A
description of the new modes, DTC Info and Specific
DTC, follows. After selecting DTC, the following menu
appears:
DTC Info.
Specific DTC.
Freeze Frame.
Fail Records (not all applications).
Clear Info.
The following is a brief description of each of the sub
menus in DTC Info and Specific DTC. The order in
which they appear here is alphabetical and not neces-
sarily the way they will appear on the scan tool.
DTC Information Mode
Use the DTC info mode to search for a specific type of
stored DTC information. There are seven choices. The
service manual may instruct the technician to test for
DTCs in a certain manner. Always follow published ser-
vice procedures.
To get a complete description of any status, press the
‘‘Enter” key before pressing the desired F-key. For ex-
ample, pressing ‘‘Enter” then an F-key will display a defi-
nition of the abbreviated scan tool status.
DTC Status
This selection will display any DTCs that have not run
during the current ignition cycle or have reported a test
failure during this ignition up to a maximum of 33 DTCs.
DTC tests which run and pass will cause that DTC num-
ber to be removed from the scan tool screen.
Fail This Ign. (Fail This Ignition)
This selection will display all DTCs that have failed dur-
ing the present ignition cycle.
History
This selection will display only DTCs that are stored in
the ECM’s history memory. It will not display Type B
DTCs that have not requested the Malfunction Indicator
Lamp (MIL). It will display all type A, B and E DTCs that
have requested the MIL and have failed within the last
40 warm-up cycles. In addition, it will display all type C
and type D DTCs that have failed within the last 40
warm-up cycles.
Last Test Fail
This selection will display only DTCs that have failed the
last time the test ran. The last test may have run during
a previous ignition cycle if a type A or type B DTC is dis-
played. For type C and type D DTCs, the last failure
must have occurred during the current ignition cycle to
appear as Last Test Fail.
MIL Request
This selection will display only DTCs that are requesting
the MIL. Type C and type D DTCs cannot be displayed
using this option. This selection will report type B and E
DTCs only after the MIL has been requested.
Not Run SCC (Not Run Since Code Clear)
This option will display up to 33 DTCs that have not run
since the DTCs were last cleared. Since the displayed
DTCs have not run, their condition (passing or failing) is
unknown.
Test Fail SCC (Test Failed Since Code
Clear)
This selection will display all active and history DTCs
that have reported a test failure since the last time DTCs
were cleared. DTCs that last failed more than 40 warm-
up cycles before this option is selected will not be dis-
played.
Specific DTC Mode
This mode is used to check the status of individual diag-
nostic tests by DTC number. This selection can be ac-
cessed if a DTC has passed, failed or both. Many EOBD
DTC mode descriptions are possible because of the ex-
tensive amount of information that the diagnostic execu-
tive monitors regarding each test. Some of the many
possible descriptions follow with a brief explanation.
The “F2” key is used, in this mode, to display a descrip-
tion of the DTC. The “Ye s” and “No” keys may also be
used to display more DTC status information. This
selection will only allow entry of DTC numbers that are
supported by the vehicle being tested. If an attempt is,

Page 113 of 1184

ENGINE CONTROLS 1F–15
DAEWOO M-150 BL2
made to enter DTC numbers for tests which the diag-
nostic executive does not recognize, the requested in-
formation will not be displayed correctly and the scan
tool may display an error message. The same applies to
using the DTC trigger option in the Snapshot mode. If an
invalid DTC is entered, the scan tool will not trigger.
Failed Last Test
This message display indicates that the last diagnostic
test failed for the selected DTC. For type A, B and E
DTCs, this message will be displayed during subse-
quent ignition cycles until the test passes or DTCs are
cleared. For type C and type D DTCs, this message will
clear when the ignition is cycled.
Failed Since Clear
This message display indicates that the DTC has failed
at least once within the last 40 warm-up cycles since the
last time DTCs were cleared.
Failed This Ig. (Failed This Ignition)
This message display indicates that the diagnostic test
has failed at least once during the current ignition cycle.
This message will clear when DTCs are cleared or the
ignition is cycled.
History DTC
This message display indicates that the DTC has been
stored in memory as a valid fault. A DTC displayed as a
History fault may not mean that the fault is no longer
present. The history description means that all the con-
ditions necessary for reporting a fault have been met
(maybe even currently), and the information was stored
in the control module memory.
MIL Requested
This message display indicates that the DTC is currently
causing the MIL to be turned ON. Remember that only
type A B and E DTCs can request the MIL. The MIL re-
quest cannot be used to determine if the DTC fault con-
ditions are currently being experienced. This is because
the diagnostic executive will require up to three trips dur-
ing which the diagnostic test passes to turn OFF the
MIL.
Not Run Since CI (Not Run Since Cleared)
This message display indicates that the selected diag-
nostic test has not run since the last time DTCs were
cleared. Therefore, the diagnostic test status (passing
or failing) is unknown. After DTCs are cleared, this mes-
sage will continue to be displayed until the diagnostic
test runs.
Not Run This Ig. (Not Run This Ignition)
This message display indicates that the selected diag-
nostic test has not run during this ignition cycle.
Test Ran and Passed
This message display indicates that the selected diag-
nostic test has done the following:Passed the last test.
Run and passed during this ignition cycle.
Run and passed since DTCs were last cleared.
If the indicated status of the vehicle is “Test Ran and
Passed” after a repair verification, the vehicle is ready to
be released to the customer.
If the indicated status of the vehicle is “Failed This Igni-
tion” after a repair verification, then the repair is incom-
plete and further diagnosis is required.
Prior to repairing a vehicle, status information can be
used to evaluate the state of the diagnostic test, and to
help identify an intermittent problem. The technician can
conclude that although the MIL is illuminated, the fault
condition that caused the code to set is not present. An
intermittent condition must be the cause.
PRIMARY SYSTEM-BASED
DIAGNOSTICS
There are primary system-based diagnostics which
evaluate the system operation and its effect on vehicle
emissions. The primary system-based diagnostics are
listed below with a brief description of the diagnostic
function:
Oxygen Sensor Diagnosis
The fuel control oxygen sensor (O2S) is diagnosed for
the following conditions:
Few switch count (rich to lean or lean to rich).
Slow response (average transient time lean to rich or
rich to lean).
Response time ratio (ratio of average transient time
rich(lean) to lean(rich)).
Inactive signal (output steady at bias voltage approxi-
mately 450 mV).
Signal fixed high.
Signal fixed low.
The catalyst monitor heated oxygen sensor (HO2S) is
diagnosed for the following conditions:
Heater performance (current during IGN on).
Signal fixed low during steady state conditions or
power enrichment (hard acceleration when a rich mix-
ture should be indicated).
Signal fixed high during steady state conditions or de-
celeration mode (deceleration when a lean mixture
should be indicated).
Inactive sensor (output steady at approx. 438 mV).
If the O2S pigtail wiring, connector or terminal are dam-
aged, the entire O2S assembly must be replaced. Do
not attempt to repair the wiring, connector or terminals.
In order for the sensor to function properly, it must have
clean reference air provided to it. This clean air refer-
ence is obtained by way of the O2S wire(s). Any attempt
to repair the wires, connector or terminals could result in

Page 114 of 1184

1F–16 ENGINE CONTROLS
DAEWOO M-150 BL2
the obstruction of the reference air and degrade the O2S
performance.
Misfire Monitor Diagnostic Operation
The misfire monitor diagnostic is based on crankshaft
rotational velocity (reference period) variations. The En-
gine Control Module (ECM) determines crankshaft rota-
tional velocity using the Crankshaft Position (CKP)
sensor and the Camshaft Position (CMP) sensor. When
a cylinder misfires, the crankshaft slows down momen-
tarily. By monitoring the CKP and CMP sensor signals,
the ECM can calculate when a misfire occurs.
For a non-catalyst damaging misfire, the diagnostic will
be required to monitor a misfire present for between
1000–3200 engine revolutions.
For catalyst-damaging misfire, the diagnostic will re-
spond to misfire within 200 engine revolutions.
Rough roads may cause false misfire detection. A rough
road will cause torque to be applied to the drive wheels
and drive train. This torque can intermittently decrease
the crankshaft rotational velocity. This may be falsely
detected as a misfire.
A rough road sensor, or “G sensor,” works together with
the misfire detection system. The rough road sensor
produces a voltage that varies along with the intensity of
road vibrations. When the ECM detects a rough road,
the misfire detection system is temporarily disabled.
Misfire Counters
Whenever a cylinder misfires, the misfire diagnostic
counts the misfire and notes the crankshaft position at
the time the misfire occurred. These “misfire counters”
are basically a file on each engine cylinder. A current
and a history misfire counter are maintained for each
cylinder. The misfire current counters (Misfire Current
#1–4) indicate the number of firing events out of the last
200 cylinder firing events which were misfires. The mis-
fire current counter will display real time data without a
misfire DTC stored. The misfire history counters (Misfire
Histtory #1–4) indicate the total number of cylinder firing
events which were misfires. The misfire history counters
will display 0 until the misfire diagnostic has failed and a
DTC P0300 is set. Once the misfire DTC P0300 is set,
the misfire history counters will be updated every 200
cylinder firing events. A misfire counter is maintained for
each cylinder.
If the misfire diagnostic reports a failure, the diagnostic
executive reviews all of the misfire counters before re-
porting a DTC. This way, the diagnostic executive re-
ports the most current information.
When crankshaft rotation is erratic, a misfire condition
will be detected. Because of this erratic condition, the
data that is collected by the diagnostic can sometimes
incorrectly identify which cylinder is misfiring.
Use diagnostic equipment to monitor misfire counter
data on EOBD compliant vehicles. Knowing which spe-
cific cylinder(s) misfired can lead to the root cause, evenwhen dealing with a multiple cylinder misfire. Using the
information in the misfire counters, identify which cylin-
ders are misfiring. If the counters indicate cylinders
numbers 1 and 4 misfired, look for a circuit or compo-
nent common to both cylinders number 1 and 4.
The misfire diagnostic may indicate a fault due to a tem-
porary fault not necessarily caused by a vehicle emis-
sion system malfunction. Examples include the following
items:
Contaminated fuel.
Low fuel.
Fuel-fouled spark plugs.
Basic engine fault.
Fuel Trim System Monitor Diagnostic
Operation
This system monitors the averages of short-term and
long-term fuel trim values. If these fuel trim values stay
at their limits for a calibrated period of time, a malfunc-
tion is indicated. The fuel trim diagnostic compares the
averages of short-term fuel trim values and long-term
fuel trim values to rich and lean thresholds. If either val-
ue is within the thresholds, a pass is recorded. If both
values are outside their thresholds, a rich or lean DTC
will be recorded.
The fuel trim system diagnostic also conducts an intru-
sive test. This test determines if a rich condition is being
caused by excessive fuel vapor from the controlled char-
coal canister. In order to meet EOBD requirements, the
control module uses weighted fuel trim cells to deter-
mine the need to set a fuel trim DTC. A fuel trim DTC
can only be set if fuel trim counts in the weighted fuel
trim cells exceed specifications. This means that the ve-
hicle could have a fuel trim problem which is causing a
problem under certain conditions (i.e., engine idle high
due to a small vacuum leak or rough idle due to a large
vacuum leak) while it operates fine at other times. No
fuel trim DTC would set (although an engine idle speed
DTC or HO2S DTC may set). Use a scan tool to observe
fuel trim counts while the problem is occurring.
A fuel trim DTC may be triggered by a number of vehicle
faults. Make use of all information available (other DTCs
stored, rich or lean condition, etc.) when diagnosing a
fuel trim fault.
Fuel Trim Cell Diagnostic Weights
No fuel trim DTC will set regardless of the fuel trim
counts in cell 0 unless the fuel trim counts in the
weighted cells are also outside specifications. This
means that the vehicle could have a fuel trim problem
which is causing a problem under certain conditions (i.e.
engine idle high due to a small vacuum leak or rough
due to a large vacuum leak) while it operates fine at oth-
er times. No fuel trim DTC would set (although an en-
gine idle speed DTC or HO2S DTC may set). Use a
scan tool to observe fuel trim counts while the problem is
occurring.

Page 115 of 1184

ENGINE CONTROLS 1F–17
DAEWOO M-150 BL2
DIAGNOSTIC INFORMATION AND PROCEDURES
SYSTEM DIAGNOSIS
DIAGNOSTIC AIDS
If an intermittent problem is evident, follow the guide-
lines below.
Preliminary Checks
Before using this section you should have already per-
formed the “Euro On-Board Diagnostic (EOBD) System
Check.”
Perform a thorough visual inspection. This inspection
can often lead to correcting a problem without further
checks and can save valuable time. Inspect for the fol-
lowing conditions:
Engine Control Module (ECM) grounds for being
clean, tight, and in their proper location.
Vacuum hoses for splits, kinks, collapsing and proper
connections as shown on the Vehicle Emission Con-
trol Information label. Inspect thoroughly for any type
of leak or restriction.
Air leaks at the throttle body mounting area and the
intake manifold sealing surfaces.
Ignition wires for cracks, hardness, proper routing,
and carbon tracking.
Wiring for proper connections.
Wiring for pinches or cuts.
Diagnostic Trouble Code Tables
Do not use the Diagnostic Trouble Code (DTC) tables to
try and correct an intermittent fault. The fault must be
present to locate the problem.
Incorrect use of the DTC tables may result in the unnec-
essary replacement of parts.
Faulty Electrical Connections or Wiring
Most intermittent problems are caused by faulty electri-
cal connections or wiring. Perform a careful inspection
of suspect circuits for the following:
Poor mating of the connector halves.
Terminals not fully seated in the connector body.
Improperly formed or damaged terminals. All connec-
tor terminals in a problem circuit should be carefullyinspected, reformed, or replaced to insure contact
tension.
Poor terminal-to-wire connection. This requires re-
moving the terminal from the connector body.
Road Test
If a visual inspection does not find the cause of the prob-
lem, the vehicle can be driven with a voltmeter or a scan
tool connected to a suspected circuit. An abnormal volt-
age or scan tool reading will indicate that the problem is
in that circuit.
If there are no wiring or connector problems found and a
DTC was stored for a circuit having a sensor, except for
DTC P0171 and DTC P0172, replace the sensor.
Intermittent Malfunction Indicator Lamp
(MIL)
An intermittent Malfunction Indicator Lamp(MIL) with no
DTC present may be caused by the following:
Improper installation of electrical options such as
lights, two way radios, sound, or security systems.
MIL driver wire intermittently shorted to ground.
Fuel System
Some intermittent driveability problems can be attrib-
uted to poor fuel quality. If a vehicle is occasionally run-
ning rough, stalling, or otherwise performing badly, ask
the customer about the following fuel buying habits:
Do they always buy from the same source? If so, fuel
quality problems can usually be discounted.
Do they buy their fuel from whichever fuel station that
is advertising the lowest price? If so, check the fuel
tank for signs of debris, water, or other contamina-
tion.
IDLE LEARN PROCEDURE
Whenever the battery cables, the Engine Control Mod-
ule (ECM), or the fuse is disconnected or replaced, the
following idle learn procedure must be performed:
1. Turn the ignition ON for 10 seconds.
2. Turn the ignition OFF for 10 seconds.

Page 116 of 1184

1F–18 ENGINE CONTROLS
DAEWOO M-150 BL2
MAA1F010
EURO ON-BOARD DIAGNOSTIC (EOBD) SYSTEM CHECK
Circuit Description
The Euro On-Board Diagnostic (EOBD) System Check
is the starting point for any driveability complaint diagno-
sis. Before using this procedure, perform a careful visu-
al/physical check of the Engine Control Module (ECM)
and the engine grounds for cleanliness and tightness.
The EOBD system check is an organized approach to
identifying a problem created by an electronic engine
control system malfunction.Diagnostic Aids
An intermittent may be caused by a poor connection,
rubbed-through wire insulation or a wire broken inside
the insulation. Check for poor connections or a dam-
aged harness. Inspect the ECM harness and connec-
tions for improper mating, broken locks, improperly
formed or damaged terminals, poor terminal-to-wire
connections, and damaged harness.

Page 117 of 1184

ENGINE CONTROLS 1F–19
DAEWOO M-150 BL2
Euro On-Board Diagnostic (EOBD) System Check
StepActionValue(s)YesNo
1
1. Turn the ignition ON with the engine OFF.
2. Observe the Malfunction Indicator Lamp (MIL).
Is the MIL on?

Go to Step 2
Go to “No
Malfunction
Indicator
Lamp”
2
1. Turn the ignition OFF.
2. Install the scan tool.
3. Turn the ignition ON.
4. Attempt to display the Engine Control Module
(ECM) engine data with the scan tool.
Does the scan tool display the ECM engine data?

Go to Step 3Go to Step 8
3
1. Using the scan tool output test function, select the
MIL lamp control and command the MIL off.
2. Observe the MIL.
Does the MIL turn off?

Go to Step 4
Go to
“Malfunction
Indicator Lamp
on Steady”
4
Attempt to start the engine.
Does the engine start and continue to run?

Go to Step 5
Go to “Engine
Cranks But
Will Not Run”
5Select DISPLAY DTC with the scan tool.
Are any Diagnostic Trouble Codes stored?–Go to Step 6Go to Step 7
6
Check the display for DTCs P0107, P0108, P0113,
P0118, P0122, P0123, P0172, P1392.
Are two or more of the following DTCs stored?

Go to “Multiple
ECM
Information
Sensor DTCs
Set”
Go to
applicable DTC
table
7
Compare the ECM data values displayed on the
scan tool to the typical engine scan data values.
Are the displayed values normal or close to the
typical values?
–Go to “ECM
Output
Diagnosis”Go to indicated
component
system check
8
1. Turn the ignition OFF and disconnect the ECM.
2. Turn the ignition ON with the engine OFF.
3. Check the serial data circuit for an open, short to
ground, or short to voltage. Also check the Data
Link Connector (DLC) ignition feed circuit for an
open or short to ground, and check the DLC
ground circuits for an open.
Is a problem found?

Go to Step 9Go to Step 10
9
Repair the open, short to ground, or short to voltage
in the serial data circuit or the DLC ignition feed
circuit.
Is the repair complete?

System OK

10
1. Attempt to reprogram the ECM.
2. Attempt to display the ECM data with the scan
tool.
Does the scan tool display ECM engine data?

Go to Step 2Go to Step 11
11Replace the ECM.
Is the repair complete?–System OK–

Page 118 of 1184

1F–20 ENGINE CONTROLS
DAEWOO M-150 BL2
ECM OUTPUT DIAGNOSIS
Circuit Description
The Engine Control Module (ECM) controls most com-
ponents with electronic switches which complete a
ground circuit when turned on. These switches are ar-
ranged in groups of 4 and 7, and they are called either a
Surface Mounted Quad Driver Module, which can inde-
pendently control up to 4 output terminals or an Output
Driver Module (ODM), which can independently control
up to 7 outputs. Not all of the outputs are always used.
Drivers are fault protected. If a relay or solenoid is
shorted, having very low or zero resistance, or if the con-
trol side of the circuit is shorted to voltage, it would allow
too much current flow into the ECM. The driver senses
this and the output is either turned OFF or its internal re-
sistance increases to limit current flow and protect the
ECM and driver. The result is high output terminal volt-
age when it should be low. If the circuit from B+ to the
component or the component is open, or the control side
of the circuit is shorted to ground, terminal voltage willbe low. Either of these conditions is considered to be a
driver fault.
Drivers also have a fault line to indicate the presence of
a current fault to the ECM’s central processor. A scan
tool displays the status of the driver fault lines as 0=OK
and 1=Fault.
Diagnostic Aids
The scan tool has the ability to command certain compo-
nents and functions ON and OFF. If a component or
function does not have this capability, operate the ve-
hicle during its normal function criteria to check for an
open or shorted circuit.
An open or short to ground will appear in the open posi-
tions on the scan tool only when it is not commanded by
the ECM or the scan tool, while a short to voltage will
appear in the short positions on the scan tool only while
the component is being commanded by the ECM or
scan tool.
ECM Output Diagnosis
StepActionValue(s)YesNo
1
Perform an Euro On-Board Diagnostic (EOBD)
System Check.
Is the check complete.

Go to Step 2
Go to “Euro
On-Board
Diagnostic
System Check”
2
Install the scan tool.
Is there a number 1 (=fault) below any of the
numbered positions in the OUTPUT DRIVERS?

Go to Step 3Go to Step 4
3
Check for an open or shorted circuit in any
corresponding position (circuit) that contained a
number 1 and repair as necessary.
Is a repair necessary?

Go to Step 9Go to Step 7
4
Command the output being checked with a scan tool
while watching the corresponding position for each
circuit.
Do any of the position changed to a 1?

Go to Step 6Go to Step 5
5
Command the output being checked with a scan tool
while watching the corresponding position for each
circuit.
Does the component or function operate when
commanded?

Go to Step 9
Go to the
appropriate
component
table for repair
6
Repair the short to voltage in the corresponding
circuit for position (circuit) that displayed at a 1.
Is the repair complete?

Go to Step 9

7
Disconnect the electrical connector to the
component connected to the fault circuit.
Is a 1 still displayed in the corresponding OUTPUT
DRIVER position?

Go to Step 8
Go to the
appropriate
component
table for repair
8Replace the Engine control Module (ECM).
Is the repair complete?–Go to Step 9–
9
Operate the vehicle within the conditions under
which the original symptom was noted.
Does the system now operate properly?

System OKGo to Step 2

Page:   < prev 1-10 ... 61-70 71-80 81-90 91-100 101-110 111-120 121-130 131-140 141-150 ... 510 next >