ABS DATSUN 510 1969 Service Repair Manual

Page 34 of 171


Fuel

System

DESCRIPTION

FUEL
TANK

FUEL
PUMP

CARBURETTOR
IDLING
ADJUSTMENT

FAST
IDLE
OPENING
ADJUSTMENT

THROTTLE
VALVES
INTERLOCK
OPENING

DASHPOT

DESCRIPTION

The

diaphragm
type
fuel

pump
shown
in

Fig
D
1
feeds

fuel

from
the
tank
to
the
carburettor
in
a

regulated
supply

according
to
the
needs
of
the

engine
A
cartridge
type
fuel

strainer

prevents
any
dirt
from

reaching
the

pump
inlet
valve

The

carburettor
fitted
to

the

engine
is
either
a
down

draught
two
barrel

type
equipped
with
a
throttle

operated

acceleration

pump
and
power
valve
mechanism

See
Fig
D
2

or
a
twin
SU
carburettor
of
the

type
shown
in

Fig
D
3
In
the

two
barrel

type
carburettor

fuel
flows
from
the

passage
at
the

bottom
of
the
float
chamber

passes
through
the

primary
main

jet
and
mixes
with
air

introduced

through
the
main
air
bleed

screw

The

petrol
and
air
mixture
is

injected
into
the
venturi

through
the
main
nozzle

Each
time
the
accelerator

pedal
is

depressed
the
throttle

opens
and
the
accelerator

pump
forces
a

jet
of

petrol
into
the

air
stream
to
allow
the

engine
to
accelerate

smoothly
See

Fig

0
4
The

power
valve
mechanism
is

operated
automatically

according
to
the
demands
made

by
the

engine
Under
light
load

i
e

part
throttle
conditions
the
intake
manifold

depression
is

transmitted
below
the
throttle
valve
the
vacuum

pulls
a

piston

upwards
against
a

spring
and
leaves
the

power
valve
closed

allowing
additional
air
to
be

admitted
through
the
air
bleed
screw

and
thereby
weaken
the

petrol
and
air
mixture
When
the
vacuum

below
the
throttle
vaJve
is
lowered

during
full
load
conditions

the

piston
is

pushed
down
opening
the

power
valve
and
providing

additional
fuel
to
enrichen
the
mixture

The
model

HJ
L
38W6
SU
twin
carburettor
is
of

the

horizontal
variable
venturi

type
and
is
used

only
on
the
1600

and
1800
cc

engines
In
this

type
of
carburettor
a

constant

flow
of
intake
air
is

maintained

by
the

automatically
adjusted

venturi

opening
this
is
accomplished

by
the
suction

piston

sliding
in
accordance
with

changes
in
the
volume
of
intake
air

Referring
to

Fig
D
5
the
suction
chamber
is
mounted
above

the
venturi
The
suction

piston
slides
vertically
within
the

chamber

and

changes
the
venturi

opening
area
The

piston
is

operated
by
a

difference
between
the

upper
vacuum

pressure

which
is

applied
through
the
suction

poct
and
the
atmospheric

pressure
which

is
introduced

through
the
air
hole
from
the
air

cleaner

The
amount

by
which
the
throttle
is

opened
causes
the

suction

piston
to
rise
or
fall
under
the
intluence
of
the

engine

suction
The

pozzle

opening
therefore

changes
and

provides
an

optimum
air
fuel
mixture
at
all

engine
speeds

The

cartridge
type
fuel
strainer
utilizes
a
fibre
strainer

element
which
should
be

replaced
every
20
000
km
12
000

miles
Removal
of
the
fuel
strainer
is
a

simple
operation
but
as

it
cannot
be
drained
the
strainer
should
not
be
removed
when
CARBURETIOR
Removal
and
Overhaul

FLOAT
LEVEL
Adjustment

SU
TWIN
CARBURmORS

Adjustments

SU
TWIN
CARBURmORS

Dismantling

SU
TWIN
CARBURETTORS

Inspection

STARTING
INTERLOCK
VALVE
OPENING

HYDRAULIC
DAMPER

the
tank
is

full
unless

absolutely
necessary

A

viscous

paper
type
air
cleaner
element
is
fitted
which

does
not

require
cleaning
and
should
be

repl
ced

every
40
000
km

24
000
miles
The
air

cleaner
fitted
on
the

single
carburettor

is
equipped
with
an

idling
compensator
to

prevent
the
mixture

from

becoming
too

rich
at

high
idling

temperatures
Additional

fresh
air
is
introduced
into
the
inlet
manifold

by
the
action
of

a
bimettalic

strip
located
in
the
air
cleaner
When
the

temperature

under
the
bonnet
is

high
the
bimetal
is

heated

by
the
hot
inlet

air
and
lifts
to
allow
the
valve
to

open
The

idling
compensator

valve

partially
opens
at

550
I310F
and
is

fully
open
at

650C

l490F
The
unit
cannot
be
dismantled
as

it
is

pre
sealed
and

correctly
adjusted
for
valve

timing
Fig
D
6
shows
the

layout

of

the
idling
compensator
piping

FUEL
TANK

Replacing

The
fuel
tank
can
be
removed
in
the
following
manner

Remove
the
rear
seat

and
back
rest

2
Take
out
the
board
behind
the
back
rest

3
Take
out
the

luggage
compartment
lining
board
and

disconnect
the
cable
to
the

petrol
gauge
unit

4
Disconnect
the
petrol
filler
tube
from
the
tank

5
Remove
the
tank
retaining
bolts
and
disconnect
the

rubber
fuel
outlet
and
return
hoses

Installation
is

a
reversal
of
the
removal

procedure
always

ensure
that
the
fuel
lines
arc
carefully
checked
for

signs
of

damage
before

replacing
the
tank

FUEL
PUMP

Testing

Pressure
and
capacity
tests
can
be
carried
out
with
the

pump
installed
in
the

following
manner

Static

pressure
test

Disconnect
the
fuel
line
at

the
carburettor
install
an

adaptor
tee

fitting
and
suitable

pressure
gauge
to
the
fuel
line

between
carburettor
and
fuel

pump
Start
the
engine
and
run
it

at

varying
speeds

The

reading
on

the
gauge
should
be
0
18
0
24

kg
sq

cm
2
6
34
Ib

sq
in
If
the

pressure
is
below
the

specified

figure
then
either
one

part
of
the

pump
has
worn

excessively

or

general
wear
has
occured
to

all
the

working
parts
The
faults

may
include
a

ruptured
diaphragm
worn
and

warped
valves

33

Page 40 of 171


FLOAT
LEVEL

Adjustment

A
constant
fuel

level
in
the
float

chamber
is
maintained

by

the
float
and
ball
valve

Fig
D
12
If
the
fuel
level
is
not

in

accordance
with
the
level

gauge
line
it
will
be

necessary
to
care

fully
bend

the
float
seat
until
the
float

upper
position
is

correctly

set

Fig
D
13

The
clearance
H
between
the
valve
stem

and
float
seat

should
be
1
0
mm
0
039
in
with
the
float

fully
lifted
as
shown

Adjustment
can

be
carried
out

by
carefully
bending
the
float

stopper
Fig
D
14
until
the

required
clearance
is
obtained

SU
TWIN
CARBURETTORS

Adjustments

It
is
essential
that
the
two

carburettors
are

correctly
adjusted

if

peak
m3l1ce
and
economical
fuel

consumption
is
to
be

realized
Incorrect
carburettor

a
ljustment
will
have
an
adverse

affect

during
idling
and
on

acceleration
etc

Carburettor

synchronization
and

idling
adjustment

Run
the

engine
until
it
reaches
its
normal

operating

temperature
remove
the
air
cleaner
and
slacken

the
front

and

rear
throttle

adjusting
screws
the
balance
screw
and
the
fast

idling
setting
screw
Make
sure
that
the
front
and
rear
throttle

shafts
are
not
connected

Fully
tighten
the

idling
adjustment

nuts
of

the
front

and
rear

carburettors

Fig
D
15

the
back

off
each
nut

by
an

equal
amount
and

by
one
and
a
half
to
two

tUrns

Screw
in
the
front
and
rear
throttle

adjusting
screws

by
a

few
turns
and
start
the

engine
Allow
the

engine
to
reach
its

normal

operating
temperature
before

proceding
to

the
next

stage

Adjust
the
front
and
rear
throttle

adjusting
screws
until

the

engine
speed
is
reduced
to

approximately
600
700
r

p
m

The

engine
should
turn
over

smoothly
and

consistently
Apply

a

flow
meter
to
the
front
carburettor
air
cleaner

flange
and
turn

the

adjustment
screw
on
the
flow
meter
so
that
the

upper
end

of
the
float
in
the

glass
tube
is
in

line
with
the
scale
Uft
off
the

flow
meter

and
apply
it
to

the
rear
carburettor
air
cleaner

flange

without

altering
the

setting
of
the
flow
meter

adjusting
screw

If

the

position
of
the
flow

meter
float
is
not

aligned
with
the

scale

adjust
the
rear
carburettor

throttle
adjusting
screw
to

align
the
float
with
the
mark
on
the
scale

With
the
carburettor
flow

correctly
adjusted
turn
the

idling
adjustment
nuts

of
both
carburettors

approximately
1
8

of

a
turn

either
way
to
obtain

a
fast

and
stable

engine
speed

Both
nuts
must

be
turned

by
an

equal
amount

Back
off
the
front
and
rear
throttle

adjusting
screws
and

adjust
the

engine
speed
to

the

specified
value
of

650
r

p
m

for

the
standard

engine
or
700
r

p
m
with
vehicles
fitted
with

automatic
transmission
Make
sure

that
the
air
flow
of

both

carburettors
remains

unchanged
Screw
in
the
balance
screw

until
the
screw
head
contacts
the

throttle
shafts
without

changing
the

idling

speed
setting

Move
the
throttle

connecting
shaft
and
accelerate
the

engine
a
few
times
then
check
that
the

idling
speed
is

unchanged

Turn
the
fast
idle

setting
screw

to
increase
the

engine
speed

to

approximately
1500

r

p
m
and
recheck
with
the
flow
meter
that
the
air
flow
for
both
carburettors
is

correctly
matched
If

the
air
flow
is
uneven

it
will
be

necessary
to

readjust
the
balance

screw

Finally
back
off

the
fast
idle

setting
screw

Fig
D
16

and
decrease
the

engine
speed
Apply
the
flow
meter
to

the

carburettors
to
confirm
that
the
float

positions
are
even
Re

adjust
if

necessary
by
means
of

the
throttle

adjusting
screws

Stop
the

engine
and
fit
the
air
cleaner

SU
TWIN
CARBURETTOR

Dismantling

Piston
and
suction
chamber

Dismantling

Unscrew
the
plug
and
withdraw
the

piston
damper
Fig
D

17
Remove
the
four
set
screws

and
lift
out

the
suction

chamber
withdraw
the

spring
nylon
washer
and
the

piston

Take
care
not
the

damage
the

jet
needle
and
the
interior
of

the

suction
chamber

Do
not
remove
the

jet
needle
from
the

piston
unless

absolutely
necessary
If
a

replacement
is
to
be
fitted
ensure
that

the
shoulder
of
the
needle
is
flush
with
the
lower
face
of

the

piston
This

operation
can

be
accomplished
by
holding
a
strai

edge
over
the
shoulder
of
the
needle
and
then

tightening
the

set
screw
as
shown
in
Fig
D
18

Wash
the
suction
chamber
and

piston
with
dean
solvent

and

dry
with

compressed
air
Lubricate
the
piston
rod
with
a

light
oil
Do

NOT
lubricate
the

large
end
of
the

piston
or
the

interior
of
the
suction
chamber

NOZZLE

Dismantling

The
nozzle
See
Fig
D
19
can
be
removed

quite
easily

but
should
not
be
dismantled
unless

absolutely
necessary
as

reassembly
of

the
nozzle
sleeve
washer
and
nozzle
sleeve

set
screw
is
an

extremely
intricate

operation

To
remove
the
nozzle
detach
the

connecting
plate
from

the
nozzle
head

pulling
lightly
on

the
starter
lever
to
ease
the

operation
Loosen
the

retaining
clip
take
off
the
fuel
line
and

remove
the
nozzle
Be
careful
not
to

damage
either
the
jet

needle
oc

the
nozzle
Remove
the
idle

adjusting
nut
and

spring

The
nozzle
sleeve
can
be
removed
if

necessary
by
taking
out

the
set
screw
but
as
previously
stated
should
not
be
dismantled

unless

absolutely
necessary

SU
TWIN
CARBUREfTOR

Assembly

Assemble
the

piston
assembly
into

position
but
do
not

fill
with

damper
oil

Assemble
the
nozzle
sleeve
washec
and
set
screw

by

temporarily
tightening
the
set
screw

Set
the
piston
to
its

fully

closed

position
and
insert
the
nozzle
until
it
contacts

the
nozzle

sleeve
When

the
nozzle

jet
contacts
the

jet
needle
the
nozzle

sleeve
must
be

slightly
adjusted
so

that
it
is
at

right
angles
to
the

centre
axis

and
positioned
to
leave
the
nozzle

jet
clear
of

the

jet
needle
Raise
the

piston
without

disturbing
the
setting
and

allow
it
to

drop
The

piston
should

drop
smoothly
until
the

stop
pin
strikes
the
venturi
with
a

liaht
metallic
click
See
below

under

Centering
the

jet
Tighten
the
nozzle
sleeve
set
screw

remove
the

nozzle
install
the
idle

adjustinJ
spring
and

adjusting

nut
on
the
nozzle
sleeve
and
refit
the
nozzle

39

Page 76 of 171


Rear
Axle
Rear

SuspensIon

DESCRIPTION

REAR
AXLE
AND
SUSPENSION
Removal
Saloons

COIL
SPRINGS
Saloons

REAR
SHOCK
ABSORBERS
Saloons

REAR
SUSPENSION
ARM

Saloons

DESCRIPTION

Saloon
models
are
fitted
with

independent
rear

suspension

with
semi

trailing
arms

suspension
arms
coil

springs
and

telescopic
hydraulic
double

acting
shock

absorbers
The
differ

ential

gear
carrier
and

suspension
member
is
mounted

directly

onto

the

body
structure

via
rubber

mountings
See
Fig
H
I

Estate
cars
and
1800
ce
Vans
are
fitted

with
a
semi
floating

rear
axle
with
semi
elliptic
leaf

springs
and

telescopic
hydraulic

shock
absorbers
mounted
on
rubrer
bushes
See

Fig
H
2

REAR
AXLE
AND
SUSPENSION
Removal

Saloon
models

I
Jack

up
the
rear
of
the
vehicle
and

support
it
on
stands

2
Remove
the
road
wheels
disconnect
the
hand
brake

linkage

and
the
return

spring
Fig
H
3

3
Remove
the
exhaust
tail

pipe
and
silencer

4
Disconnect
the
brake
hoses
and
plug
the
openings
to

prevent

the

ingress
of
dirt

5
Remove
the

propeller
shaft

assembly
as
described
in
the

relevant
section
after

marking
the

propeller
rear

flange

and
differential

pinion
flange

6
Jack

up
the

suspension
ann

and
remove

the
shock

absorber

lower

mountings
taking
care
not
to
lose
the
rubber

bushings

7
Place

ajack
under
the
centre
of
the

suspension
member

and
differential

carrier
and
remove

the
nuts

securing
the

suspension
member
to
the

body
7
in

Fig
H
3
Remove

the
differential

mounting
nuts
8

8
Carefully
lower
and
remove
the

suspension
assembly

REAR
SUSPENSION

Inspection

Saloons

Examine
all

parts
for

wear
and

damage
paying
particular

attention
to
the
rubber
bushes

in
the

suspension
arms
and
the

bump
rubbers
Check
the
condition
of
the

spring
rubber
insulators

in
the

suspension
member

and
differential

mounting
memrer

The
rubber
insulators
must
be

replaced
if
the
dimension
A

in

Fig
H
4
is
less

than
5mm
0
2
in
REAR
AXLE
SHAFTS
BEARINGS
AND
SEALS
Saloons

DRNE
SHAFTS

REAR
AXLE
Removal
Estate
cars
and
Vans

REAR
SPRING
Estate
cars
and
Vans

REAR
SHOCK
ABSORBERS
Estate
cars

and
Vans

REAR
SUSPENSION
Installation

Saloons

Installation
is
a
reversal
of
the
removal

procedures
noting

the

following
points

Ensure
that
the
suspension
member
and
differential
mount

ing
member
are

correctly
aligned
as
shown
in

Fig
U
5
and
insert

the
rubber
insulators
from
the
underside
of

the
vehicle

Tighten
the
differential

mounting
member
the

suspension

member
and
lower
shock
absorber
nuts
to

the
specified
tighten

ing
torques

COIL
SPRINGS
Removal

Saloons

Jack

up
the
rear
of
the
vehicle
and

support
it
on
stands

2
Remove
the
road
wheels
and
disconnect
the
handbrake

linkage
and
return

spring

3
Remove
the
drive
shaft
flange
nuts
at
the
wheel
side

Fig

H
6
and
the

bump
rubber

securing
nuts

4
Place

ajack
under
the
suspension
ann
and
remove
the

shock
absorber
from
the
lower

mounting
bracket
Carefully

lower
the

jack
and
remove

the
coil

spring
spring
scat

and

bump
rubber
Fig
H7

COIL
SPRINGS
Installation

Saloons

Oleck
the
coil

springs
for

signs
of
deformation
or
cracks

Test
the

spring
for
its
free

length
and
height
under
load
and

compare
the

figures
obtained
with
the
information
in
Technical

Data
Inspect
all
rubber

parts
and

replace
any
which
are

damaged

or
deformed

Installation
is
a
reversal
of
the
removal

procedure
making

sure
that
the
flat
face
of

the
spring
is
at
the

top

REAR
SHOCK
ABSORBERS
Removal
and
Installation

Saloons

Remove
the
trim
in
the
boot
trunk
and
take
off
the
two

nuts

securing
the

upper
shock
absorber

mounting
See

Fig
H
S

Detach
the
shock
absorber
from
the
lower

mounting
bracket

The
shock
absorber
should
be
tested
and
the

fIgUres
com

pared
with
the

specifications
in
Technical
Data
Cbeck
for
oil

leaks
and
cracks
Make

sure
that
the
shaft

is
straight
and
that
the

rubber
bushes
are
not

damaged
or
defonned
Renew
all
unsatis

75

Page 77 of 171


inter
T
r

if

J
II
10
4

9

A
I
I

I

s

tf
4

J

y
r

1
Sl
f

n1

2

8wpmsion
arm

3

MountinK
buuJDror

4

DiffomtiDJ

OIl1rtlnt
insulaior

J

CoU

P
inI

6

Bump
rubber

7

Sf1TinI
mzt

8

S1tock
absorber

9

I
Jm

tlrtifi

10

Differentli1l
mount
nlf
ober

II

Differentitzl
CtUTio

Fig
H
I

Independent
rear

suspension
Saloons
7
w

A

i
I

I

l
il

1

t
J1

0

11

I
j

1
I
J

71

Iii

I

1
V

1

A
3

1

DiffomtiDJ
CtUTio

2
R
I1
u
eazu

I
1

3

L
ll

Sf11inI

4

Shock
abJOriJer

FJ8
H
2
Rear

r
utate
cars
and
Vans
FJ8
H
4

OIecking
the

mounting
insulators

wn
0
6

t
iO

T
t

1Vt
1

1

j

J3

J

111
1

Q

i

n
f
I

1
I
J

0

J

I
I

I
0
l

5

i

1
a
c

u
T
11
0
to

lS
Oq
m

80
to

108
ft
lb

J

iI

Front

20mm

1

200
mm

O
787
n

041
2

in1

410mm

16
1
n
Di

member
CD
T
7
0
to
10
0

q
m

51
to

72
ft
lb

T

20
0
to
30
0

kg
m

145
to

217
fHb

j

T

Tilhtening
torque
Om

FJ8
8
3
Rear

suspension
removal

T

7
0

to
10

q
m

5lI072
ft
Ib

Flg
D
S
Rear

suspension
imtallation

i

76

Page 78 of 171


inter
nDG
O

jlI

FI
l
H
7

Removing
the
coil

spring
Fig
H
8

Installing
the
shock
absorber

upper

mounting

sn
060001

FIg
H
9

Removing
the
rear
wheel

bearing
nut

0
Fig
H
t
0

Removing
the
sU
ipension
ann

I

4

J

l

To

Fig
H
l1

Removing
the

suspension
arm
bush

Fig
H
12

Removing
the
wheel

bearing
nut

f

jY

FI
l
H
13

Removing
the
rear

axle
shaft

Fig
H
14

Removing
the

oil
seaJ

and
inner

bearing

77

Page 79 of 171


inter
j

@IP

1

Gmu

2
lMO
wheel

betJring

3

Dutmu
e

pi
e
Pack
with
beel
be

riDB

n
ue
MP2
MP3
at

ac
h
ORrbaul

Fig
H
15
Section

through
the
wheel

hub

@

jJ
@

iW

I

@

iJ
8

6

1

1
Drive

tift

2
Drive

wIt
baU

J
II

qxze
r

4
Dri
e

shaft

stop
ring

S
Rubber

grzittt

6
Gaiter

clip

7

Sntzp
ring
8
Sk

yoke

9
Sleeve

yoke
plug

1
O

Spi
m
jounvzl

11

F1mrge
yoke

12

0U
1

1J
N
dk

bctrri1w

4

Smp
ring

fig
H
17

Exploded
view

of
the
drive
shaft

I
r

mrG

1JJNf

Apply
grease
in
thi

Fig
RI9
Section

through
the
drive
shaft

Fig
B
21

Removing
the

locknuts
and

U
Bolts

78
Shock
absorber
lower

mounting

Bearing

housing

u

mark

Dinancc

piece
mart

j

L2

AXLE

HOUSING
DISTANCE
PIECE

fig
H
l6

Installing
the

suspension
ann
lee

text

fig
H
l8

Measuring
the
drive
shaft

end

float

Fig
H
20

Removing
lhe
rear
axle
shaft

Estate
cars

JL
m
I

Fig
H
21a
Removal

of
rear
axle

Page 80 of 171


factory
parts

Installation

is
a

reversal
of
the
removal

procedure

REAR
SUSPENSION

ARM
Removal
and
Installation

Saloon

I
J
ad

up
the
car
at

the
rear
and

support
it
on
stands

2
Remove
the
road
wheel
and
brake
drum
as
described
in

the

section
BRAKES

3
Disconnect

the
drive
shaft
from
the
axle
shaft

4
Disconnect

the
handbrake
cable
from
the

equalizer
bracket

and
the
wheel

cylinder
lever
Disconnect

the
brake
hose

from
the
brake
line

by
removing
the
lock

spring
and
then

withdrawing
through
the
connector

Plug
the
end
of
the

brake

line
to

avoid
loss

of
fluid
and

ingress
of
dirt

5
Remove
the
wheel

bearing
locknut

Fig
H
9
the
rear

axle

shaft

wheel

bearings
and
oil
seal
Remove
the
rear
brake

assembly
from
the

suspension
ann
See
section
BRAKES

6
Jack

up
the

suspension
arm
to

relieve
the
tension
on
the

shock
absorber
and
disconnect
the
shock
absorber
from

the
lower

mounting
Lower
the

jack
gradually
and
remove

the
coil

spring
seat
and

bump
rubber

7
Remove
the
bolts

securing
the

suspension
arm
to

the

suspension
member

Fig
H
IO
and
withdraw
the

suspension

arm

The
rubber
bushes
can

be
drawn
out

of
the

suspension
arm

if

necessary
using
the

special
tool
ST
38280000

Fig
H
Il

O1eck
the

suspension
arm
for
distortion
or

cracks
and

inspect
the
rubber
bushes
for

signs
of
wear
or

damage
Renew

any
part
which

is

unsatisfactory

Installation

is
a

reversal
of
the
removal

procedure
Tighten

all
the

suspension
arm

mounting
bolts
with
the

weight
of

the

vehicle

resting
on
the
rear
wheels
The
self

locking
nuts
must

be
renewed
at
each
overhaul

REAR

AXLE
SHAFTS
BEARINGS
AND
SEALS

Saloon
Removal
and

Dismantling

I
Raise
the
vehicle
at
the

rear
and

place
stands
under
the

body
member

2
Remove

the
road
wheel
and
brake
drum

3
Disconnect
the
drive
shaft
from
the
axle
shaft
and
remove

the
wheel

bearing
locknut
The

special
wrench
ST
38060001

can
be
used
to
hold
the

flange
as

shownin

Fig
H
12

4
Withdraw

the
axle

shaft

assembly
as
shown
in

Fig
H
13

using
the

special
tool
ST
07640000

and
sliding
hammer

ST
36230000
Remove

the
rear
axle
drive

flange

5
Use
a
suitable
drift
or

special
tool
ST
37750000
See

Fig

H
14
to
drive

out
the
inner

bearing
and
oil
seal

F
6
Remove

the

grease
retainer
and
withdraw
the
outer

bearing
with
a
conventional

puller
DO
NOT
re
use
this

outer

bearing

REAR
AXLE
SHAFTS
BEARINGS
AND
SEALS
Saloon

Assembly
and
Installation

Oleck
the
axle
shaft
for

straightness
make
sure
that
it
is

not
cracked
or

damaged
in

any
way
00
NOT
heat
the
shaft

if

attempting
to
re
straighten

Make
sure
that
the

lip
of
the
oil

seal
is
not

damaged
or

distorted
Check
the

bearing
for
excessive

wear
and

damage

Oean
the
wheel

bearings
the
oil
seal

and
the
inside
of
the

axle

housing

When

installing
the
wheel

bearings
the
sealed
side
of
the

outer

bearing
should
face

the
wheel
and
the
sealed

side
of

the

inner

bearing
should
face
the
differential
See

Fig
H
IS

Pressure
must
be

applied
to
the
inner
race
when

fitting

When

replacing
the

suspension
arm
check
that
the
distance

piece
is
0
05
mm
0
002
in
shorter
than
the

length
of
the

housing
dimension
LI
See

Fig
H
16
The
distance

piece
and

axle

housing
code

markings
must
coincide

The
wheel

bearing
grease
must
be

replaced

every
50
000

km
30
000
miles
Pack
the
wheel

bearings
with

grease
at
the

positions
shown
in

Fig
H
IS
and
coat
the

lip
of
the
oil
seal

Renew
the
locknut
and
oil
seal
at

each
overhaul

Wheel

bearing
adjustment

Tighten
the
locknut
to

the

specified
torque
reading
of

25
33

kgm
181
239
lb
ft
and
check
that
the
rear
axle
shaft

end

play
does
not
exceed
0
15
mm
0
006
in
with
a

turning

torque
of
less
than
7

kg
em
6
11b
in
for
the
1400
and
1600cc

models
510

series
or
4
5

kg
em
3
91b
in
for
the
1800cc

610
series

If
the
correct
end

play
or

turning

torque
cannot
be

obtained
it
will
be

necessary
to

change
the
distance

piece
See

above

DRIVE
SHAFTS
Removal
and

Dismantlill8

Disconnect
the
end

flanges
and
remove
the
shaft
See

Fig
H
17
The
drive
shaft
should

only
be
dismantled
to

lubricate
the

splines
This

operation
will

only
be

necessary
every

two

years
or
50
000
km
30
000
miles

Remove
the
universal

joint
spider
at
the
differential
side

Refer
to
the

propeller
shaft
section
Remove
the

snap
ring

securiilg
the
sleeve

yoke
plug
and
take
out

the

plug
Compress

the
drive
shaft
and

remove
the

snap
ring
and

stopper
Fig
H
17

Disconnect
the
boot
and

split
the
shaft
Make
sure
that
the

balls
and

spacers
are
retained

DRIVE
SHAFTS

Inspection
and

Assembly

The
drive
shaft
should
be

replaced
as
an

assembly
if

any

part
is
found
to

be
defective

Check
the
shaft
for

straightness
damage
or
wear
Old

79

Page 81 of 171


I

I
1J
JlJJ
s
lf

ii

fi
e

I

a
co
c

fo
Q

I

EJl

D

j
J

O
9

II

c9
00

Fig
H
23

Removing
the

10
shock
absorb

attaclunent

F
H
22

Measuring
the
axl
o
shaft
end
float

R

0

tJ
j

8

1J
o
fT

jJ
J

F
H
24

Removing
the
shock
absor

upper

attachment
Fig
H
25

Disconnectins
the
shock
absor

and
rear

spring
U
bolts

fI

fJ

o

SO

Fia
H
26
Rear

spring
shackle

80

Page 82 of 171


the
steel
balls
and
the
sleeve

yoke
for

damage
or
wear
Renew

the
boots
and
the
sleeve

yoke
plug
0

ring
if

necessary
Renew

the
universal

joint
jf

faulty

Check

the

play
in
the
drive
shaft

using
a
dial

gauge
as

shown
in

Fig
H
18
The
measurement
taken
with
the

dri
le

shaft

fully

compressed
should
not

exceed
O
lmm
0
004
in

Renew
the
drive
shaft
as

embly
if
the

specified
value
is
not

obtained

Oean

the
old
grease
from

the
sleeve

yoke
and
the
drive

shaft
ball

grooves
and
lubricate
with
oil

Asse

bly
of

the
drive
shaft

is
a

reversal
of
the

dismantling

procedure
noting
the

following
points

Align
the

yokes
and
make
sure
that

the
steel
balls

and

spacers
are
fitted

in
the
correct
order
Select
a

snap
ring
which

will

adjust
the
axial

play
of

the

universaIjoints
to
within
0
02mm

0
0008
in

Snap
rings
are
available
in

four
thicknesses
of

1
49
1
52
1
55

and
1
58
mm

0
0587
0
0598
0
0610

0
0622
in

Apply
a

generous

quantity
of
multi

purpose
grease
to
the

ball

groove
and
the
area
shown
in

Fig
H
19

REAR
AXLE
Removal
See

Fig
H
2

Estate
car
and
Van

Jack

up
the
vehicle
at
the
rear

and

support
it
on
stands

Remove

the
road

wheels
and
brake

drums
I

3
Disconnect
the
brake
hose
from
the

brake

pipe
Plug
the

end
of
the
hose
to

prevent
the

ingress
of

foreign
matter

4
Disconnect
the
handbrake
rear
cable
from

the
balance

lever

assembly

5
Disconnect

the

propeller
shaft
from
the
differential

flange

Release
the
lower
shock
absorber

self

locking
nuts
and

slide

the

mounting
eyes
of
the
shock
absorber
from
the

rear

spring
seat

pivot

6

Support
the
rear

axle
with

ajack
loosen
the
U
bolts
and

remove
the
nuts
from
the
rear

spring
shackles
Withdraw

the
shackles
from
the

spring
eyes

7
Remove
the
V
bolt
lock
nuts

completely
and
lower
the

jack
to

withdraw
the
rear
axle

assembly

REAR
AXLE

Dismailtling
and

Inspection

Disconnect
the
brake

pipes
from

the
wheel
cylinders
and

remove

the
brake

pipe
and
three

way
connector
Remove
the

cross
rod

clamp
and
the
balance
lever
from
the
rear
axle
case

Remove
both
cross
rod

ends
from
the

wheel

cylinder
lever

assembly

Unscrew
the
oil
drain

plug
and
drain
the
oil
from
the
axle

case
into
a
clean
container
The
oil

may
be
re
used
if
it
is
in

good
condition

Remove
the
nuts

securing
the
brake

backplate
to
the
axle

case
and
draw
out
the
axle
shaft

assembly
with
the

backpl
te

and
grease
catcher
A

sliding
hammer

ST
36230000
should
be

used
for
this

operation
as
shown
in

Fig
H
2Q

The

bearing
collar
can
be
removed
with
a

press
or

by

cutting
with
a
cold
chisel

and
the

bearing
withdrawn
with
the

puller
ST
3712001
as
shown
in

Fig
H
2t
Remove
the
brake

backplate
and
withdraw

the

gear
carrier
from

the
axle
case

Check
the
axle
shafts
for

straightness
wear
and
cracks

00
NOT

attempt
to

straighten
a
bent
shaft

by
heating
Check

the
oil
seal
lips
for

signs
of

damage
or
distortion
Make
sure

that

the

bearing
is
not
worn
or

damaged
REAR
AXLE

Assembly
and
Installation

Assembly
is
a
reversal
of
the

removal

procedure
noting
the

following
points

Thoroughly
clean
all

parts
and
fit
a
new

gasket
between

the
axle
case

and

gear
carrier

Tighten
the
nuts
in
a

diagonal

pattern
and
to

the

specified
torque
readings

Fit

the
grease
catcher

bearing
spacer
bearing
and
new

bearing
collar
onto
the
axle
shaft
A
load
of
4
5
tons
will

be

required
to

press
the

bearing
onto

the
shaft

Insert
the
wheel

bearing
with
the
seal
side

facing
the

wheel
and
ensure
that
the

oil
seal

lips
are
coated
with
wheel

bearing
grease
prior
to

fitting

Check
and

adjust
the
axial

play
between
the
wheel

bearing

and
the
axle

housing
using
a

dial
gauge
as

shown
in

Fig
H
22

The
axial

play
should
be

adjusted
to
within
0
3
0
5mm

0
0118
0
0197
in

on
the
1400
and
1600cc

models
and
to

within
O
lmm
0
0039
in
on

the
1800cc
models

Fill
the
rear
axle
with
the

specified
amount
of

oil
and

bleed
and

adjust
the
brake

system
as
described
in

the

appropriate

section

REAR
SPRING
Removal
and

Inspection

Estate
cars
aud
Vans

The
rear

springs
can
be
removed
in
the
following
manner

Jack

up
the

vehicle
at
the

rear
until
the
wheels
are
clear

of

the

ground
and

place
stands
under
the
rear
frame

Disconnect
the
shock
absorber
from

the

spring
seat

Fig
H
21a
and

support
the
rear
axle

housing
with

ajack

3
Take
off

the
locknuts

and
remove

the
U
bolts
shown

arrowed
in

Fig
H
2t
the

spring
seat
location

plates
and

seat

pads

4
Remove
the
nuts

securing
the
front
bracket
to
the

body

remove
the
bracket
from

the

spring
eye
and
car

body
and

withdraw
the
rear

spring

5
Remove

the

upper
and
lower

rear
shackle
nuts

Fig
H
23

and
remove
the
rear

spring
from
the
vehicle

Clean
the

spring
leaves

thoroughly
and
examine

them
for

fractures
or
cracks
Renew
the

assembly
if

necessary

Check
the
front

pin
shackle
U
boIts
and

spring
seat

for

signs
of
wear
cracks
and

damaged
threads
Renew
the

components
as

required

REAR
SPRING
Installation

Installation
of
the
rear

spring
is
a
reversal
of
the
removal

procedure
noting
the
following

points

The
front
bracket

pin
front
bracket

bushing
shackle

pin

and
shackle

bushing
should
be
coated
with
a

soapy
solution

prior
to

assembly

Tighten
the
front

pin
securing
nut

and
the
shock
absorber

lower

securing
nut
with
the
vehicle

weight
resting
on
the
rear

wheels

Ensure

that
the
flange
of

the
shackle

bushing
is

clamped

evenly
on
both
sides

The

tightening

torque
values
can

be
found

on
the

page

entitled
TIGHTENING

TORQUES

81

Page 83 of 171


REAR
SHOCK
ABSORBERS

Replacing

Estate
cars
and
Vans

Jack

up
the
reaT
of
the
vehicle
and

place
stands
under
the

rear

axle

housing

Disconnect
the
lower
end
of
the
rear
shock
absorber
from

the

spring
seat

Fig
H
23

Remove
the
shock
absorber

upper
attachment
nuts
and

withdraw
the
shock
absorber
The

upper
attachment
nuts
are

located
behind
the
Tear
seat
backrest
as
shown
in

Fig
H
24
Check
the
shock
absorber
for

leakage
or
cracks
and
make

sure
that

the
shaft
is

straight
Inspect
the
rubber
bushings
for

damage
and
deterioration
Renew
all
defective

components

lnstallation

is
a

reversal
of
the
removal

procedures
Tighten

the

upper
and
lower
shock
absorber
attachment
nuts
to
the

torque
readings
stipulated
in
TIGlITENING

TORQUES

NOTE
The

weight
of
the

vehicle
must
be

resting
on
the
fear

wheels
when

tightening
the
lower

mounting
to

damp
the
rubber

bushes
in
an
unloaded

position

TechnICal
Data

I
Type
Independent
suspension
with
semi
tralllI1g
arms
or

semi

floating

COIL
SPRINGS

14
2mm
0
559
in

14
5mm
0
571
in

90
mm
3
543
in

306
mm

12
047
in

299
mm
II
772
in

290
mm

11417
in

I
1400
and
1600cc

Wire
diameter

Wire
diameter
hard

suspension

Coil
diameter

Free

length
R
H

Free

length
L
H

Free

length
Hard

suspension

1800cc

Wire
diameter

Coil
diameter

Free

length
RHD
R
H

Free

length
RHD
L
H

Free

length
LHD
both

Free

length
Hard

suspension

RHD
R
H

RHD
L
H

LHD
both
14
5
mm

0
571
in

90
3
54
in

321
mm

12
6
in

307
mm

12
1
in

321
mm

12
6
in

306
mm

12
0

in

299
mm

I
1
8
in

306
mm

12
0
in

SHOCK
ABSORBERS

34
56

kg
75
123
lb

21
39

kg
46
86
lb

SHOCK
ABSORBERS

Estate
cars
and
Vans

1400
and
1600cc
estate
cars
and

rigid
axle
sedan

Piston
diameter
2S
mm
0
984
in

Stroke
205
mm

8
071
in

Max

length
518
mm
20
39
in

Damping
force
at
0
3
in
see

Estate
cars

Expansion

Compression

Damping
force

at
0
3m
jsec

Sedan

Expansion

Compression
1400
and
1600
cc

Piston
diameter

Piston
diameter
Hard

suspension

Stroke

Max

length

Damping
force
at
0
3m
sec

Expansion

Compression

1800
cc

Stroke

Max
lengtb

Damping
force
at
0
3
m
sec

Expansion

Compression

82
35
mm
1
378
in

40
mm

1
575
in

206
mm
8
110
in

568
mm
22
362
in

45

kg
99
21b

28

kg
61
7
lb

220
mm
8
60
in

595
mm
23
4
in

90

kg
198
4
lb

50

kg
110
3
lb

75

kg
165
4Ib

40

kg
88
2

lb
1800cc
Estate
cars

Stroke

Max

length

Damping
force
at
O
3m
sec

Estate
cars

Expansion

Compression
205mm
8
071
in

518
mm
20
39
in

63
87

kg
139
192
lb

33
43

kg
73
95
lb

Damping
force
at
0
3
m
sec

Estate
car
and
Van
with
hard

suspension

Expansion

Compression
97
131

kg
214
289
lb

29
43

kg
64
95
lb

REAR
SPRINGS

1400
and
1600cc
Estate
car

Length

Width

Thickness

No
of
leaves

Free
camber

Laden
camber
1200mm
47
2
in

60
mm
f2
362
in

6
mm
0
236
in

4

137
mm
5
394
in

15
mm

265
kg
0
59
in

584
lb

Spring
eye
bolt
diameter

Front

Rear
45
mm

I
772
in

30

mm
U81
in

1400
and
1600
cc

Free
camber

Laden
cam
her
rigid
axle
sedan

100
mm
3
937
in

15mm
250

kg
0
591
in

551

lb

1800cc
Estate

Laden
camber

Turning
torque
15
mm

265
kg
0
591

in
1

584
lb

2
2
kg
mm

123
Ib
in

REAR
AXLE
SHAFT

less
than
4
5

kg
cm
3
91b

in

less
than
0
1

S
mm

0
006
in

DRIVE
SHAFT
AND
JOURNAL
Spring
constant

End

play

Sliding
resistance
1400
and

1600
cc

Sliding
resistance
1800cc
0
15

kg
0
33
lib

less
than
20

kg
44
lb

Radial

play
of
ball

spline
less
than
O
lmm
0
004
in

Page:   1-10 11-20 next >