checking oil DATSUN 610 1969 Workshop Manual

Page 6 of 171


EngIne

INTRODUCTION

ENGINE

Removal

ENGINE

DismantUng

ENGINE

Inspection
and
Overhaul

VALVES
VALVE
GUIDES
VALVE
SEAT
INSERTS

CAMSHAFT
AND
CAMSHAFT

BEARINGS

Checking

CYliNDER

BLOCK

PtSTONS

AND
CONNECTING
RODS

INTRODUCTION

The
1400
1600
cc

and
1800
cc

engines
are
four

cylinder

in
line
units
with
a

single
overhead
camshaft

and

fully
balanced

five

bearing
crankshaft

The
valves
are

operated
through
rockers

which
are

directly
activated

by
the

earn
mechanism

The
crankshaft
is
a

special
steel

forging
with
the
centre

main

bearing

equipped
with
thrust
washers

to
take

up
the
end

thrust

of
the
crankshaft
The

special
aluminium

pistons
are
of

the
strut

construction
to

control
thermal

expansion
and

have

two

compression
rings
and
one
combined
oil

ring

The

gudgeon
pins
have

special
hollow
steel
shafts

and
are

a

fully
floating
fit
in

the

pistons
and
a

press
fit

in
the

connecting

rods

The
aluminium

alloy
cylinder
head
contains

wedge
type

combustion
chambers

and
is
fitted
with
aluminium

bronze
valve

seats

for
the
intake
valves

and
heat
resistant
steel
valve
seats

for
the
exhaust

valves

The
cast

iron
camshaft
is
driven

by
a
double
row
roller

chain
from
the
crankshaft

pulley

The

engine
is

pressure
lubricated

by
a
rotor

type
oil

pump

which
draws
oil

through
an

oil
strainer
into
the

pump
housing

and
then
forces

it

through
a
full
flow

oil
filter

into
the
main
oil

gallery

ENGINE
Removal

Place

alignment
marks
on
the
bonnet

and

hinges
remove

the
bonnet
from
the
vehicle

2

Drain
the

cooling
system
and
engine
and
transmission

lubricant
Remove

the
radiator

grille

3
Discon
ect
the

battery
cables

and
lift
out
the

battery

4
Detach
the

upper
and
lower
radiator

hoses
remove

the

radiator

mounting
bolts
and
lift
the
radiator

away
from

the
vehicle

The

torque
converter

c

jng
pipes
must

be

disconnected
from
the
radiator
on
vehicles

fitted
with

automatic
transmission

S
Remove

the

COOling
fan
and

pulley
disconnect

the
fuel

pipe
from
the
fuel

pump
and

the
heater
hoses
from

the

engine
attachments

6
Disconnect

the
accelerator
control

linkage
and
the

choke
CRANKSHAFT
AND
MAIN
BEARINGS

CAMSHAFT
AND
SPROCKET

FLYWHEEL

ENGINE

Assembling

VALVE
CLEARANCES

Adjusting

ENGINE

LUBRICATION
SYSTEM

OIL
PUMP

OIL
FILTER

CHANGING
THE
ENGINE

OIL

cable
from
the

carburettor

7
Disconnect

the

wirings
from

the
starter
alternator

ignition
coil
oil

pressure
switch

and

temperature
sender

unit

8
Remove

the
clutch
slave

cylinder
Fig
A
2

and
its
return

spring

9
Disconnect

the

speedometer
cable
and
withdraw

the

plug

connector
from
the

reversing
light
switch

10
Disconnect

the
shift
rods
and
seJector

rods
and
remove

the
cross
shaft

assembly
as
described

in
the
section
Gear

box

II
Disconnect

the
front
exhaust

pipe
from
the

exhaust

manifold
disconnect
the
centre

pipe
from

the
rear

pipe

and
remove

the
front

pipe
pre
muffler
and
centre

pipe

assembly

12
Disconnect
the

propeUer
shaft

flange
from
the

companion

flange
from
the

gear
carrier

13
Jack

up
the

gearbox
slightly
and
remove
the
rear

engine

mounting
bracket
bolts
remove
the

mounting
cross

member
and
handbrake

cable

c1amp

14
Remove
the
bolts

securing
the
front

engine
mounting

brackets
to
the
crossmember

15

Attach

lifting
cable
or

chains
to
the
hooks
installed
at

the
front
and
rear
of
the

cylinder
head

Lower
the

jack

under

the

gearbox
and

carefully
lift
and
tilt
the

engine
and

gearbox
unit
Withdraw
the

engine
and

gearbox
from
the

compartment

making
sure
that
it
is

guided

past
the

accessories
installed
on
the

body

ENGINE

Dismantling

Remove
the

engine
as

previously
described
and

carefully

clean

the
exterior
surfaces

Cbeck
for

signs
of
fuel
oil
or

water
leaks

past
the

cylinder
head
and
block
Remove
the
air

cleaner
alternator

distributor
and
starter
motor

Plug
the

carburettor
air
horn

and
distributor
hole
to

prevent
the

ingress

of

foreign
matter

Remove
the

gearbox
from

the

engine
drain
the

engine
oil

and
coolant
Mount
the

engine
in
a
suitable

stand
the

special

engine
attachment
ST05260001
and

engine
ST0501SOO0
should

be
used
if
available

Fig
A
3

5

Page 14 of 171


OUTER
DIAMETER

4
0mm
0
1575
in
Undersize

4
5mm
0
1772
in
Undersize

5
Omm
0
1969
in
Undersize
87
000
87
05mm
3
4252
3
4272
in

87
50
87
55mm
3
4449
3
4468
in

88
00
88
05mm
3
4646
3
4665
in

PISTONS

Checking

Check
each

piston
for

signs
of

seizure
and
wear
Renew

BIlY
piston
which
is
unsatisfactory

Remove
all
carbon
deposits
from
the

grooves
and

piston

rings
Measure
the
side
clearance
of
each

piston
ring
and

groove

with
a
feeler

gauge
as
shown
in

Fig
A
25
If
the
side
clearance
is

excessive
new

rings
should
be
fitted
The
clearance

required
for

new

pistons
a

piston
rings
can
be
found
in
Technical
Data

Check
the

piston
ring
gap
by
placing
the

ring
in
the

cylinder

bore
as
shown
in

Fig
A
26
The

ring
can

be

squared
in
the

bore

by
pushing
it
into

position
with
the

piston
Measure
the

ring
gaps

with
a
feeler

gauge
and

compare
the
dimensions
with
the
infor

mation

given
in
Technical
Data

NOTE
If
new

piston
rings
are
to

be
fitted
and
the

cylinder

has
not
been
rebafed
check
the

piston
ring
gap
with

the

ring
positioned
at
the
bottom
of
the

cylinder

This
being
the

position
with
the
least
amount
of
wear

O1eck
the
clearance
between

gudgeon
pin
and

piston
If

the

specified
limit
is
exceeded
it
will
be

necessary
to

replace

both

piston
and

pin
It
should
be

possible
to

press
the

gudgeon

pin
into
the

piston
by
hand
at
a
room

temperature
of
200C

680F
The

pin
should
be
a
tight

press
fit
in
the

connecting

rod

CONNECTING
RODS

O1ecking

Cleck
the

connecting
rods
for
bends
or

twists

using
a

guitable

connecting
rod

aligner
The
maximum
deviation
should

not
exceed
0

05
mm
0
0020
in

per
100
mm
3
94
in

length

of
rod

Straighten
or

replace

any
rod
which
does
not

comply

with
the

specified
limit

When

replacing
the
connecting
rod
it
is
essential
to
ensure

that
the

weight
difference
between
new
and
old
rods
is
within

5

gr
0
18
oz
for
the
1400
cc

engine
and
7

gr
0
25
oz
for

the
1600
and
1800
cc

engines

Install
the
connecting
rods
with

bearings
to

the

correspond

ing
crank

pins
and
measure
the
end

play
of
the

big
ends
s
e

Fig
A
27
The
end

play
should
be
between
0
2
0
3
mm

0
0079
0
0118
in
fthe
maximum
limit
of
0
6
mm
0
Ql18

in
is
exceeded
the
connecting
rod

must
be

replaced

CRANKSHAFT

Inspection
and
Overhaul

aean
the
crankshaft

thoroughly
before

checking
the
shaft

for
distortion
and
cracks

Measure
the

journals
and

crankpins
for
our
of
round
If

the

journals
and

pins
are
found
to
be
oval
or

if
the
wear

limit

exceeds
the

specified
fUnning
clearance
it
will

be
necessary
to

re
llrind
the
crankshaft
to

the

required
undersize
See
Technical
I

INNER
DIAMETER

82
45
82
60mm
3
24613
2520
in

82
4S
82
60mm
3
24613
2520
in

82
4S
82
60mm
3
24613
2520
in

Data

Place
the
crankshaft
in
V
blocks
as
shown
in
Fig
A
28

and
check
with
the
aid
of
a
dial

gauge
that
the
shaft

bending

limit
of
0
05
mm
0
002
in
is
not
exceeded
With
the
dial

gauge

positioned
against
the
centre

journal
the
crankshaft
should
be

rotated

by
one
turn
The
actual
bend
value
will
be
a
half
of
the

reading
obtained
on
the

gauge
If
the

specified
limit
is
exceeded

it
will
be

necessary
to

replace
the
crankshaft

Install
the
crankshaft
in
the
cylinder
block
and
check
the

crankshaft
end
float
which
should
be
be
J
Yieen
0
05
0
18
mm

0
0020
0
0071
in
Make
sure
that
the
main
drive
shaft

pilot

bushing
at
the
rear
of
the
crankshaft
is
not
worn
or

damaged
in

any
way
Replace
the

bushing
if

necessary
using
the

special

puller
STl
66
1000
I

Thoroughly
clean
the
bushing
hole
before

installing
and

press
in
the
new

bushing
without

oiling
so
that
its

height

above
the

flange
end
is
4
5
5
0
mm
0
18
0
20
in

Main

bearing
clearance

The
main
bearing
clearances
can
be
checked

using
a

strip

of

plastigage
Set
the
main
bearings
on
the

caps
Cut
the

plasti

gage
to
the
width
of
the

bearing
and

place
it

along
the

crankpin

making
sure
that
it
is
clear
of

the
oil
hole
Install
the
bearing

caps
and

tighten
the
bearing

cap
bolts
to
a

torque
reading
of
4
5

5
5

kgm
33
40
Ib
ft
DO
NOT
turn
the
crankshaft
when

the

plastigage
is
inserted
Remove
the
main

bearing
cap
and
take

out
the

plastigage
which
should
be
measured
at
its
widest

po
t

with
the
scale

printed
in
the
plastigage
envelope
The
standard

clearance
is
0
020
0
062
mm
0
0008
0
0024
in
with
a
wear

limit
of
0
1
mm
0
0039
in
If
the

specified
limit
is
exceeded

an
undersize

bearing
must

be
used
and
the
crankshaft
journal

ground
accordingly
See
Technical
Data

Bearings
are
available

in
four
undersize
of
0
25
0
50
0
75
and
1
00
mm
0
0098

0
0197
0
0295
and
0
0394
in

Connecting
rod

bearing
clearance

The

connecting
rod

bearing
clearances
should
be
checked

in
a
similar
manner
to

the
main

bearing
clearances
The
standard

clearance
is
0
025
0
055
mm
0
0010
0
0022
in
with
a
wear

limit
of
0
1
mm
0
0039
in
Undersize
bearings
must
be
fitted

and
the

crankpins
reground
if
the

specified
wear
limit
is
ex

ceeded
See
Technical
Data

Bearings
are
available
in
six
under

sizes
of
0
6
0
12
0
25
0
50
0
75
and
1
00
mm
0
0236

0
0047
0
0098
0
0197
0
0295
and
0
0394
in

Fitting
the
crankshaft

bearings

Cb
eck
the
fit
of
the

bearing
shells
in
the
following
manner

Install
the
shells
on
the
main

bearing
caps
and

cylinder
block

bearing
recess

and

tighten
the

cap
bolts
to
the

specified
torque

13

Page 19 of 171


inter
lmi

@
jl

Fig
A
41

Engine
lubrication
circuit

i
Punch
rmrk

Oil
hole

L

Fig
A
44

Aligning
the
oil

pump
spindle

18
II

l

o
CD

I

Fig
A
42

Component
parts
of
the
oil

pump

L

Pump

body

2
Inner
rotor
and

wft

3
OutO
rotor

4

Pump
coper

5

Reliefvalve
6

Relief
valve

Jpring

7
Washer

8

S

alp

9
ConT

613ut

I
Sideclruance

2

TIp
clearance

3

Guier
10

00
body
clearance

t
4
Rotor
to
bottom

cover
cleatance

Fig
A
43

Checking
the
rotor

clearance

Page 42 of 171


1

Oil
cap
nut

2
Suction

chomber

3
Suction

piston

4

Li

tingpin

S

Stop
pin

6
Oil

dDmper

7

Plunger
3

j

I

r

L
2

1

Fig
0
17

Inspecting
the

suction

piston

STlq
O

OO

Fig
D
20

Checking
the
float
level
SU

twin
carburettors

q
J

iT

j

I

@

@

J
1
Conn

ctingrod

2

Wi
guard

3
Choke

lever

4

Connecting
plate

7
S
Thrott

adjusting
SC
Tt
W

6
Fast
id
lever

7

Throttle

adjusting
p1at

8
Throttle

valv

9

Throttlevalv
cletlran

B

Fig
D
22

Adjusting
the

starting
interlock

opening
inteN
lli
i

D

U
I

i

n

1
Jet
n
edle

2
Set
screw

Fig
D
18

Installing
the

jet
needle

1
Nozzle
sleeve

2
Wa
sher

3
Nozz
det
V
d
C1e
W

4

Ad
u
ting
him

5

dlingadjustment
spring

6

Idling
adjustment
nut

Z
Nozz
c
J

Fig
D
l9

Dismantling
the
nozzle

assembly

3

I
Float
lever

2
Bend
here

loadju5t

dimension
H

3
Va
veslem
r

F

Fig
D
21

Adjusting
the
float

level
SU

twin
carburettors

Fig
D
23

Checking
the

damper
oil

41

Page 47 of 171


J

Ie

T

I

Baseplate

@

2
Czn
e

piUfU

i

y
3
Distance

preces

4

height
iPuge
P

5

Actuilting
mechanl

sQ
6
Set

bolt

I

e
r

ft
I

Fig
E
3
autch

assembly
tool

Fig
E
4

Checking
the
driven

plate
for
run
out

81

I

1
1111
11
I
r

A

I

1

1111111111
if

jI

4
J
J
J

FiB
E
5

Checking
the

height
of
the

diaphragm

spring
Fig
E

6
Olecking
the

load
of

the
d

t
b

spring

I

I

I

A

j

I
1
1

I

l
i
y
8

Fig
E
7
Inspecting
the
clutch

spnngs
for

distortion
Fig
E
8

Removing
the
releaSe
bearing

p

l
0
I
0

W
Illmi
i
hm
17
9

FiB
E
9

Installing
the

lea
bearing

diaphragm

spring
FiB
E
I
0

Installing
the
lease

bearing
coil

spring

46

Page 64 of 171


Propeller
Shaft
and

DIfferentIaJ

DESCRIPTION

PROPELLER
SHAFT

DIFFERENTIAL

Removal
and

Dismantling

DIFFERENTIAL

Assembly
and

Adj
Jstment

DIFFERENTIAL

Installation

DIFFERENTIAL
Estate
car
and
van

TOOTH
CONTACT

PATTERN

Checking

DESCRIPTION

The
tubular
steel

propeller
shafts
are
shown

in
Fig
G
1

The
shaft
is
connected
to
the
drive

pinion

flange
by
a

yoke

flange
at
the
rear
and
to

the
transmission

output
shaft

by
a

splined
yoke
sleeve

at
the
front
The
Datsum

I800ce
station

wagon
and
van
has
a
three

section
shaft

in
contrast
to
the
two

piece
shaft

used
on

the
other
models
covered

by
this
manual

The
differential

carrier
houses
a

hypoid
bevel

gear
assembly

Although
this
manual
contains

dismantling
and

adjustment

procedures
for

the
differential

assembly
it
must

be

pointed
out

that

only
workshops
with

specialized
tools
and

equipment
will

be
able
to

carry
out
the
work

involved

PROPELLER

SHAFT
Removal

1
Release

the
hand
brake

jack

up
the
vehicle
at
the
fear

and

support
it
on
stands

2

Loosen
the

clamps
and
turn
the

pre
silencer
to
the
left

saloon

only

3
Remove
the

adjuster
nut
from

the
handbrake
cable
rear

adjuster
and
disconnect
the
left
hand
cable
Saloon

only

Remove
the
bolts

securing
the
centre

bearing
bracket

1800
cc

stati
n

wagon

4
Disconnect

the
fear

flange
from
the
rear

axle

flange
With

draw

the

propeller
shaft
to
the
rear

away
from
the

gear

box
mainshaft
Take
care

that
the
shaft
is
not

dropped

during
removal
or

the
balance
of
the
shaft

may
be
altered

5

Plug
the

gearbox
rear

extension
to

prevent
the
loss
of
oil

PROPELLER
SHAFT

Dismantling
and

Inspection

Oean

all

components
and
mark
them
before

dismantling

so
that

they
can
be

reassembled
in
their

original
positions

Correct

reassembly
is
most

important
otherwise

the
balance

of
the
shaft

may
be
affected

Remove

the
four

snap
rings
from
the

journal
assembly
and

withdraw

the
needle

bearing

cap
by
tapping
the

yoke
with
a

wooden
mallet

The
wear
on

the

spider
journal
diameter
must
not
exceed

0
15mm
0
006
in
the

standard
size
of

a
new

journal
is
14
7mm

0
579

in
Check
the

spider
seal

rings
and

replace
them
if

necessary
The
radial

backlash
of
the
sleeve

yoke
splines
to

gearbox
splines
should
not

exceed
0
5mm

0
002
in
Renew

the
sleeve

yoke
if
the

figures
are
in
excess
of
the

specified
value

E
Mount
the
shaft
between
the
centres
of
a
suitable
fixture

and
use
a
dial

gauge
to

check
that
the
run
out
of

the
shaft

does

not

exceed
0
6mm
0
024
in
at
the
centre
of
the
tubular

portion

The
shaft
can

only
be

straightened
with
a

hydraulic

press
it
is

advisable
however
to
renew

the
shaft
if

the
run
out

is
excessive

Check
that
the

dynamic
balance
of

the
shaft

does
not

exceed
15

grm
cm
0
208
oz
in
at
4000
r

p
m

PROPELLER
SHAFT

Assembly
and
11Istallation
r

Assembly
and

installation
is
a

reversal
of

the
removal
and

dismantling
procedures
not
the

following
points

Grease
the
needle
rollers
with
wheel

bearing

grease
before

placing
them
into
the

bearing
race

Lubricate
all

splines
with

gear
oil

Adjust
the

journal
radial
end
float
to
within
0
02mm

0
0008
in

using
a
suitable

snap
ring
Snap
rings
are
available

in

eight
thicknesses
from

2
00mm
0
079
in
to

2
14mm

0
084
in
and
are
colour
coded
as
detailed
in
Technical
Data

at
the

end
of

this
section

DIFFERENTIAL
Removal

Saloons
with

independent
rear

suspension

Remove
the
hand

brake
rear

cable
remove

the

propeller

shaft

and
drive
shafts
as
described
in
their
relevant
sections

2

Support
the
differential

with

ajack
and
remove

the
nuts

securing
the
differential

mounting
crossmemb
er

Fig
G
3

3
Remove
the
bolts

holding
the
differential
to
the

suspension

member
Withdraw
the
differential

and
jack
to

the
rear

4

Support
the

suspension
member
with

a
stand
to

prevent

the

mountings
from

becoming
twisted
or

damaged

DIFFERENTIAL

Dismantling

Before

dismantling
place
the
carrier

assembly
in
a
suitable

mounting
stand
or

special
stand
ST

06270001
and

carry
out

preliminary
checks
as
follows

Check
the
tooth
contact

pattern
of
the
crownwheel
and

pinion
by
applying
lead

oxide
to
three
or
four

teeth
of

the

crownwheel
Turn
the
crownwheel
several
times
to
obtain
an

impression
of

the
tooth
contact

pattern
Check
the
backlash

between
the
teeth
of
the
crownwheel
and

pinion
using
a
dial

gauge
The
backlash
should
be
within
0
10
0
20mm
0
004

0
008
in

63

Page 67 of 171


inter
M
j

@
jJ

2

t

1
5c

t
J
i
3

jp

7
i
r
4

Ilc
d

I

l

@

l
lb
r

s
ril

1

iF
C

Q
Fig
G
12
Section

through
the
drive

pinion

1
Pinion

height
adjusting
kUsher
4
Fte
Ioad

for
pinion
bearing

2
Pinion

height
ad
usting
shims
without
oil
mlI
and
drive
7
to

3

Tightening
torque
of
nut
dril
e
10

kgt1L
5a

6
to
72
3
lb

jl

pinion
17
to

20kg1n
22
9
to

ffnion
bearing
adjusting
w

uher

44

6Ib
ft
J
6
Pillion
bt
flrillgadjusti

lg
s
Jtu
er

fl

i
Ji
l
I
I

J

lJ

i

V
r
IHei
t

giluge

I
lST31210c
0

l

B
I

0
QJ

DUrnmYPinlOn

Drive

pinion
collar

lST3121QOCX
f
1
L

r

IST315000001

Dummvspacer

ST318500001
I
Fig
G
ll

Measuring
the
clearance
between
the

differential
side

gear
and
thrust
washer

Fig
G
t3
Drive

pinion
markings

Fig
G
14

Adjusting
the

pinion
height

1

Fig
G
t
5

Adjustment
diagram
for
the
dif

feren
tiaI
side
covers
Fig
G

16lnstalling
the
differential
side
covers

fig
G

Checking
the
backlash
of
crownwheel

and

pinion
Fig
G
tS

Fining
the

differential

mounting

member

bb

Page 72 of 171


greased
Install
the

flange
washer
and

pinion
nut
Tighten
the

nut
to
a

torque
reading
of

14
17

kgm
101
130
Ib
fL
If

the
cotter

pin
hole
is
not

correctly
aligned
a
suitable

washer

should
be
fitted
Do

NOT

adjust
by
overtightening
the

pinion

nul

Van

Lubricate
the
front

bearing
with
oil
and

place
it
in
the

carrier
Grease
the

lip
of
the
oil
seal

and
install
it
to
the
final

drive

housing
Install
the
drive

pinion
the
new

collapsible
spacer

and

the
drive

flange

Fit
the
drive

pinion
nut
and

tighten
temporarily
until
all

slackness
is
eliminated
from
the
front

and
rear
of
the
drive

pinion

NOTE

Ensure
that
oil
and

grease
have
been

completely

removed
from

the
threads
of
the

pinion
gear
the

pinion

nut
and
the
washer

Tighten
the

pinion
nut
and
check

the

preload
with
a

preload

gauge
As
the
nut

is

tightened
to
the

specified
torque

reading
of
13
20

kgm
94
0
144

6Ib
fL

the

preload
must
be

measured
at

every
five
to
ten

degrees
turn
of

the

pinion
nut

As
the

pinion
nut
is

tightened
the

stepped
portion
of
the

spacer

is
deformed
See

Fig
G
29
J
and
the

length
between
the

bearings

adjusted

The
drive

pinion
bearing
preload
with
oil
seal
and
new

bearing
is
7
15

kg
cm
6
1
13
0
lb
in

Turn
the
drive

pinion

to
settle
the

bearing
and
re
check
the

preload
and

tightening

torque
If
the

preload
rate
is
exceeded
it
will
be

necessry
to
fit

a
new

spacer
the
old

spa
cr
cannot
be

reused
and
the
preload

must
not
be

adjusted
by
loosening
the
pinion
nul

Side

bearing

pre
load

adjusting

If

the

original
side

bearings
arc
to
be
used

the
shims
must

be
of
the

same
thickness
as
those

previously
fitted

To
select
shims
for
new

side

bearings
proceed
as
follows

The
standard

width
of
the
side

bearings
is

given
in

Technical
Data
This

width
must

be
measured
before

attempting

to

calculate
the

required
thickness
of
the

adjusting
shims
Place

a

weight
of

approximately
5

kg
5
5
lb
and
of

predetermined

height
onto
the
side

bearing
as
shown

in
Fig
G
30
Mcasure

the

width
of
the

bearing
with
a
dial

gauge
as
illustrated

turning

the

bearing
two
or

three
times

to

gain
an
accurate
meaSurement

Dimensional
variations
from
the
standard
measurements

are
marked
on
the
left

side

bearing
housing
of
the

gear
carrier

on

the

right
side

bearing
housing
of
the

gear
carrier
and
on

the

differential

case
These

variations
are
marked
in

units
of

l
lOOmm

and
are
used
for
the

f
rmula
to

calculate
t1H
thickness
of

the

adjusting
shims
in
the

following
manner

Where
TI

equals
the
left
side

bearing
shim

crownwhecl

side

T2

equals
the

right
side

bearing
shim

pinion
gear
A

equals

the

figure
marked
on

the
left
side

bearing
housing
B

equals
the

figure
marked
on
the

right
side

bearing
housing
C
and
0

equals

the
figure
marked
on

the
differential
case
and

E
and
F
is
the

difference
bctween
the

width
of

the
side

bearings
and
the

standard

bearing
width
H
the

figure
marked
on
the

crownwhcel
Fig
G
31
The
following

formulae
can
now
be
used

to
deter

mine
the

required
shim

thicknessl
s
for

both
side

bearings

I
OOcc
Estate
car

Left

side

bearing
TI
A
C

D
H
x

0
01
0
100
E

Right
side

bearingT2
B
D
H
x

0
01
0
090
F

I800cc

Van

Left
side

bearingTI
A

C
D
H

xO
OI
0
175
E

Right
side

bcaringT2
8
D
H
x
0
01

0
150
F

As
an

example
where
A
1
B
C
2
D
3
E
0
02mm

H
I

The
formula
for
the
left

side

bearing
is

T
I
I
1
3
1

x
0
01

0
175
0
02
0
205mm

1400
and

1600cc
Estate
car

The

required
thickness
of
shim
can
be
found

using
the

following

formula
in

a
similar
manner
to

that

previously
described
for

the
1800cc
models

Left

side

bearing
T
I
A

C
D
E
7

Right
side

bearing
T2
B
D
F

6

Shims
are
available
in
five
thicknesses
of
0
05
0
07
0
10

0
20
and
0
50
mm

0
002
0
0028
0
0039
0
0079
and

0
0197

in

Fit
the
selected
side

bearing
adjusting
shims
on
the

differential

cage
and

press
in
the
side

bearing
inner
races

using

a

suitable
ddfL
nstall
the
differential
cage
into

the
carrier
and

fit
the

bearing

caps
Ensure
that
the
marks
on

the

caps
coincide

with
the
marks
on
the
carrier

Tighten
the

bearing
cap
bolts
to

the

specified
torque
reading
See

Tighte
ing
torques

Measure
the
dimension

between
the
outer

edges
of

the

left

and

right
hand

caps
using
a

large
micrometer
as
shown
in

Fig
G
32
This
dimension
should
be
198
40
198
55
mm

7
8110
7
8169

in
for

the
1400

and
1600
ce
Estate
cars
and

1800
ce

Van
and
173
23
17329
mm
6
8201
6
8244
inl

for

the
1800
cc

Estate
cars

Measure
the
backlash
of
the
crownwhcel
and

pinion
with

a
dial

gauge
The
backlash
must
be

adjusted
to
0
13
0
18
mm

0
005

0
007
in
on

the
1800
CC
models

and
to
0
15
0
20mm

0
006
0
008
in
on
the
1400
and
1600
cc
models

Adjustment

can
be
carried
out

by
moving
side

bearing
shims
from
the

right

hand
side
to
the
left
hand
side
if
the
backlash

is
too

high
or
vice

verca
if
the
backlash
is
too
low

Tighten
the

bearing
cap
bolts

to

the

specified
torque

reading
after

adjusting
Ensure
that
the

run
out
at
the
rear
of
the
crown
wheel

does
not

exceed
O

05mm

0
002
in

Finally
heck
the
tooth
contact

pattern
as
described
below

TOOTH
CONTACT
PATTERN

Checking

The
final
check
on

reassembly
is
an

inspection
of
the

tooth

contact

markings
of

the
crownwhed
and

pinion

Apply
a

coal
of
red
lead
in

oil
to
4
or
5
teeth
of
the
crown

wheel
Turn
the
crownwheel
backwards

and
forwards
several

times
to
obtain
a
clear

impression
of
the
contact
areas

Heel
contact

Fig
G
3
1

71

Page 105 of 171


inter
f
illl

@
l

l

Au

y
l
ver

I

R
H

I
Equaliler
b2nd

i
b7ke

Pl
te

Iock
band
buk

able
I

I

I

T

@A
Adjuster
cable

oo

pm
Odb
k
SPd
wm

LH
able

C

Note

@
Apply
bearing

grease

@APPIYch
S

i

Pin
fulcrum
hand

brab
lever
6c

1l

Clip
cable
frout
N
nd
brake

Fill
L21
Handbrake

linkage
1400
and
1600
c
c

Saloons

1
I
J

Pull

priDg

1

Clt
vU

Balance
leve

I

I

J
c

1
1

I

I
1

l

J

L

I

iL

Note

@
Apply
engine
oil
8

S

J

@

I

Aj

Fran
able
Rear
cable

L

I
r

f
7

n
t

i

Adjust

position
A

Fig
L
22
Handbrake

linkage
1400
and
1600

c
c

Estate

cars

1
Control
sUm

2
Control
ratchet

Xing

3
O
mtrol
ratchet

4
O
mtro

guide

5

Control
bracket

6

OJntrol
yoke

7
wer

spring

8
Control
lever

Fig
L
23

Handbrake

linkage
1800

c
c
models

104
able

s

Fig
L
19

Checking
the

brake
disc
for

run
out

1

j

v

fti

r

v

r

Fig
L
20

As
embling
the

piston
seals
and

retainer

ti

J

4

Fill
L
24
The
handbrake

cable

adjuster
Saloons

9

Front
cable

10
Centre

lever

II
Rear
cable

adjuster

12
DIble

lock

plate

13

Return

spring

14

RI
fU
cabk

15
Qevis

Page 111 of 171


inter
r
0J

@
jll@

FIg
M
7

Over
unning
clutch

assembly
1

m
ILE

COMMUTATOR

0
5
to
0
8
mrtl

ROUND

O
0197
to
0
0315
nl

SEGMENT

MICA

CORRECr
INCORRECT

Fig
M
9

Undercutting
the
commutator
insulation

Fig
M
11

Testing
the
field
coils
for
continuity

5

y
SERIES
COIL

5

r
SHUNT
COIL

Fig
M
13

Testing
the
solenoid
witch

10
J

Fig
M
8

Checking
the
brush

pring
tension

Fig
M
lO

Checking
the
armature
shaft
for
run
out

J

I

I
J

I

L
j
J

j

Fig
M

12
Testing
the
field
coils
for

earthing

1

rl

wr

v
E
L
DIMENSION

131
7

to
32
3mm
1
248
to
1
272
in

I

Adjus
llUt

2
PluJlKeradjuster

F
8
M
14

Measuring
the

gap
between

pinion

and

pinion
stop

I

Page:   1-10 11-20 next >