fuel type DATSUN 610 1969 Workshop Manual

Page 5 of 171


t
r

Engine
type

Ovendi
cngth
1300
L
13

Overall
width

Oyerall
height

Turning
circle
din

metres
tfeet
Supen
eded
by

Track
font

rear
1400
c
c

car

Ground
dearance
Olin

Weight
dry
I
820
808

I

Fuel
tClflk
capacity
35
29
6

150
93

Fuel
consumption

aximum
peed
Technical
Data
BLUEBIRD

400
1600
1600

U4
U6

0
4
120
162
20

1
560
6142
410
55
51

420
55
91

10
2
33
5

270
50
0

2
420
95
281

215
8
5

885
1
950
210
8
27

930
2
050

10
1
12

33
2
27
7

50
931
28
2123
5

60
99
L
16

4
215
165
941

1
600
62
99

405
55
3
Ii

0
6
34
8

290
50
79

1
300
51
18

2
500
98
43

185
7
281

955
2
1061

12
14
5

28
2
23
5

60
991
BLUEBIRD
1800
L
18

3
0
5
57

320
5
971

000
2
2051

165
103
BLUEBIRD

1800
ESTATE

U8

4
280
168
501

4
5
557

330
52
361

1
065
2
348

Page 6 of 171


EngIne

INTRODUCTION

ENGINE

Removal

ENGINE

DismantUng

ENGINE

Inspection
and
Overhaul

VALVES
VALVE
GUIDES
VALVE
SEAT
INSERTS

CAMSHAFT
AND
CAMSHAFT

BEARINGS

Checking

CYliNDER

BLOCK

PtSTONS

AND
CONNECTING
RODS

INTRODUCTION

The
1400
1600
cc

and
1800
cc

engines
are
four

cylinder

in
line
units
with
a

single
overhead
camshaft

and

fully
balanced

five

bearing
crankshaft

The
valves
are

operated
through
rockers

which
are

directly
activated

by
the

earn
mechanism

The
crankshaft
is
a

special
steel

forging
with
the
centre

main

bearing

equipped
with
thrust
washers

to
take

up
the
end

thrust

of
the
crankshaft
The

special
aluminium

pistons
are
of

the
strut

construction
to

control
thermal

expansion
and

have

two

compression
rings
and
one
combined
oil

ring

The

gudgeon
pins
have

special
hollow
steel
shafts

and
are

a

fully
floating
fit
in

the

pistons
and
a

press
fit

in
the

connecting

rods

The
aluminium

alloy
cylinder
head
contains

wedge
type

combustion
chambers

and
is
fitted
with
aluminium

bronze
valve

seats

for
the
intake
valves

and
heat
resistant
steel
valve
seats

for
the
exhaust

valves

The
cast

iron
camshaft
is
driven

by
a
double
row
roller

chain
from
the
crankshaft

pulley

The

engine
is

pressure
lubricated

by
a
rotor

type
oil

pump

which
draws
oil

through
an

oil
strainer
into
the

pump
housing

and
then
forces

it

through
a
full
flow

oil
filter

into
the
main
oil

gallery

ENGINE
Removal

Place

alignment
marks
on
the
bonnet

and

hinges
remove

the
bonnet
from
the
vehicle

2

Drain
the

cooling
system
and
engine
and
transmission

lubricant
Remove

the
radiator

grille

3
Discon
ect
the

battery
cables

and
lift
out
the

battery

4
Detach
the

upper
and
lower
radiator

hoses
remove

the

radiator

mounting
bolts
and
lift
the
radiator

away
from

the
vehicle

The

torque
converter

c

jng
pipes
must

be

disconnected
from
the
radiator
on
vehicles

fitted
with

automatic
transmission

S
Remove

the

COOling
fan
and

pulley
disconnect

the
fuel

pipe
from
the
fuel

pump
and

the
heater
hoses
from

the

engine
attachments

6
Disconnect

the
accelerator
control

linkage
and
the

choke
CRANKSHAFT
AND
MAIN
BEARINGS

CAMSHAFT
AND
SPROCKET

FLYWHEEL

ENGINE

Assembling

VALVE
CLEARANCES

Adjusting

ENGINE

LUBRICATION
SYSTEM

OIL
PUMP

OIL
FILTER

CHANGING
THE
ENGINE

OIL

cable
from
the

carburettor

7
Disconnect

the

wirings
from

the
starter
alternator

ignition
coil
oil

pressure
switch

and

temperature
sender

unit

8
Remove

the
clutch
slave

cylinder
Fig
A
2

and
its
return

spring

9
Disconnect

the

speedometer
cable
and
withdraw

the

plug

connector
from
the

reversing
light
switch

10
Disconnect

the
shift
rods
and
seJector

rods
and
remove

the
cross
shaft

assembly
as
described

in
the
section
Gear

box

II
Disconnect

the
front
exhaust

pipe
from
the

exhaust

manifold
disconnect
the
centre

pipe
from

the
rear

pipe

and
remove

the
front

pipe
pre
muffler
and
centre

pipe

assembly

12
Disconnect
the

propeUer
shaft

flange
from
the

companion

flange
from
the

gear
carrier

13
Jack

up
the

gearbox
slightly
and
remove
the
rear

engine

mounting
bracket
bolts
remove
the

mounting
cross

member
and
handbrake

cable

c1amp

14
Remove
the
bolts

securing
the
front

engine
mounting

brackets
to
the
crossmember

15

Attach

lifting
cable
or

chains
to
the
hooks
installed
at

the
front
and
rear
of
the

cylinder
head

Lower
the

jack

under

the

gearbox
and

carefully
lift
and
tilt
the

engine
and

gearbox
unit
Withdraw
the

engine
and

gearbox
from
the

compartment

making
sure
that
it
is

guided

past
the

accessories
installed
on
the

body

ENGINE

Dismantling

Remove
the

engine
as

previously
described
and

carefully

clean

the
exterior
surfaces

Cbeck
for

signs
of
fuel
oil
or

water
leaks

past
the

cylinder
head
and
block
Remove
the
air

cleaner
alternator

distributor
and
starter
motor

Plug
the

carburettor
air
horn

and
distributor
hole
to

prevent
the

ingress

of

foreign
matter

Remove
the

gearbox
from

the

engine
drain
the

engine
oil

and
coolant
Mount
the

engine
in
a
suitable

stand
the

special

engine
attachment
ST05260001
and

engine
ST0501SOO0
should

be
used
if
available

Fig
A
3

5

Page 22 of 171


Wear
limit

Crank

pin
journal
diameter

Max
crankpin
taper

Max

crankpin
out
of
round

Thickness
of
main

bearing

shells
0
3
mm
0
012

in

49
961
49
975
mm

1
967
1
9675

in

0
03
mm
0
012
in

0
03
mm
0
012
in

1
827
1
835
mm
0
072
0
0722

in

Main

bearing
running
clearance

0
020
0
062
mm
0
0008
0
0024

in

Max
main

bearing
running

clearance

Crankshaft
bend
limit

Material

Type

Piston
diameters

Standard

I
st
oversize

2nd
oversize

3rd
oversize

4th
oversize

5th
oversize

Width
of

ring
grooves

Top
and
second

Oil
control

Piston

running
clearance
0
12
mm

0
0047
in

0
05
mm
0
002
in

PISTONS

Cast
aluminium

Slipper
skirt

82
99
83
04
mm
3
267
3
269

in

83
22
83
27
mm
3
276
3
278

in

83
47
83
52
mm
3
286
3
288

in

83
72
83
77
mm
3
296
3
298

in

83
97
84
02
mm
3
305
3
308

in

84
47
84
52
mm
3
326
3
328

in

2
0
mm
0
08
in

4
0
mm

0
16
in

0
025
0
045
mm
0
001
0
002

in

PISTON
PIN

Pin
diameter
20
995
21
000
mm
0
8266

0
8268

in

Pin

length
72
00
72
25
mm
2
8346
2
8445

in

Pin

running
clearance
in

piston
0
008
0
010
mm
0
0003
0
0004

in

Pin
interference
fit
in
small
end
bush

0
015
0
033
mm
0
0006
0
0013

in

Piston

ring
height

Top
and
second

Oil
control

Side
clearance
in

grooves

Top
PISTON
RINGS

2
0
mm
0
08
in

4
0
mm
0
16
in

0
040
0
073
mm
0
0016
0
0029

in
Second

Oil
control

Piston

ring
gaps

Top

Second

Oil
control

Material

Distortion
of

sealing
face

Max
distortion

Valve
seat
insert
material

Inlet

Exhaust

Fit

Drive

Chain

Chain
tensioner
0
030
0
063
mm
0
0012
0
0025

in

0
025
0
063
mm
0
001
0
0025

in

0
23
0
38
mm
0
0091
0
0150

in

0
15
0
30
mm

0
006
0
012

in

0
15
0
30
mm
0
006
0
012
in

CYLINDER
HEAD

Aluminium

alloy

0
03
mm
0
0012
in

0
1
mm
0
004
in

Aluminium
bronze

Special
cast

Hot

pressed

CAMSHAFT
DRIVE

From
crankshaft

double
roller

type

Spring
and
oil

pressure
control

Engine
model
lWIN
CHOKE
CARBURE
ITOR

Outlet
diameter

Venturi
diameter

Main

jet

Main
air
bleed

Slow

running
jet

Power

jet

Float
level

Fuel

pressure

Weight

Altitude

setting
main

jet

1000
m
3300
ft
94

2000
m
6600

ft
92

3000
m

10
000

ft
89

4000
m

13
300
ft
87

5000
m

16
600
ft
85
PRIMARY
L13

SECONDARY

30mm

27x
12mm

150

90

180
26
mm

21
x
8
mm

96

80

43

40

23
I
mm
0
905
0
04

in

0
24

kg
sq
em
3
41b

sq
in

2
55

kg
5
61
lb

1

21

Page 32 of 171


CENTRIFUGAL
ADVANCE
MECHANISM

Special
equipment
is

required
to
check
the
advance

characteristics
It
is

possible
however
to

carry
out
an
exam

ination
of

the
caffi

assembly
and
the

weights
and

springs
to

ensure
that
the
earn
is
not

seizing

Lift
off
the
distributor

cap
and
turn
the
rotor
anti
clock

wise
When

the
rotor

is
released
is
should
return
to

the
fully

retarded

position
without

sticking
If
it

does
not
return
to
the

fully
retarded

position
it
will
be

necessary
to
check
for

dirt

and
weak

springs

It
should
be
noted
that

any
wear
in
the

mechanism
or

lose
of

spring
tension
will

upset
the
advance
characteristics
and

cause

unsatisfactory
engine
running
performance
over
the

speed

range

VACUUM
ADVANCE
MECHANISM

The

diaphragm
of
the
vacuum
advance

mechanism
is

mechanically
connected
to
the
contact
breaker

plate
The
rise

and
fall
of
inlet
manifold

depression
causes

the

diaphragm
to

move

the
contact
breaker

plate
to

advance
or

retard
the

ignition

If
the
vacuum

control
unit
fails
to

function

correctly
a

check
can
be
carried
out
to
ensure
that
the
contact
breaker

plate

is

moving
freely
and
that
the

three
steel

balls
at

the

top
and

oottom
of
the

plate
are

adequately
lubricated

Also
make
sure
that
the
vacuum
inlet

pipe
is
not
blocked

or

leaking
and
is

securely
tightened

Leakage
may
be
due
to
a

defective

diaphragm
which

should

be
renewed

along
with

any
other

faulty
part
of
the
mechanism

IGNITION
DlSTRffiUTOR
Removal

and

Dismantling

Disconnect
the

battery
leads

2
Disconnect
the

high
tension
lead
at

the
coil

3
Withdraw

the
high
tension
leads
from
the
distributor

cap

4
Detach
the
suction

pipe
from
the
vacuum
control
unit

5
Mark
the

position
of
the
distributor
and
rotor
remove
the

flange
mounting
bolts

and
withdraw
the
distributor

To
dismantle
the
distributor

proceed
as

follows

Take
off
the
distributor

cap
and
remove

the
rotor

Slacken

the
two
set
screws

holding
the
contact
breaker

upper
plate

Remove
the

primary
cable
terminals
and
withdraw
the
contact

set
from

the
distributor
Fig
C
S
Remove
the
vacuum
control

unit

c
Remove
the
two
screws
and
lift
out
the
contact

breaker

plate
detach
the

clamp
the
terminal
and
the
lead

To
remove
the
cam
take
out
the
centre
screw
as

shown
in

Fig
e
6
Drive
out

the
drive

pinion
retaining
pin
with
a
drift

and
hammer
Fig
e
and
remove
the

pinion
and
washer
Take

care
not
to
stretch
or
deform
the

governor
springs
when

detaching

them
from
the

weights

IGNITION
DISTRIBUTOR

Assembling
and

Installing

Assembly
is
a
reversal
of
the

dismantling
procedure

Lubricate
the

moving
contact

pivot
and
smear
the
lobes
of
the

cam
with
multi

purpose
grease

If

the
centrifugal
advance
mechanism
has
been
dismantled

the

governor
springs
and
cams
must
be
refitted
as

shown
in

Fig
e
8
The

governor
weight

pin
6
should
be
fitted
into

the

longer
of
the
two
slots

leaving
a
certain
amount
of

clearance

for
the
start

and
end
of
the

centrifugal
advance
movement

When

installing
the
distributor
take
care
to

align
the

body

and
rotor

with
the
marks
made
during
removal
The
rotor
must

be

positioned
in
its

original
location
it
will
turn

slightly
when

the
distributor
is
inserted
and
the

gear
teeth
mesh
Remove
and

replace
the
distributor
if

the
rotor
does
not

point
to
the

align

ment

mark
until
both
distributor

body
and
rotor
are
correctly

aligned

SPARKING
PLUGS

The

sparking
plugs
should
be

inspected
and
cleaned
at

regular
intervals
not

exceeding

every
10
000
km
6000
miles

New

sparking
plugs
should
be
fitted
at

approximately
20
000

km
12
000
miles

Remove
the

plugs
and
check
the
amount
of
electrode

wear
and

type
of

deposits
Brown
to

greyish
tan

deposits
with

slight
electrode
wear

indicate
that
the

plugs
are

satisfactory
and

working
in

the
correct
heat

range

Dry
fluffy
carbon

deposits
are
caused

by
too

rich
a
mixture

dirty
air
cleaner
excessive
idling
or

faulty
ignition
In
this

case

it
is
advisable
to

replace
the

plugs
with

plugs
having
a

higher
heat

range
Oily
wet
black

deposits
are
an

indication

of

oil
in

the
combustion
chambers

through
worn

pistons
and

rings
or
excessive
clearance
between
valve

guides
and
stems

The

engine
should
be
overhauled
and
hotter

plugs
installed
A

white
or

light
grey
centre

electrode
and
bluish
burned
side

electrode
indicates

engine
overheating
incorrect

ignition
timing

loose

plugs
low
fuel

pump
pressure
or
incorrect

grade
of
fuel

Colder

sparking
plugs
should
be
fitted

The

plugs
should
be
cleaned
on
a

blasting
machine
and

tested
Dress
the
electrodes
with
a
small
file
so
that
the
surfaces

of
both
electrodes
are
flat
and

parallel
Adjust
the
spark
plug

gap
to
0
8
0
9
mm
0
031
0
035
in

by
bending
the
earth

electrode
Refit
the

plugs
and

tighten
them
to
a

torque
reading

of
1
5
2
5

kgm
II
15Ib
ft

31

Page 34 of 171


Fuel

System

DESCRIPTION

FUEL
TANK

FUEL
PUMP

CARBURETTOR
IDLING
ADJUSTMENT

FAST
IDLE
OPENING
ADJUSTMENT

THROTTLE
VALVES
INTERLOCK
OPENING

DASHPOT

DESCRIPTION

The

diaphragm
type
fuel

pump
shown
in

Fig
D
1
feeds

fuel

from
the
tank
to
the
carburettor
in
a

regulated
supply

according
to
the
needs
of
the

engine
A
cartridge
type
fuel

strainer

prevents
any
dirt
from

reaching
the

pump
inlet
valve

The

carburettor
fitted
to

the

engine
is
either
a
down

draught
two
barrel

type
equipped
with
a
throttle

operated

acceleration

pump
and
power
valve
mechanism

See
Fig
D
2

or
a
twin
SU
carburettor
of
the

type
shown
in

Fig
D
3
In
the

two
barrel

type
carburettor

fuel
flows
from
the

passage
at
the

bottom
of
the
float
chamber

passes
through
the

primary
main

jet
and
mixes
with
air

introduced

through
the
main
air
bleed

screw

The

petrol
and
air
mixture
is

injected
into
the
venturi

through
the
main
nozzle

Each
time
the
accelerator

pedal
is

depressed
the
throttle

opens
and
the
accelerator

pump
forces
a

jet
of

petrol
into
the

air
stream
to
allow
the

engine
to
accelerate

smoothly
See

Fig

0
4
The

power
valve
mechanism
is

operated
automatically

according
to
the
demands
made

by
the

engine
Under
light
load

i
e

part
throttle
conditions
the
intake
manifold

depression
is

transmitted
below
the
throttle
valve
the
vacuum

pulls
a

piston

upwards
against
a

spring
and
leaves
the

power
valve
closed

allowing
additional
air
to
be

admitted
through
the
air
bleed
screw

and
thereby
weaken
the

petrol
and
air
mixture
When
the
vacuum

below
the
throttle
vaJve
is
lowered

during
full
load
conditions

the

piston
is

pushed
down
opening
the

power
valve
and
providing

additional
fuel
to
enrichen
the
mixture

The
model

HJ
L
38W6
SU
twin
carburettor
is
of

the

horizontal
variable
venturi

type
and
is
used

only
on
the
1600

and
1800
cc

engines
In
this

type
of
carburettor
a

constant

flow
of
intake
air
is

maintained

by
the

automatically
adjusted

venturi

opening
this
is
accomplished

by
the
suction

piston

sliding
in
accordance
with

changes
in
the
volume
of
intake
air

Referring
to

Fig
D
5
the
suction
chamber
is
mounted
above

the
venturi
The
suction

piston
slides
vertically
within
the

chamber

and

changes
the
venturi

opening
area
The

piston
is

operated
by
a

difference
between
the

upper
vacuum

pressure

which
is

applied
through
the
suction

poct
and
the
atmospheric

pressure
which

is
introduced

through
the
air
hole
from
the
air

cleaner

The
amount

by
which
the
throttle
is

opened
causes
the

suction

piston
to
rise
or
fall
under
the
intluence
of
the

engine

suction
The

pozzle

opening
therefore

changes
and

provides
an

optimum
air
fuel
mixture
at
all

engine
speeds

The

cartridge
type
fuel
strainer
utilizes
a
fibre
strainer

element
which
should
be

replaced
every
20
000
km
12
000

miles
Removal
of
the
fuel
strainer
is
a

simple
operation
but
as

it
cannot
be
drained
the
strainer
should
not
be
removed
when
CARBURETIOR
Removal
and
Overhaul

FLOAT
LEVEL
Adjustment

SU
TWIN
CARBURmORS

Adjustments

SU
TWIN
CARBURmORS

Dismantling

SU
TWIN
CARBURETTORS

Inspection

STARTING
INTERLOCK
VALVE
OPENING

HYDRAULIC
DAMPER

the
tank
is

full
unless

absolutely
necessary

A

viscous

paper
type
air
cleaner
element
is
fitted
which

does
not

require
cleaning
and
should
be

repl
ced

every
40
000
km

24
000
miles
The
air

cleaner
fitted
on
the

single
carburettor

is
equipped
with
an

idling
compensator
to

prevent
the
mixture

from

becoming
too

rich
at

high
idling

temperatures
Additional

fresh
air
is
introduced
into
the
inlet
manifold

by
the
action
of

a
bimettalic

strip
located
in
the
air
cleaner
When
the

temperature

under
the
bonnet
is

high
the
bimetal
is

heated

by
the
hot
inlet

air
and
lifts
to
allow
the
valve
to

open
The

idling
compensator

valve

partially
opens
at

550
I310F
and
is

fully
open
at

650C

l490F
The
unit
cannot
be
dismantled
as

it
is

pre
sealed
and

correctly
adjusted
for
valve

timing
Fig
D
6
shows
the

layout

of

the
idling
compensator
piping

FUEL
TANK

Replacing

The
fuel
tank
can
be
removed
in
the
following
manner

Remove
the
rear
seat

and
back
rest

2
Take
out
the
board
behind
the
back
rest

3
Take
out
the

luggage
compartment
lining
board
and

disconnect
the
cable
to
the

petrol
gauge
unit

4
Disconnect
the
petrol
filler
tube
from
the
tank

5
Remove
the
tank
retaining
bolts
and
disconnect
the

rubber
fuel
outlet
and
return
hoses

Installation
is

a
reversal
of
the
removal

procedure
always

ensure
that
the
fuel
lines
arc
carefully
checked
for

signs
of

damage
before

replacing
the
tank

FUEL
PUMP

Testing

Pressure
and
capacity
tests
can
be
carried
out
with
the

pump
installed
in
the

following
manner

Static

pressure
test

Disconnect
the
fuel
line
at

the
carburettor
install
an

adaptor
tee

fitting
and
suitable

pressure
gauge
to
the
fuel
line

between
carburettor
and
fuel

pump
Start
the
engine
and
run
it

at

varying
speeds

The

reading
on

the
gauge
should
be
0
18
0
24

kg
sq

cm
2
6
34
Ib

sq
in
If
the

pressure
is
below
the

specified

figure
then
either
one

part
of
the

pump
has
worn

excessively

or

general
wear
has
occured
to

all
the

working
parts
The
faults

may
include
a

ruptured
diaphragm
worn
and

warped
valves

33

Page 36 of 171


and
seats
or
a
weak

diaphragm
return

spring

A

pressure
above
the

specified
figure
may
be
due
to

an

excessively
strong
and
tight
diaphragm

Capacity
test

The

capacity
test
can
be

carried
out
when
the
static

pressure
has
been
tested
and
conforms
with
the

specified
figure

of
0
18

kg
sq
cm
2
6Ib

sq
inJ

Disconnect
the
fuel
line
at

the
carburettor

and

place
a

container
under
the
end
of
the

pipe
to
act
as
a
fuel

sump

Start
the

engine
and
run
it
at
a

speed
of
1000

Lp
m
The

amount

of
fuel
delivered
from
the

pump
in
one
minutc
should

be

1000
cc
2
1
US

pt

If

petrol
does
not
flow
from
the

opcned
end
of

the
pipe

at
the
correct
rate
then
either
the
fuel

pipe
is

clogged
or

the

pump
is
not

operating
correctly

If
the
latter
cause
is

suspected
the

pump
must
be
removed

and

inspected
as
described
below

FUEL
PUMP

Removing
and

Dismantling

Before

removing
the
pump
take
off
the

petrol
tank

cap

and
disconnect
the

pump
inlet
and
outlet

pipes
Blow

through

the

pipes
with

compressed
air
to

make
sure

that

they
are
not

clogged

Remove
the

pump
retaining
nuts

withdraw
the

pump
and

dismantle
it
in
the

following
order

Referring
to

Fig
D
l

Take
out
the
screws

holding
the
two

body
halves

together

and

scparate
the

upper
body
from

the
lower

body

2
Remove
the

cap
and

cap
gasket

3
Unscrew
the
eI
bow
and
connector

4
Take
off

the
valve
retainer
and
remove
the
two
valves

5
To
remove
the

diaphragm
diaphragm
spring
and
lower

body
sealing
washer

press
the

diaphragm
down

against

the
force
of
the

spring
and
tilt
the

diaphragm
at
the
same

time
so
that
the

pull
rod
can
be
unhooked
from
the
rocker

arm

link

Fig
D
7

The
rocker
arm

pin
can

be
driven
out
with
a
suitable

drift

FUEL
PUMP

Inspection
and

Assembly

Check
the

uppcr
and

lower

body
halves
for
cracks

Inspect

the
valve
and
valve

spring
assembly
for

signs
of
wear
and
make

sure
that
the

diaphragm
is
not

holed
or

cracked
also
make
sure

that
the
rocker
arm
is
not
worn
at
the

point
of
contact
with

the

camshaft

The
rocker
arm

pin
may
cause

oil

leakage
if
worn

and

should
be
renewed
Assembly
is
a
reversal
of
the
dismantling
procedure

noting
the

following
points

Fit
new

gaskets
and
lubricate
the
rocker
arm
link
and
the

rocker
arm

pin
before

installing

The

pump
can
be
tested

by
holding
it
approximately
I

metre
3

feet
above

the
level
of
fuel

and
with
a

pipe
connected

between
the
pump
and
fuel
strainer

Operate
the
rocker
ann

by
hand
the

pump
is

operating

correctly
if
fuel
is
drawn

up
soon
after

the
rocker
ann
is

released

CARBURETTOR
IDLING
ADJUSTMENT

The

idling
speed
cannot
be

adjusted
satisfactorily
if
the

ignition
timing
is
incorrect

if
the
spark
plugs
are

dirty
or
if

the
valve
clearances
are
not

correctly
adjusted

Before

adjusting
the

idling
speed
set
the
hot
valve

clearances

t
o
0
25
mm
0
0098
in
for
the
intake
valves

and

0
30
mm
0
0118
in
for
the
exhaust
valves
as
described
in

the
ENGINE

section

Idling
adjustment
is
carried
out

with
the
throttle

stop

screw
in

conjunction
with
the

idling
adjustment
screw

See

Fig
D
8

Run
the

engine
until
it
attains
its
normal

operating

temperature
and
then
switch
off

Starting
from
the
fully
closed

position
unscrew
the

idling
adjustment
screw

by
approximately
three
turns

Screw
the
throttle

stop
screw
in

by
two
or
tftr
e
turns
and

start

th
engine

Unscrew
the
throttle

stop
screw
until
the

engine
commences

to
run

unevenly
then
screw
in
the

idling
adjustment
screw
so

that
the
engine
runs

smoothly
at
the

highest
speed

Readjust
the
throttle

stop
screw
to

drop
the

engine
speed

of

approximately
600
r

p
m
is
obtained

WARNING
Do
not

attempt
to
screw

the

idling
adjustment

screw

down
completely
or
the

tip
of
the
screw

may
be

damaged

FAST
IDLE
OPENING
ADJUSTMENT

The
choke
valve
is

synchronized
with
the
throttle
valve

and
connected
to
it

by
levers
as
shown
in

Fig
D
9
The
fast

idle
opening
can
be
check

by
fully
closing
the
choke
valve
and

measuring
the
clearance
between
the

primary
throttle
valve
and

the
wall
of

the
throttle
chamber
This
clearance

being
shown

as
A

in
the
illustration
The
clearance
for

the
carburettor

types
is
as
follows

Carburettor

type
Throttle

opening

angle

180

180

190
Dimension
A

213304
361

13304
4
I

13282
331
1
55mm
0
06lin

1
55mm
0
06Iin

1
3
mm
0
051
in

35

Page 37 of 171


inter
ill
j

@
pl

T
i

5

12

Fig
D
3

View
of
the
SU
twin

type
carburettors

1

Throttle
r

2
JaJana

crew

Front
throttle

adjusting
screw

4

AuxiliDry
shoft

5
Ftnt
idle

selling
lCn
W

6

Throttle

shaft

7
Rear
throttle

adjusrint
screw

8

Idling
adjustment
nuts

m

11

j
G

36
B

l
D

i
I

lli

9
3
J6

6

Fig
D
4

Accelerator

pump
mechanism

J

Pump
injuror

2

Weight

2
Outklvolve

4
Piston

5

Damper
spring

6
Piston

return

spring

7

Clip

8
Strainu

9
Inlet
lmlJe

I

Fig
D
6

Idling
compensator
1

lit

21
Fig
D
5
Section

through
the
SU
twin
carbureUor

J
Suction

chamber

Suctiull

spring

3
Hoat

chamber
corer

4
Guide

5

Nipple

6
Throttle
chamber

7
Piston
rod

8

Needle
valve

9
T7trollle
l
ob
e

J
O
Float
chtzmber

J
1
Float
Iel
cr
J
2
Float

13
Sleel
e

4

aip

5
Fuel
hose

6
Oil

cap
nut

1
7

Plunger
rod

18
Transvtne
hole

J
9
Oil

domJX

20
Suction

piston

21
Nozzle

Idling
adjustment
nut

Page 38 of 171


Carburettor

type
Throttle

opening

angle

190

200
Dimension
A

213282

341

213282
221
l
3mm
0
051
in

I
4mm
0
056in

If

adjustment
is

required
the
choke
connecting
rod
can
be

carefully
bent
until
the

required
clearance
is

obtained

THROTTLE
VALVES
INTERLOCK
OPENING
ADJUSfMENT

Open
the

primary
throttle
valve
500
from
the

fully
closed

position
as
shown
in

Fig
D
I
O
At

this

angle
the
connecting

link
2
should
be
at

the
extreme

right
of
the

groove
in

the

primary
throttle
arm
The

linkage
between
the

primary
and

the

secondary
throttles
is

operating
correctly
if
the
clearance

C
between
the

primary
throttle
valve
and
the
wall
of
the

chamber
is
as
follows

Carburettor

type

213304

361

213304
421

213282
331

213282
341
Dimension
C

6
3
mm
0
248
in

6
3
mm
0
248

in

74
mm
0
291
in

74
mm
0
291
in

Adjustment
can
be
made
if

necessary
by
bending
the

connecting
link
until
the

required
clearance
is
obtained

DASHPOT
ADJUSfMENT

This

adjustment
is

only
required
on

carburettors
fitted
to

vehicles
with
automatic
transmission
Correct
contact
must
be

made
between
the
throttle
lever
and
the

dashpot
stem
See

Fig
D
II

Adjustment
can

be
carried
out
if

necessary
by

slackening
the
locknut
2
and
then

rotating
the

dashpot
in

either
direction
so
that
the
throttle
ann
touches
the
stem
at
a

throttle
valve

opening
angle
of
110
At

this
angle
the
clearance

B
between
the
throttle
valve
and
the
wall
of
the
chamber

should
be
as
follows

Carburettor

type

213304
421

213282
341
Dimension
B

0
780mm
90
0307
in

0
586mm
0
0231
in

Retighten
the
locknut
after

completing
the

adjustment

CARBURETTOR
Removal
and
Overhaul

The
carburettor
can
be
removed
from
the

engine
in
the

following
manner

Remove
the
air
cleaner

assembly

2
Disconnect
the
fuel
and
vacuum

pipes
and
the
choke
wire

from
the
carburettor

3
Remove
the
throttle
lever
and
take
off
the
nuts
and

washers

securing
the
carburettor
to

the
manifold

4
Lift
the
carburettor

away
from
the
manifold
and
discard

the

gasket

To
dismantle
the
carburettor
for
a

complete
overhaul

remove
the

primary
and

secondary
main

jets
and
needle
valves
these
are
accessible
from
the
exterior
of
the
carburettor

Remove
the
choke

connecting
rod

pump
lever
return

spring
and
set
screws
and
take
off
the
choke
chamber

The

primary
and

secondary
emulsion
tubes
can
be
with

drawn
after

removing
the
main
air
bleed
screws

If
the
accelerator

pump
is
to
be
checked
take
off
the

pump

cover
but
take
care
not
to
lose
the
return

spring
and

inlet
valve

ball
situated
at
the
lower

part
of
the

piston

Separate
the
throttle
chamber
from
the
float
chamber

by

removing
the

retaining
screws
leave
the
throttle
valve

intact

unless
otherwise

required

All

parts
of
the
carburettor
must
be
ctifefully
cleaned
and

sediment

gum
or

other

deposits
removed

Clean
the

jets
by
blowing
through
them
with

compressed

air
Never

push
wire

through
the

j
ts
or

passages
or
the
orifices

will
be

enlarged
and
the
calibration
affected

Check
all

parts
for

signs
of
wear
and

exchange
them
if

necessary

Examine
the
float
needle
and
seat
for
wear

and
make
sure

that
the
throttle
and
choke
bores
in
the
throttle

body
and

cover
are
not
worn
or
out
of
round
If
the

idling
adjustment

needles
have
burrs
or

ridges
they
must

be
replaced

Inspect
the

gaskets
to
make
sure
that

they
are
not
hard

and
brittle
or
distorted

Oean
the
filter
screen
if
it
is

clogged
or

change
it
if
it

is

otherwist

unsatisfactory

Check
the

operation
of
the
accelerator

pump
by
pouring

petrol
into
the
float
chamber
and
operating
the
throttle
lever

Petrol
should

spurt
from
the

pump
discharge
jet
if

the

pump
is

working
correctly
If

petrol
cannot
be

ejected
from
the

jet

when
the
lever
is
actuated
clean
the
discharge
jet
by
blowing

through
it
with
compressed
air

CARBURETTOR
Assembly
and
Installation

The

assembly
and
installation
of
the
carburettor
is
a

reversal
of

the
dismantling
and
removal

procedures
noting
the

following
points

Always
replace
the

gaskets
if

they
are
not

satisfactory
and

take
care
that
the
carburettor

linkage
operates
smoothly
and
is

not
bent
or
distorted

The

performance
of
the
carburettor
will

depend
on

the

condition
of

the
jets
and
air
bleeds
As

previously
stated
these

pacts
should
be
cleaned

using
petrol
and

compressed
air

only

Replacement
jets
or
air
bleed
screws
can

be
used
to

provide

greater
economy
or
to
increase

output
whatever
the
require

ment
When

the
carburettor
is
installed

adjust
the
idling
speed

as

previously
described

37

Page 43 of 171


Connect
the
fuel
line
from
the
float

chamber
to
the
nozzle

nipple
and

tighten
the

retaining
clip
Pull
out

the
choke
lever

and

place
the

connecting
plaie
betw
n
the
washer
and
sleeve

collar
Screw
the

plate
to
the

nozzle
head
and
check
that
the

collar
is
installed
in
the
hole
in

the

plate
by
mo

ing
the
choke

lever
as

necessary

Recheck
the

piston
to
make

sure
that
it
falls

freely
without

binding

SU
TWIN
CARBURETTOR

Centering
the

jet

Remove
the

damper
oil

cap
nut

and
gradually
raise
the

lifter

pin
4
in

Fig
D
17

Continue
to
raise
the
lifter

pin
until
the
head
of
the

pin

raises
the

piston
by
approximately
8
mm
0
31
in
When
the

lifter

pin
is
released
the

piston
should

drop
freely
and
strike

the
venturi
with
a

light
metallic
click
If

the

pi
ston
does
not

fall

freely
it
will
be

necessary
to
dismantle
the

carburettor
in

the
manner

previously
described

SU

TWIN
CARBURETTOR

FLOAT
LEVEL

Inspection
and

Adjustment

The
fuel
level
in
the
float
chamber
can

be
checked

using

the

special

gauge
ST
19200000
Remove
the
float
chamber

drain

plug
and
install
the

special

gauge
as
shown
in

Fig
D
20

Start
the

engine
and
allow
it
to
run
at

idling
speed
The

fuel
level
is
conect
if
it
is

indicated
on

the

glass
tu

be
at
a

distance
of
22
24
mm
0
866
0
945
in
below
the

top
of
the

float
chamber

The
level
of
the
fuel
can

be
corrected
if

necessary
by

adjusting
the
float
level
in
the

following
manner
Take
out
the
float
chamber
coveT

securing
screws
and

lift
off
the
cover
and
attached
float

lever
Hold
the
cover
so
that

the
float
lev
r
is

facing
upwards
Lift
the
float
lever
and
then

lower
it
until
the
float
lever
seat

just
contacts

the
valve
stem

The
dimension
uH
in

Fig
D
1
should
be
11
12
mm
0
43

0
47
in

and
can

be
corrected

by
bending
the
float
lever
at
the

point
indicated

SU
TWIN
CARBURETTOR

Starting
interlock
valve

opening
adjustment

To

adjust
the
starting
interlock

opening
the

connecting

rod
4
in

Fig
D
22
1
must
be
bent

using
a
suitable

pair
of

pliers
The
throttle

opening
can

be
increased

by
lengthening

the

connecting
rod
or
reduced

by
shortening
the
rod

The
throttle

opening
is
correctly

adjusted
when
the

clearance
8

between
the
throttle
valve
and
throttle
chamber

is
set
to
0
6
mm
0
023
in
with
the
choke
lever
half

completely

out

HYDRAULIC
DAMPER

The

damper
oil

should
be
checked

approximately
every

5000
km
3000
miles
To
check
the
oil
level
remove
the
oil

cap
nut
as
shown

in

Fig
D
23
and
check
the
level
of
oil

against

the
two

grooves
on
the

plunger
rod

Top

up
with
SAE
20

engine
oil
if

the
oil
level
is
below
the
lower
of
the
two

grooves

Take
care

not
to
bend
the

plunger
rod
when

removing
and

replacing
the
oil

cap
nut

and
make
sure
that
the
nut
is

sufficiently

tightened
by
hand

TechnIcal
Data

Engine
Model
Ll4

I400cc

Primary
Secondary

28mm
32mm

21x7mrn
28xlOmm

96

165

60
60

I
Omm

220
100

1
6
Outlet
diameter

Venturi
diameter

Main

jet

Main
air
bleed

1
st

slow
air
bleed

2nd
slow
air
bleed

Economizer

Power

jet

Float

level

Fuel

pressure

Main
nozzle
55

22mm

0
24

kg

sq
cm
3
41b

sq
in

2
2mm

2
Smm

SU
Twin
Carburettors

Type

Bore
diameter

Piston
lift

Jet
needle

Nozzle

jet
diameter

Suction

spring
IUL
38
W6

38mm

1
4961
in

29mm

1417
in

M
76

2
34
mm

0
0921
in

No
23

Float
needle
valve

inner
diameter

Float

level
1
5mm
0

059
in

23mm
0
9055
in

42
Ll6
1600cc

Primary

Secondary

28mm
32mm

22x7mm

29xlOmm

102
165

60

60

1
0mm

180
100

1
6
Ll8

l80Occ

Primary
Secondary

30mm

34mm

23x14x7mm
30xlOmm

102
170

60
60

I
Omm

210
100

1
6

55

22mm
55

22m

2
3mm
2
5mm
2
3mm
2
8mm

Throttle

clearance
at
full

throttle

Position
at
full
throttle
0
6mm
0
0236
in

6
50

FUEL
PUMP

Type

Delivery
amount
Mechanical

1000cc
minute
at
1000

r

p
m

0
18
0
24

kg

sq
cm

2
5
3
41b

sq
in

from
eccentric
on
cam

shaft
Delivery

pressure

Drive

Page 134 of 171


GIS

DESCRIYfION

ENGINE
Removal
and
Installation

ENGINE
MOUNTING

INSULATORS

ENGINE

Dismantling
Inspection
and
Overhaul

CHAMSHAFT

AND
CAMSHAFT
BEARINGS

CYLINDER
BLOCK

PISTONS

CONNECTING

RODS

CRANKSHAFT

ENGINE

Assembling

VALVE
CLEARANCE

Adjusting

DESCRIYfION

The
G
18

engine
is
a
short

stroke
unit
with
a

displacement

of
1
815
ce
The
aluminium

alloy
cylinder
head
has
cross
flow

ports
and
a
V

shaped
valve

layout
The

single
overhead
camshaft

is
driven
from
the
crankshaft

by
a
double
row
roller
chain
at
a

reduction

ratio
of
2
I

The
crankshaft
is
a

carbon
steel

forging
and
is

provided

with
five
main

bearings
and
four

balancing
weights
Aluminium

thrust

bearings
are
located
at

the
No
2

journal

The
cast
aluminium

alloy
pistons
have
two

comp
ression

rings
and
one
oil

ring
Gudgeon

pins
are

fully
floating
in
the

piston
bores
and
are

equipped
with

circlips
at

each
end
to
limit

the
amount

of
their
travel
The

forged
steel

connecting
rods

have
weight
adjusting
bosses
at
both

large
and
small
ends
to

insure
that
the
rods
are

correctly
balanced

during
operation

The

lubricating
system
is
of

the

pressure
feed

type
with

the
oil

pump
driven

by
a

gear
on
the
crankshaft
Oil
is
delivered

to
the
main

gallery
via
a
full
flow
ftlter

ENGINE
Removal
and
Installation

Although
the

engine
can
be
removed
as
a

single
unit
it

will

prove
an
easier

operation
to
remove

the

engine
with
the

transmission
Proceed
as
follows

Fit
the
engine
slingers
ST49760000
to
the

engine

Disconnect
the
battery
cables
and
lift
out

the

battery

Drain
the
coolant
and

engine
oil

2
Place

alignment
marks
on
the
bonnet
and

hinges
remove

the
bonnet
from
the
vehicle

3
Remove
the
blow

by
hose
from
the
rocker
cover
and
take

off
the
air
cleaner

4
Disconnect
the
accelerator

linkage
and
choke
cable
from

the
carburettor

S
Detach
the

upper
and
lower

radiator
hoses
remove
the

two
brackets
from
the
core

support
and
lift
the
radia
tor

away
from
the
vehicle
The

torque
convertor

oil

pipes
must

be
disconnected
from
the
oil
cooler
if
the
vehicle
is

equip

ped
with
automatic
transmission
Detach
the
fuel

pipe
if

fitted
from
the
engine
and

heater
hose

6
Disconnect
the
electrical

wires
from
the
alternator
thennal
EngIne

OIL
PUMP

OIL
PRESSURE
RELIEF
VALVE

OIL
FILTER

EMISSION
CONTROL
SYSTEM

IGNITION

TIMING
AND
IDLING
SPEED

Emission

control

system

EMISSION
CONTROL
SYSTEM
Maintenance

IGNITION
SYSTEM

IGNITION
TIMING

IGNITION
DISTRIBUTOR
Maintenance

SPARKING
PLUGS

transmitter
the

primary
side
of
the
distributor
oil

pressure

switch
starter

motor
and
reverse

light
switch

7

Remove
the
clutch
slave

cylinder
and
its
return

spring
from

the
transmission
as
described
in
the
section
CLUTCH

8
Disconnect
the
shift
rods
and
selector
rods
then
remove

the
cross
shaft

assembly
by
detaching
the
bracket
from

the
side
member
See
GEARBOX
section

9
Disconnect
the

speedometer
cable
and
detach
the
front

exhaust

pipe
from
the
exhaust
manifold

10
Disconnect
the

propeller
shaft
and

plug
the

gearbox
rear

extension
to

prevent
the
loss
of
oil

11
Jack

up
the

gearbox
slightly
and
remove
the
rear

engine

mounting
support
Take
out

the
bolts
which
secure
the

front

mounting
insulators
to
the
cross
member

12
Attach
chains
or
wire

rope
to
the

engine
Gradually
lower

the

jack
under
the

gearbox
and
carefully
lift
and
tilt
the

engine
and
gear
box
to
clear
the

compartment
Withdraw

the
unit

making
sure

that
it
does
not
foul
the
accessories

Installation
is
a
reversal
of
the
removal

procedure
RefIll

with
the
correct

quantities
of
oil
and
coolant
when
the

engine
is
installed

ENGINE
MOUNTING
INSULATORS

Replacing

The

front
and
rear

mounting
insulators
should
be
checked

with
the

engine
installed
to
make
sure
that
the
dimensions

conform
with
those

given
in

Figs
A
I
and
A
2

To
remove
the
front
insulator

proceed
as
follows

Position
a

jack
under
the
oil

sump
Make
sure
that
the

jack
is
clear
of
the
drain

plug
and
insert
a
wooden
block
between

the
jack
and

sump
to

prevent
the

sump
from

being
damaged

Remove
the
bolts

securing
the
insulator
to
the
front

suspension

member
and
the
nut

attaching
the
insulator
to
the

engine

mounting
bracket
Raise
the

jack
slightly
and
remove
the

insulator
To
remove
the
rear

mounting
insulator

proceed
as

follows

Position
a

jack
to
take
the

weight
of
the

gearbox
and
take

out

the
bolts

connecting
the
insulator
to

the
transmission
rear

extension

housing
Remove
the
bolts

attaching
the
cross
member

to

the
underside
of
the

body
and
withdraw
the
insulator

Installation

of
both
insulators

is
a
reversal
of
the

removal

procedures

S3

Page:   1-10 11-20 next >