ground clearance DATSUN 610 1969 Workshop Manual

Page 10 of 171


Remove
the
fan

and
pulley
the

right
hand

engine
mounting

and
oil
filter
Remove
the
oil

pressure
switch
Remove
the

following
items
oil
level

gauge
spark
plugs
thermostat

housing

rocker
cover
carburettor
and
inlet
and
exhaust
manifolds

Remove
the
clutch

assembly
as
described
in
the
section

CLUTCH
Remove
the
left
hand

engine
mounting
crankshaft

pulley
water

pump
fuel

pump
fuel

pump
drive
earn
and
cam

shaft

sprocket
See

Fig
A
4
Remove
the

cylinder
head
bolts

in
the

sequence
shown
in

Fig
A

5
and
lift
off
the

cylinder

head
Invert
the
engine
and
remove
the
oil

sump
and
oil

strainer
oil

pump
and
drive

spindle
assembly
front
cover
and

chain
tensioner
Remove
the

timing
chain
oil
thrower
crank

shaft
worm

gear
and
chain
drive

sprocket
See

Fig
A
6
andA
7

Remove
the

connecting
rod

caps
and

push
the

pistons
and

connecting
rods
through
the

top
of
the
bores
as
shown
in

Fig

A
B

Keep
the

connecting
rod

caps
with
their
respective
rods
to

ensure

that

they
are
assembled
in
their

original
positions

Remove
the
flywheel
retaining
bolts
and
withdraw
the

fly

wheel

Fig
A
9
Remove
the
main

bearing
caps
using
the

special
puller
ST
1651
SOOO
to
withdraw
the
centre
and
rear
main

bearing
caps
as
shown
in

Fig
A

l
O
Remove
the
rear
oil
seal

and
lift
out
the
crankshaft
remove
the
baffie

plate
and

cylinder

block
net

Fig
A
II
Remove
the

piston
rings
with
a

suitable

expander
and

press
out
the

gudgeon
pins
under
an
arbor

press

using
the

special
stand
STl300001
as
shown
in

Fig
A

12

Keep

the
dismantled

parts
in
order
so
that

they
can

be
reassembled

in
their

original
positions
Slacken

the
valve
rocker

pivot
lock

nut
and
remove
the
rocker
arms

by
pressing
down
the
valve

springs

Remove
the
camshaft

taking
care
not
to

damage
the

bearings
and
earn
lobes
Withdraw
the
valves

using
the
valve

lifter
STl2070000
as
shown
in

Fig
A
13

ENGINE

Inspection
and
Overhaul

Cylinder
Head
and
Valves

Clean
all

parts
thoroughly
and
remove
carbon

deposits
with

a

blunt

scraper
Remove

any
rust
which
has
accumulated
in

the
water

passages
and
blow

through
the
oil
holes
with

compres

sed
air
to
make
sure

that

they
are

clear

Measure
the

joint
face
of
the

cylinder
head
for
out
of
true

as
shown
in

Fig
A
14

The
surface
should
be
checked
at
various

positions
using
a

straight
edge
and
feeler

gauge
The
permissible

amount
of
distortion
is
0
05
mm
0
0020
in
or
less
If
the

surface
is
out
of
true

by
more
than
the
limit
of
0
1
mm

0
0039

in
it
will
be

necessary
to

regrind
the
head

Clean
each
valve

by
washing
in

petrol
and

carefully
examine

the
stems
and
heads

If
the
stem
is
worn

damaged
or
not

straight
the
valve
must

be
discarded
Check
the

diameter
of
the
stem
with
a
micro

meter

The
diameter
of

the
inlet
valves
should
be
7
965

7
980
mm
0
3136
0
3142
in
and
the
diameter
of

the
exhaust

valves
7
945
7
960
mm
0
3128
0
3134
in

If

the
seating
face
of
the
valve
is

excessively
burned

damaged
or
distorted
it
must
be
discarded
A

badly
pitted

seating
face
should
be
refaced
on
a
valve

grinding
machine

removing
only
the
minimum
amount
of
metal
Renew
the
valve
if
the
thickness
of

the
valve
head
has

been
reduced

by
0
5
mm
0
0197
in
see
Technical
Data
for

valve
dimensions

The

valve
stem

tip

may
be
refaced
if

necessary
the
maxi

mum
allowance
however
is
0
5
mm
0
0197
in

The
valves
can
be

ground
in
to

their
seats
when

completely

satisfactory
The
valve
seats
and
valve

guides
should

be
in

good

condition
and
must
be
checked
as
described
in
the

following

paragraphs

VALVE
GUIDES

Replacement

The
valve
stem
to
valve

guide
clearance
can
be
checked

by

inserting
a
new
valve
into
the

guide
The
stem
to

guide
clearance

should
be
0
020
0
053
mm
0
0008
0
0021
in
for
the
inlet

valves
and
0
040
0
073
mm
0
0016
0
0029
in
for
the
exhaust

valves
If
the
clearance
exceeds
0
1
mm
0
0039
in
for
the

inlet
valves
and
the
exhaust
valves
then
new

guides
should
be

fitted

The
valve

guides
are
held
in

position
with
an
interference

fit
of
0
027
0
049
mm
0
0011
0
0019
in
and
can
be
removed

by
means
of
a

press
and
drift
2
ton

pressure
This
operation

can
be
carried
out
at
room

temperature
but
will
be
more

effectively
performed
at
a

higher
temperature

Valve

guides
are
available
with
oversize
diameters
of
0
2
mm

0
0079
in

if
required
The
standard
valve

guide
requires
a
bore

in
the

cylinder
head
of
11
985
11
996
mm
dia
0
4719

0
4723
in
dia
and
the
oversize
valve

guide
a
bore
of
12
185

12
196
mm
dia
0
4797
0
4802
in

dial

The

cylinder
head

guide
bore
must
be
reamed
out
at

normal
room

temperature

Heat
the

cylinder
head
to
a

temperature
of
150
2000e

302
3920F
before

pressing
in
the
new
valve

guides
Ream

out
the
bore
of
the

guides
to
obtain
the
desired
fInish
and

clearance
Fig
A
IS
The

special
valve

guid
reamer
ST
1103

SOOO
should
be
used
if
available
Valve

guide
inner
diameters

are

specified
in
Technical
Data
at

the
end
of
this
section
The

valve
seat
surface
must

be
concentric
with
the

guide
bore
and

can
be
corrected
with
the

facing
tool
STll670000

Fig
A
16

using
the
new
valve

guide
as
the
axis

VALVE
SEAT
INSERTS

Replacing

The
valve
seat
inserts
should
be
replaced
if

they
show

signs

of

pitting
and
excessive
wear

The
inserts
can
be
removed

by
boring
out
to
a

depth
which

will
cause
them
to

collapse
although
care
must
be
taken
not

to
bore
beyond
the
bottom
face
of
the
recess

in
the

cylinder

head

Select
the
valve
seat

inserts
and
check
the
outer

diameters

Machine
the
recess
in
the

cylinder
head
to

the
following

dimensions
at
room

temperature

9

Page 12 of 171


CYUNDER
HEAD
RECESS
DIAMETER

Standard
inoerts

Engine

L14

Ll6

and
Ll8
Inlet

41
000
41
016
1
6142
1
6148
in

45
000
45
016
mm
1
77l7
1
77231n

Engine

Ll4

Ll6
and
Ll8
Exhaust

37
000
37
016mm

1
4567
1
4573
in

37
000
37

016mm
l
4567
1
4573
in

CYLINDER
HEAD
RECESS
DIAMETER

Oversize
inserts

Engine

Ll4

Ll6andLl8
Inlet

41
500
41

516mm
l
6339
1
6345in

45
S00
45
516mm
I
7913
1
7920in

Engine

L14

Ll6andLl8
Exhaust

37
500
37
516mm
1
4764
14770in

37
500
37

516mm
1
4764
l4770in

Dimensions
for
the
standard
valve
inserts
are

shown
in

Fig
A
17
Heat
the

cylinder
head
to
a

temperature
of
ISO
20DOC

302
3920F
and
drive
in
the
inserts

making
sure

that
they

bed
down
correctly
The
inserts
should
be
caulked
at
more
than

four

positions
and
then
cuf
or

ground
to

the

specified

dimensions
shown
in
Fig
A
IS

Place
a
small
amount

of
fine

grinding
compound
on
the

seating
face
of

the
valve
and
insert
the
valve
into
the
valve

guide

Lap
the
valve

against
its
seat

by
rotating
it
backwards
and

forwards

approximately
half
a
revolution
in
each
direction

until
a
continous

seating
has
been
obtained
Remove
the
valve

and
clean
all
traces
of

the

grinding
compound
from
valve
and

seat

VALVE
SPRINGS

The
valve

springs
can
be
checked
for

squareness
using
a

steel

square
and
surface

plate
If
the

spring
is
out
of

square
by

more
than
1
6mm
0
063
in
it
must

be

replaced
Check
the

free

length
and
the
load

required
to
deflect
the

spring
to

its

assembled

height
Compare
the
figures
obtained
with
those

given
in
Technical
Data

and
replace
the

spring
if
the

specified

limits
are
exceeded

CAMSHAFT
AND
CAMSHAFT
BEARINGS

Checking

Measure
the
clearance
between
the
inner
diameter
of
the

camshaft

bearing
and
the
outer
diameter
of
the
camshaft

journal
If
the
wear
limit
for
the

bearing
clearance
exceeds

O
lmm
0
0039
in
it
will
be

necessary
to

replace
the

cylinder

block
assembly
See
Technical
Data
for
all
diameters

Check
the
camshaft
and
camshaft

journals
for

signs
of

wear
or

damage

ace
the
camshaft
in
V
Blocks
as
shown
in

Fig
A
19
and

position
the

dial

gauge
to
the

journal
The
run
out
of
the
cam

shaft

must
not
exceed
0
05
mm
0
0020in
It
should
be
noted
that
the
actual
run
out
will
be
half

the
the
value
indicated
on
the

dial

gauge
When
the
camshaft
is
turned
one
full
revolution

with
the
dial

gauge
positioned
against
the
second
and
third

journals

CYLINDER
BLOCK

Inspection
and
Overhaul

Ensure
that
the

cylinder
block
is

thoroughly
clean
and

check
it
for
cracks
and
flaws

Check
the

joint
face
of
the
block
for
distortion

using
a

straight
edge
and
feeler

gauge
as
shown
in

Fig
A
20
The
surface

must

be

reground
if
the
maximum
tolerance
of
O
lmm

0
0039
in
is
exceeded

Examine
the

cylinder
bores
for
out
of
round
or

taper

using
a

bore

gauge
as

shown
in

Fig
A
21
The
readings
must

be
taken
at
the

Top
middle
and
bottom
positions
indicated

in

Fig
A
22

The
standard
bore
diameters
are

83
000
83
050
rom

3
2677
3
3697
in
for
the
1400
and
1600cc

engines
and
85
000

85
050
mm
3
3465
3
3484
in

for
the
1800
cc

engine
with
a

wear
limit
of
0
2mm
0
0079
in

Out
of
round
and

taper
must
not
exceed
0
15mm

0
0006
in
If
the
bores
are
within
the

specified
limits
remove

the
carbon
ridge
at
the

top
of
the

cylinder
bores
wring
a

suitable

ridge
reamer

If

any
of
the
bores
are
in
excess
of
the

specified
limits

then
all
the
bores
must
be
rebored
at

the
same
time
Pistons

are

available
in
five
oversizes
See
Technical
Data
and
can
be

selected
in
accordance
with
the
amount
of
wear
of

the
cylinder

When
the
oversize
of

the

pistons
has
been
decided
it
will

be
necessary
to
measure
the

piston
at
the

piston
skirt

Fig
A
23

and
add
to

this
dimension
the

specified
piston
to

cylinder
bore

clearance
to
determine
the
final
honed
measurement
of
the

cylinder

Machine
the

cylinder
bores
in

gradual
stages
taking
only

a
0
5mm
0
002

in
cut
each
time
The
bores
must

be
brought

to
the
final
size

by
honing
and
the
block

thoroughly
cleaned

to
remove
all
traces
of
metal

Measure
the
finished

bore
and
check
the
clearance
between

each

piston
and
its

cylinder
The
clearance
can

be
checked
as

shown
in

Fig
A
24
with
the
aid
of
a
feeler

gauge
and

spring

scale
The
standard
clearance
is
0
023
0
043
mm
0
0009

0
0017
in

NOTE
Cylinder
liners
can
be
fitted
if

the
cylinder
bores

are
worn

beyond
the

maximum
limit

The
liners
are
an
interference
fit
in
the
block
and

must
be
bored
to
the
correct

inner
diameter

after

fitting
Three
undersize
liners
are
available

in
the
following
sizes

11

Page 14 of 171


OUTER
DIAMETER

4
0mm
0
1575
in
Undersize

4
5mm
0
1772
in
Undersize

5
Omm
0
1969
in
Undersize
87
000
87
05mm
3
4252
3
4272
in

87
50
87
55mm
3
4449
3
4468
in

88
00
88
05mm
3
4646
3
4665
in

PISTONS

Checking

Check
each

piston
for

signs
of

seizure
and
wear
Renew

BIlY
piston
which
is
unsatisfactory

Remove
all
carbon
deposits
from
the

grooves
and

piston

rings
Measure
the
side
clearance
of
each

piston
ring
and

groove

with
a
feeler

gauge
as
shown
in

Fig
A
25
If
the
side
clearance
is

excessive
new

rings
should
be
fitted
The
clearance

required
for

new

pistons
a

piston
rings
can
be
found
in
Technical
Data

Check
the

piston
ring
gap
by
placing
the

ring
in
the

cylinder

bore
as
shown
in

Fig
A
26
The

ring
can

be

squared
in
the

bore

by
pushing
it
into

position
with
the

piston
Measure
the

ring
gaps

with
a
feeler

gauge
and

compare
the
dimensions
with
the
infor

mation

given
in
Technical
Data

NOTE
If
new

piston
rings
are
to

be
fitted
and
the

cylinder

has
not
been
rebafed
check
the

piston
ring
gap
with

the

ring
positioned
at
the
bottom
of
the

cylinder

This
being
the

position
with
the
least
amount
of
wear

O1eck
the
clearance
between

gudgeon
pin
and

piston
If

the

specified
limit
is
exceeded
it
will
be

necessary
to

replace

both

piston
and

pin
It
should
be

possible
to

press
the

gudgeon

pin
into
the

piston
by
hand
at
a
room

temperature
of
200C

680F
The

pin
should
be
a
tight

press
fit
in
the

connecting

rod

CONNECTING
RODS

O1ecking

Cleck
the

connecting
rods
for
bends
or

twists

using
a

guitable

connecting
rod

aligner
The
maximum
deviation
should

not
exceed
0

05
mm
0
0020
in

per
100
mm
3
94
in

length

of
rod

Straighten
or

replace

any
rod
which
does
not

comply

with
the

specified
limit

When

replacing
the
connecting
rod
it
is
essential
to
ensure

that
the

weight
difference
between
new
and
old
rods
is
within

5

gr
0
18
oz
for
the
1400
cc

engine
and
7

gr
0
25
oz
for

the
1600
and
1800
cc

engines

Install
the
connecting
rods
with

bearings
to

the

correspond

ing
crank

pins
and
measure
the
end

play
of
the

big
ends
s
e

Fig
A
27
The
end

play
should
be
between
0
2
0
3
mm

0
0079
0
0118
in
fthe
maximum
limit
of
0
6
mm
0
Ql18

in
is
exceeded
the
connecting
rod

must
be

replaced

CRANKSHAFT

Inspection
and
Overhaul

aean
the
crankshaft

thoroughly
before

checking
the
shaft

for
distortion
and
cracks

Measure
the

journals
and

crankpins
for
our
of
round
If

the

journals
and

pins
are
found
to
be
oval
or

if
the
wear

limit

exceeds
the

specified
fUnning
clearance
it
will

be
necessary
to

re
llrind
the
crankshaft
to

the

required
undersize
See
Technical
I

INNER
DIAMETER

82
45
82
60mm
3
24613
2520
in

82
4S
82
60mm
3
24613
2520
in

82
4S
82
60mm
3
24613
2520
in

Data

Place
the
crankshaft
in
V
blocks
as
shown
in
Fig
A
28

and
check
with
the
aid
of
a
dial

gauge
that
the
shaft

bending

limit
of
0
05
mm
0
002
in
is
not
exceeded
With
the
dial

gauge

positioned
against
the
centre

journal
the
crankshaft
should
be

rotated

by
one
turn
The
actual
bend
value
will
be
a
half
of
the

reading
obtained
on
the

gauge
If
the

specified
limit
is
exceeded

it
will
be

necessary
to

replace
the
crankshaft

Install
the
crankshaft
in
the
cylinder
block
and
check
the

crankshaft
end
float
which
should
be
be
J
Yieen
0
05
0
18
mm

0
0020
0
0071
in
Make
sure
that
the
main
drive
shaft

pilot

bushing
at
the
rear
of
the
crankshaft
is
not
worn
or

damaged
in

any
way
Replace
the

bushing
if

necessary
using
the

special

puller
STl
66
1000
I

Thoroughly
clean
the
bushing
hole
before

installing
and

press
in
the
new

bushing
without

oiling
so
that
its

height

above
the

flange
end
is
4
5
5
0
mm
0
18
0
20
in

Main

bearing
clearance

The
main
bearing
clearances
can
be
checked

using
a

strip

of

plastigage
Set
the
main
bearings
on
the

caps
Cut
the

plasti

gage
to
the
width
of
the

bearing
and

place
it

along
the

crankpin

making
sure
that
it
is
clear
of

the
oil
hole
Install
the
bearing

caps
and

tighten
the
bearing

cap
bolts
to
a

torque
reading
of
4
5

5
5

kgm
33
40
Ib
ft
DO
NOT
turn
the
crankshaft
when

the

plastigage
is
inserted
Remove
the
main

bearing
cap
and
take

out
the

plastigage
which
should
be
measured
at
its
widest

po
t

with
the
scale

printed
in
the
plastigage
envelope
The
standard

clearance
is
0
020
0
062
mm
0
0008
0
0024
in
with
a
wear

limit
of
0
1
mm
0
0039
in
If
the

specified
limit
is
exceeded

an
undersize

bearing
must

be
used
and
the
crankshaft
journal

ground
accordingly
See
Technical
Data

Bearings
are
available

in
four
undersize
of
0
25
0
50
0
75
and
1
00
mm
0
0098

0
0197
0
0295
and
0
0394
in

Connecting
rod

bearing
clearance

The

connecting
rod

bearing
clearances
should
be
checked

in
a
similar
manner
to

the
main

bearing
clearances
The
standard

clearance
is
0
025
0
055
mm
0
0010
0
0022
in
with
a
wear

limit
of
0
1
mm
0
0039
in
Undersize
bearings
must
be
fitted

and
the

crankpins
reground
if
the

specified
wear
limit
is
ex

ceeded
See
Technical
Data

Bearings
are
available
in
six
under

sizes
of
0
6
0
12
0
25
0
50
0
75
and
1
00
mm
0
0236

0
0047
0
0098
0
0197
0
0295
and
0
0394
in

Fitting
the
crankshaft

bearings

Cb
eck
the
fit
of
the

bearing
shells
in
the
following
manner

Install
the
shells
on
the
main

bearing
caps
and

cylinder
block

bearing
recess

and

tighten
the

cap
bolts
to
the

specified
torque

13

Page 20 of 171


VALVE
CLEARANCES

Adjusting

Incorrect
valve
clearance
will
affect
the

performance
of

the

engine
and

may
damage
the
valves
and
valve
seats
Insuf

ficient
valve
clearance
will
result
in
loss
of

power
and

may

prevent
the
valve
from

seating
properly
Excessive
clearance

causes
the
valve
to
seat
and
reduces
the
amount
of

valve
lift

This
will
result
in

noisy
operation
with

damage
to
the
valves

and
seats

Adjustment
is
made
with
the

engine
switched
off

and
should
be
carried
out

initially
with
the

engine
cold
to

allow
the

engine
to
run
Final

adjustments
are
made
after

wanning

up
the

engine
to

its
Donnal

operating
temperature
The

engine
can
be
rotated

by
removing
the

sparking
plugs
to
release

the

cylinder
compressions
then

selecting

top
gear
and

pushing

the
vehicle
backwards
and
forwards

The
cold
valve
clearances
should
be
set
to
0
20
mm

0
0079
in
for
the
inlet
valves
and
0
25
mm
0
0098
in
for

the
exhaust
valves
Check
the
clearance
between
the
valve
and

rocker

using
a
feeler

gauge
as
shown
in

Fig
A
40
Slacken
the

locknut
and
turn
the
adjusting
screw
until
the

specified
clearance

is
obtained
then

tighten
the
locknut
and
recheck
the
clearance

The
feeler

gauge
should

just
be
free
to
move
between
the
rocker

and
valve
When
the
cold
valve
clearances
have
been
set
run
the

engine
until
it
reaches
its
normal

operating
temperature
then

switch
off
and

adjust
the
valve
clearances
with
the

engine
warm

to

0
25
mm
0
0098
in
for
the
inlet
valves
and
0
30
mm

0
0118
in
for
the
exhaust
valves

ENGINE
LUBRICATION
SYSTEM
Fig
A
41

OIL
PUMP
Removal
and

Dismantling

The
rotor

type
oil

pump
is
mounted
at
the
bottom
of
the

front

timing
cover
and
driven

by
the
distributor
drive
shaft

assembly

Overhaul
of
the

pump
will

require
careful
measurement

of

the
various
clearances
to
determine
the
amount

of
wear

which

has
taken

place
If

any
part
is
found
to
be
worn
it

may
be
neces

sary
to

replace
the
entire
oil

pump
assembly
To
remove
the
oil

pump
from
the

engine
proceed
as
follows

1
Remove
the
distributor

assembly
as
described
in
the

section
IGNITION
SYSTEM
Remove
the
oil

sump
drain

plug
and
drain
off
the

engine
oil
See
under
the
heading

CHANGING
THE
ENGINE
OIL

2
Remove
the
front
stabiliser
and
the
splash
shield
board

3
Withdraw
the

securing
bolts
and
detach
the
oil

pump

body
together
with
the
drive

gear
spindle

Take
out
the
bolts
securing
the

pump
cover
to
the

pump
body

and
withdraw
the
rotors
and
drive
shaft
See
Fig
A
42

The
pin
securing
the
driven
shaft
and
inner
rotor
must
not

00
taken
out
as
the
shaft
is

press
fitted
to
the
rotor
and
the

pin

is
caulked

Unscrew
the
threaded

plug
and
withdraw
the
regulator

valve
and

spring
Oean
each

part
thoroughly
and
examine
for

signs
of

damage
or
wear
Use
a
feeler

gauge
to
check

the
side

clearances
between
the
outer

and
inner
rotors
the
clearances

at
the

tips
of
the
rotors
and
the
clearance
between
the
outer

rotor
and
the

pump
body
See
Technical
Data
for
the
relevant

clearances
The
clearances
can

be
checked

using
a

straight
edge

as

shown
in

Fig
A
43

OIL
PUMP

Assembly
and
Installation

Assembly
is
a
reversal
of
the

dismantling
procedure
Before

installing
the
oil

pump
in
the

engine
it
will
be

necessary
to

rotate

the

engine
until
the
No
1

piston
is
at

T
D
C
on

its

compression
stroke

Fill
the

pump
housing
with

engine
oil
and

align
the

punch

mark
on
the

spindle
with
the
hole
in
the
oil

pump
as
shown

in

Fig
A
44

Install
the

pump
with
a
new

gasket
and

tighten
the

securing
bolts
to
a

torque
reading
of
1
1
1
5
kgm
8
1
Ilb
ft

Replace
the

splash
shield
board
and
the
front
stabiliser
refill

the

engine
with
the

specified
amount
of

engine
oil

OIL
FILTER

The

cartridge
type
oil
filter
can
be
removed
with
the

special
tool
ST
19320000
or
a
suitable
filter
remover
Interior

cleaning
is
not

necessary
but
the
ftIter

body
and
element
must

be

repiaced
every
10
000
km
6000
miles
Be
care
ul
not
to

overtighten
the
filter
when

replacing
or

oil
leakage

may
occur

CHANGING
THE
ENGINE
OIL

After
the
fIrst
oil

change
which
should
take

place
at
1000

km
600
miles
the
oil
should
be

changed
regularly
at
5000
km

3000
miles
intervals

Draining
is
more

easily
accomplished
after
a

lengthy
run

when
the
oil

being
thoroughly
warm
will
flow

quite
freely

Stand
the
vehicle
on
level

ground
and

place
a
suitable

container
under
the
drain

plug
Remove
the
drain

plug
carefully

as
the
hot
oil

may
spurt
out
with
considerable
force
When

refIlling
the

engine
make
sure

that
the
oil
is
to
the
H
mark
on

the

dipstick

19

Page 136 of 171


ENGINE

Dismantling

Remove

the

engine
from
the
vehicle
as

previously
described

and

carefully
clean
the
exterior

surfaces
The
alternator

distribu

tor

and
starter
motor
should
be
removed
before

washing
Plug

the
carhurettor

air
horn
to

prevent
the

ingress
of

foreign
matter

Place
the

engine
and
transmission
on

the
engine
carrier
ST4797

0000
if

available
and
dismantle
as
follows

Remove
the

gearbox
from
the

engine
Disconnect
the
intake

manifold

water
hose
the
vacuum

hose
and
the
intake
manifold

to
oil

separator
hose
Remove
the
intake
manifold
with
the

carburettor
Fit
the

engine
attachment
ST3720OG18
to
the

cylin

der
block
and

place
tre

engine
on
the
stand
ST371
00000

Remove
the
clutch

@
Ssembly
as
described
in
the
section

CLUTCH
Remove
the
exhaust
manifold
and
heat
baffle

plate

Take
off
the
fan
blades
and
remove
the
water

pump
pulley
and

fan
belt
Remove
the
rocker
cover
hose
manifold
heat
hose
and

by
pass
hoses

Remove
the

generator
bracket
and
the
oil
fIlter
Extract
the

engine
breather

assembly
from
above
Note
that
the
breather

is
fitted
to
the

guide
and
is
installed
with
a
O

ring
which
is

pressed
into
the

cylinder
block

Flatten
the
10ckwasher
and
unscrew
the
crankshaft
pulley

nut
Withdraw
the

pulley
with
the

puller
ST44820000
if
available

but
do
not
hook
it
in
the
V

groove
of
the

pulley

Remove
the
rocker
cover
and
take
off
the
rubber

plug

located
on
the
front
of
the
cylinder
head

Straighten
the
lock

ing
washer
and
remove
the
bolt

securing
the

distributor
drive

gear
and
camshaft

sprocket
to
the
camshaft
Remove
the
drive

gear
and
take
off
the

sprocket
See

Fig
A
3

Remove
the

cylinder
head
bolts
in
reverse

order
to
the

tightening

sequence
sOOwn
in

Fig
A
18
and
lift
off
the

cylinder

head
as
an

assembly
See

Fig
A
4
Note

that
in
addition
to
the

ten

cylinder
head
bolts
there
are
also
two
bolts

securing
the

chain
cover
to

the
head
Invert
the

engine
and
remove
the
oil

sump
Remove
the
chain
cover
and
oil

flinger
Take
off
the
nut

securing
the
oil

pump
sprocket
and
withdraw
the

sprocket
with

the
chain
in

position
as
shown
in

Fig
A5
Remove
the
oil

pump

and
stramer
Note

that
two
of
the

pump
mounting
bolts
are

pipe
guides

Remove
the

timing
chain
crankshaft

sprocket
chain
ten

sioner
and
chain

stop

Remove
the

connecting
rod

caps
and

push
the

piston
and

connecting
rod
assemblies

through
the
tops
of
the
bores

Keep

all

parts
in
order
so

they
can
be
assembled
in
their

original
posi

tions

Take

out
the

flywheel
retaining
bolts
and
withdraw
the

flywheel
Remove
the
main

bearing

caps
but
take
care
not
to

damage
the

pipe
guides
Lift
out

the
crankshaft
and
main
bear

ings
noting
that
the

bearings
must
be
reassembled
in
their

original

positions
Remove
the

piston
rings
with
a
suitable

expander
and

take
off
the

gudgeon
pin
clips
The

piston
should
be
heated
to

a

temperature
of
50
to
600
122
to
1400F
before

extracting

the

gudgeon
pin
Keep
the
dismantled

parts
in
order
so

they

can
be
reassembled
in
their

original
positions

Remove
the
camshaft
rocker
ann
shaft
and
rocker
ann

assemblies
from
the

head

by
taking
off
the
cam

bracket

clamp

ing
nuts
It
is
advisable
to
insert
disused
bolts
in
the
No
1

and

No
5
bracket
holes
as
the
cam
bracket
will
fall
from
the
rocker

ann
shaft
when

it
is
removed
Remove

the
valve

cotters

using

the

special
tool
ST47450000

and
dismantle
the
valve
assemblies
Keep
the

parts
together
so

they
can
be
installed
in
their

original

order

ENGINE

Inspection
and
Overhaul

Cylinder
head
and
valves

Inspection
and
overhaul

procedures
can

be
carried
out

by

following
the
instructions

previously
given
for
the
L14
LI6

and
LIB

engines
noting
the

following
points

Measure
the

joint
face
of
the

cylinder
head

using
a

straight

edge
and
feeler

gauge
The

permissible
amount
of
distortion
is

0
03
mm
0
0012
in
or
less
The
surface
of
the
head
must
be

reground
if
the
maximum
limit
of
0

1
mm

0
0039
in
is

exceeded

Oean
each
valve

by
washing
in
petrol
then

carefully
examine

the
stems
and
heads
Discard

any
valves
with
worn

or

damaged

stems
Use
a

micrometer
to
check
the
diameter
of
the
stems

which
should
be
8
0
mm
0
315
in
for
both
intake
and
exhaust

valves
If

the
seating
face
of
the
valve
is

excessively
burned

damaged
or
distorted
the
valve
must
be
discarded
The
valve

seating
face
and
valve

tip
can
be
refaced
if

necessary
but

only

the
minimum
amount
of
metal
should
be
removed
Check
the

free

length
and
tension
of
each
valve

spring
and

compare
the

figures
obtained
with
those

given
in
Technical
Data
at
the
end

of
this
section
Use
a

square
to
check
the

springs
for
deformation

and

replace
any
spring
with
a
deflection
of
1
6
mm
0
0630
in

or
more

Valve

guides

Measure
the
clearance
between
the
valve

guide
and
valve

stern
The
stem
to

guide
clearance
should

be
0
025
0
055
mm

0
0010
0
0022
in
for
the
intake
valves
and
0
04
0
077
mm

0
0016
0
0030
in
for
the
exhaust
valves
The
maximum
clear

ance

limit
is
0
1
mm
0
0039
in
The
valve

guides
are
held
in

position
with
an
interference
fit
of
0
040
0
069
mm
0
0016

0
0027
in
and
can
be
removed

using
a

press
and
valve

guide

replacer
set
ST49730000
under
2
ton

pressure
This

operation

can

be
carried
out
at
room

temperature
but
will
be
more
effec

tively

performed
at
a

higher
temperature
Valve

guides
are

available
with
oversize
diameters
of
0
2
mm
0
0079
in
The

cylinder
head
guide
bore
must
be
reamed
out
at

normal
room

temperature
and
the
new

guides
pressed
in
after

heating
the

cylinder
head
to
a

temperature
of

approximately
800
C
1760F

The
standard
valve

guide
requires
a
bore
of
14
0
14
018
mm

0
551
0
552

in
and
the
oversize
valve

guide
a
bore
of
14
2

14
218
mm
0
559
0
560
in
Ream
out
the
bore
of
the

guides

to
obtain
the
desired
finish
and
clearance
Use
the
reamer
set

ST49710000
to

ream
the
bore
to
8
000
8
015
mm
0
3150

0
3156
in
The
valve
seat

surface
must

be
concentric
with
the

guide
bore
and
must
be
corrected
if

necessary
using
the
new

valve

guide
as
axis

Valve
seat
inserts

Check
the
valve
seat

inserts
for

signs
of

pitting
The

inserts

cannot
be

replaced
but

may
be
corrected
if

necessary
using
a

valve
seat
cutter

ST49720000

Scrape
the
seat

with
the
450

cutter
then

reduce
the
width
of
the

contacting
faces

using
the

150
and
600
cutters
for
the
intake
valve
inserts
and
150
cutter

for
the
exhaust
valve
inserts
Seat
correction
dimensions
are

shown
in
millimeters
in

Fig
A
6

Lap
each
valve
into
its
seat
after

correcting
the
seat
inserts

Place
a
small

quantity
of
fme

grinding
paste
on

the

seating
face

of
the
valve

and
lap
in
as

previously
described
for
the
Ll4
LI6

and
L
18

engines

S5

Page 138 of 171


CAMSHAFT
AND
CAMSHAFT
BEARINGS

Check
the
camshaft

bearing
and

journals
for

signs
of
wear

Plastigage
should
be

used
to

check
the
clearance
between
bear

ing
and

journal
which
should
be
0
025
0
075
mm
O
OOl

0
0030
in

The

cylinder
head

assembly
must
be
renewed
if
the

wear

limit
of

0
mm
0
0039
in

is
exceeded

Place
the
camshaft
in
V
blocks
and

apply
a

dial

gauge

to
the
centre

journal
to
check

the
amount
of

camshaft
bend

The

run
out

of
the
camshaft
must
not
exceed
0
03
mm
0
0012

in
It
should
be
noted
that

the
actual
run
out
will
be
half
the

value
indicated
on
the
dial

gauge
when
the
camshaft

is
turned

one

full
revolution
Check
the
camshaft
end

play
which
should

be
within
0
07
0
148
mm
0
0028

0
0058

in

Check
the
earn

contacting
surfaces
of
the
valve
rocker
and

the
earn
heels
of
the
camshaft

Slight

damage
can
be
corrected

using
a
fine
oil
stone
It
is
advisable
at
this

stage
to

check
the

clearance
of

the
rocker
shaft
and
rocker
bushes
which
should
be

0
016
0
052
mm
0
0006
0
0020

in
The

parts
must

be
renewed

if

the
wear

limit
of
0
07
mm

0
0028
in
is
exceeded

CYLINDER

BLOCK

Inspection
and
Overhaul

Check
the
block
for

signs
of
cracks
or
flaws
Measure
the

joint
face
for
distortion

using
a

straight

edge
and
feeler
gauge

as

described
for

the
L14
Ll6
and
L18

engines
The
surface

must

be

reground
if
the
maximum
limit
of
0
10
mm
0
0039
in

is
exceeded

Check
the

cylinder
bores
for
wear
out

of
round
and

excessive

taper
Use
a
bore

gauge
to
take

readings
at
the

top

middle
and
bottom

positions
of
the
bore
as

previously
described

The
standard
bore
diameters
are

85
000
mm
0
035
0
mm

3
347
0
0014
0
in

with
a
wear
limit
of
0
2
mm
0
0079
in

Out
of
round
and

taper
must
not
exceed
0
02
mm
0
0008
in

If

any
of

the
bores
are

worn
or
in
excess
of
the

specified
limi
t

then
all
bores
must
be
rebored
at
the
same
time

Pistons
are

available
in
five
oversizes
and
should
be
selected

in
accordance
with
the
amount
of
wear
of
the

cylinder
Refer

to

the
instructions

given
for
the
Ll4
L16
and
L18

engines
and

select

pistons
from
the
table
below

PISTON
SIZE

Standard

250
5

500
5

750
S

1000
S

1250
S
OUTER
DIAMETER

84
958
84
990
mm
3
345
3
346

in

85
220
85
240
mm

3
355
3
356
in

85
470
85
490
mm
3
365
3
366

in

85720
85
740
mm
3
375
3
376
in

85
970
85
990

mm
3
3846
3
3854

in

86
220
86
240
mm
3
394
3
395
in

Cylinder
liners
can

be
fitted
if
the
bores
areworn

beyond

the
maximum
limit
Undersize
liners
are
available
with
outer

diam
ters
of
89
091
89
126

mm
3
507
3
509
in

and
inner

diameters
of
83

5
84
5
mm

3
287
3
327

in
The
liners
are

an

interference
fit
in
the
block
and
must
be
rebored
after

fitting

PISTONS

Checking

Oteck
the

pistons
for

signs
of
seizure
and
wear

measure

the
side
clearance
of
the

rings
in
the

ring
grooves
and
check

the

piston
ring
gaps
as

previously
described
for
the
L14
Ll6
and

Ll8

engines
Compare
the

figures
obtained
with
those

given
in

the
tables

opposite
Side
clearance
in

grooves

Top

ring

Second

ring

Oil

ring
Standard

0
04

0
08
mm

0
0016
0031
in

0
02
0
06
mm
0
0008
0

0024
in

0
02

0
06
mm
0

0008
0
0024
in

Limit

LO

mm
0
0039
in

LO
mm

0
0039
in

LO

mm
0
0039
in

Piston

ring

gap
Top
ring

Second

ring

Oil

ring

Top

ring

Second

ring

Oil

ring
Standard

0
35
0
55
mm
0
01

38
D
021
7
in

0
3
5
mm
0
0138
0
0197

in

0
35
55

mm
O
oJ38

0217

in

Limit

LO
mm

0
0394
in

LO
mm
0
0394

in

LO
mm

0
0394
in
Top

ring

Second

ring

Oil

ring

Measure
the
outer
diameter
of
the

gudgeon
pin
in
relation

to
the
hole
diameter
in

the

piston
Compare
the

figures
obtained

with
those

given
in
Technical
Data
and

replace
the

piston
and

pin
if
the
wear
limit
is
exceeded

CONNECTING
RODS

Checking

Check
the

connecting
rods
for
bends
or

twists

using
a

suit

able

connecting
rod

aligner
The
maximum
deviation
should
not

exceed
0
05
mm
0
0020
in

per
100
mm
3
94

in
of
rod

Straighten
or

replace
any
rod
which
does
not

comply
with
the

specified
limit
When

renewing
a
rod
make

sure
that
the

weight

difference

between
new
and
old
rods
in
within
6

gr
212
oz

Install
the

connecting
rods
with

bearings
to

the
correspond

ing
crank

pins
and
check

that
the
end

play
of
the

big
ends
is

between
0
10
0
246
mm
0
0043
0
0097
in

Replace
the

appropriate
rod
if

the
maximum
limit
of
0
3
mm
0
0118

in

is
exceeded

CRANKSHAFT

Inspection
and
Overhaul

Clean
the

crankshaft

thoroughly
and
check
the

journals

and
crank

pins
for

taper
and
out
of
round
Use
a

micrometer
to

measure
the

journals
and

crankpins
at
the

positions
shown
in

Fig
A

7
It
will

be

necessary
to

regrind
the
crankshaft
if
the

specified
limit
of
0
03
mm
0
0012
in
is

exceeded
and
then

fit

the

appropriate
undersize

bearings
Place
the
crankshaft
in

V

blocks
as
described
for
the
L14
L16

and
LIB

engines
and

apply
a

dial

gauge
to
the
centre

journal
to
check

that
the
bend

limit

of
0
05
mm

0
0020
in
is
not

exceeded
The
actual
bend

value
will
be
half
the

reading
obtained
on

the
gauge
Install
the

crankshaft
in
the

cylinder
block
and
check
the
crankshaft
end

float
which
should
be
0
060
0
192
mm

0
0024
0
0076
in

Replace
the
centre

shims
if
the

specified
figure
is
exceeded

Make
sure
that
the

main
drive
shaft

pilot
bearing
at

the
rear
of

the
crankshaft
is
not
worn
or

damaged
in

any
way
Remove

the

bearing
if

necessary
using
the

special
tool
ST49700000
as

shown
in

Fig
A
8
Clean

the

bearing
hole
oil
the
outer

side
of

the
new

bearing
and
use
a
drift
as
shown
in

Fig
A
9
to

drive

it
into
the
hole
Insert

2

grams
0
07
oz

of
multi

purpose
grease

into
the
hole
as
illustrated

Main

bearing
clearance

Check
the
main

bearing
clearances

as
described
for

the

Ll4
Ll6

and
Ll8

engines
The

Plastigage
should
be

placed
so

57

Page 140 of 171


that
it
is
clear
of
the
oil
hole
Install
the

bearing
caps
and

tighten
the

bolts
to
a

torque

reading
of
10
0
1
LO

kgm
72
3

79
51b
ft

The
standard
main

bearing
clearance
is
0
03
0
06
mm

0
0012
0
0024

in
with
a
wear
limit
of
0
1
mm
0
0039

in

If
the

specified
limit
is
exceeded
an

undersize
bearing
must

be

fitted
and
the
crankshaft

journal
ground
accordingly
Bearings

are
available
in
four
undersizes
See
Technical
Data

Connecting
rod

bearing
clearance

Check
the

connecting
rod

bearing
clearances
in
a
similar

manner
to
the
main

bearing
clearances
The
standard
clearance

is
0
03
0
06
mm
0
0012
0
0024
in
with
a
wear
limit
of
0

1

mm
0
0039
in
Undersize

bearings
must
be
fitted
and
the

crankpins
reground
if
the

specified
limit
is
exceeded
Bearings

are
available
in
four
undersizes
See
Technical

Data

Fitting
the
crankshaft

bearings

Check

the
fit
of
the

bearing
shells
in
the

following
manner

Install
the

bearings
on
the
main

bearing
caps
and

cylinder
block

bearing
recess
and

tighten
the

cap
bolts
to
the

specified
torque

reading
of
10
0
11
0

kgm
72
3
79
5
Ib
ft
Slacken

one
of
the

cap
baits
and
check
the
clearance
between
the

cap
and

cylinder

block
with
a
feeler

gauge
as
described
for
the
L14
Ll6
and

LIS

engines
The

bearing
crush
should
be
from
0
to
0
04
mm

0
to
0
0016
in

Replace
the

bearing
if
the
clearance
is
not
correct

Check
the

connecting
rod

bearings
in
a

similar
manner

after

tightening
the
rod

cap
bolts
to
a

torque
reading
of

4
5
5
0

kgm
32
6
36
2
Ib
ft

ENGINE

Assembling

Make
sure
that
all

components
are

perfectly
clean
before

starting
to
assemble
the

engine
Refer
to

the
instructions

given

for
the
L14
U6
and
LIS

engines

Cylinder
Head

Install
the
valve

spring
seats
and
valves
Fit
the
oil
seal

rings
on
the
valve
stems

and

place
the
seal

ring
covers
over

the

oil
seal

rings
Note

that
a

gap
of
from
0
3
to
0
7
mm
0
0118

to
0
0276
in
should
be

present
between
the
seal

ring
cover
and

spring
seat

If
the

gap
is
less
than
0
3
mm
0
0118
in

the
oil

seal

ring
or
the
cover
must
be

replaced
Assemble
the
valve

springs
and
retainers

Compress
the
valve

springs
and
install
the

cotters
See
instructions
for
the
LI4
U6
and
Ll8

engines

Assemble

the
camshaft

brackets
valve
rockers
seats

spacers

and

springs
on
the
rocker
shafts
in
the
order
shown
in

Fig
A
l
O

Note

that
the
exhaust
rocker
shaft
has
identification
marks

but

the
intake
rocker
shaft
has
not
Make
sure
that
the
oil
holes

point
in
the
direction
shown
It

may
be
advisable
to
insert

any

convenient
bolts
into
the
bolt
holes
of
the
front
and
rear
cam

shaft
brackets
to

prevent
the

assembly
from

being
displaced

Mount
the
camshaft
on

the
head
fit

the
rocker

assembly

and

tighten
the

nuts
Make
sure
that
the
mark
on
the

flange
of

the
camshaft
is

aligned
with
the
arrow
mark
on
the
No
I
earn

shaft
bracket
as
shown
in

Fig
A
II

Pistons
and

connecting
rods

Assemble
the

pistons
gudgeon
pins
and

connecting
rods

in
accordance
with
the

cylinder
numbers
Heat
the

piston
to
a

temperature
of
500
to
600
1220
to

1400F
and

press
the

gudgeon
pin
in

by
hand
The

pistons
and

connecting
rods
must
be
assembled
as
shown
in

Fig
A
12
with

the
arrow
mark
on
the
head
of
the

piston
pointing
to
the
front

of
the

engine

Fit
new

clips
to
both
ends
of
the

gudgeon
pins
as
indicated

in
Fig
A
13
Fit
the

piston
rings
with
the
marks

facing
upwards

Place
the

bearings
on
the

connecting
rods
and

caps
making
sure

that
the
backs
of
the

bearing
shells
are

perfectly
clean

Assembling
the

engine

Insert
the
oilscal
into
the

grooves
of
the

cylinder
block

and
rear

bearing
cap
Fit
the
seal
down
with
the

speCial
tool

ST49750000
if
available
as
shown
in

Fig
A
14

and
trim
off

the
excess
with
a
knife

Apply
sealing
agent
to

the
oil

plug
and

install
it
in
the
cylinder
block

Fit
the
main

bearings
lubricate
with
clean

engine
oil
and

install
the
crankshaft
Fit
the

bearing
caps
and

tighten
the
bolts

to

a

torque
reading
of
10
0
to
I
LO

kgm
72
3
to
79
5
Ib
ft

Note
that

liquid
packing
should
be

applied
to

the
rear
bear

ing
cap
surfaces
as
shown
in

Fig
A
15

Fit
the
thrust
washers
at
both
sides
of
the
No
2

bearing

with

the
oil
channel
in

the
washers

facing
the
thrust

face
of
the

crankshaft
Install
the
rear

bearing

cap
side
seal
so

that
is

projects

0
2
to

0
6
mm
0
008
to

0
024
in

from
the
lower
surface
of

the

cylind
r

block
then

apply
liquid
packing
to
the

projecting

tip

Install
the

engine
rear

plate
Fit
the

flywheel
and

tighten

the
bolts
to
a

lorque
reading
of
10
0
to
11
0

kgm
72
3
to
79
5

ib
ft

using
new
lock
washers

Lubricate
the
crankshaft

journals
pistons
and
cylinder

bores
with
clean

engine
oil
and
install
the

piston
and

connecting

rod
assemblies
The

pistons
should
be

arranged
so
that

the
arrow

marks
face
towards
the
front
and
with
the

piston
ring
gaps
at

1800
to
each
other
Make
sure
the

gaps
do
not
face
to
the

thrust
side
of
the

piston
or
in
the
same
axial
direction
as
the

gudgeon
pin

Install
the

connecting
rod

caps
o
that
the
marks
face
the

same

way
and

tighten
the
bolts
to
a

torque
reading
of
4
5
to

5
0

kgm
32
6
to
36
2
Ib
ft
Bend
the
lock
washers
as
shown

in

FigA16

Fit
the
oil

jet
to
the
front
of
the

cylinder
block
Install

the
chain
tensioner
and

stopper
crankshaft

sprocket
and
timing

chain

Note
that
the

timing
mark
on
the
chain
must
be

aligned

with
the
mark
on
the

sprocket
as
shown
in

Fig
A
17

Smear
the

mounting
face
of
the
oil

pump
with

sealing
agent

Three
Bond
No
4
or

equivalent
install

the

pump
and

tempora

rily
tighten
the

mounting
bolts

Adjust
the
tension
of
the
oil

pump
chain

using
the

pin
as
the
central

point
then

tighten
the

mounting
bolts

Install
the
oil
thrower
Fit
the
chain
cover
into

position

after

coating
the
new
cover

gasket
with

sealing
compound
Cut

off
the

projecting
parts
of
the

gasket

Fit
the
crankshaft

pulley
and

tighten
the

pulley
nut
to
a

torque
reading
of
15
0
to
20
0

kgm
108
5
to
144
61b
ft
Bend

the
lock
washer
Install
the
oil
strainer
and
oil

pump

Invert
the

engine
and
set
the
No
I

piston
to

T
D
C
of
the

compression
stroke
Note

that
the
notch
on
the
crankshaft

S9

Page 162 of 171


BrakIng
System

Description

Front

disc
brake
Friction

pads

Front

disc
brake
Removal
and
Installation

Rear
drum

brake
Removal
and
Installation

Master
Vac
Servo
Unit

Handbrake

cables
Removing

Handbrake

Adjusting

Brake

pedal

Adjusting

Rear
drum

brake

Adjusting

Bleeding
the

hydraulic
system

DESCRIPTION

The
vehicle
is
fitted
with
disc
brakes
for
the
front
wheels

and
leading
trailing
shoe

type
drum
brakes

for
the
rear
wheels

A
conventional

single
master

cylinder
is
fitted
to

the

Standard
and
DeLuxe
models
See

Fig
D
I
for
details
The

DeLuxe
models
are
however
additio

ally
equipped
with
a

Master
Vae
servo

unit
which

provides
a

much
higher
braking

performance
with
minimum
force

required
on
the
brake

pedal

A
tandem
master

cylinder
and
Master
Vac
servo
unit
are

fitted
as
standard

equipment
to
the
Datsun
CL30UA
and
CL3

OUT
models
Fig
D
2

gives
an

exploded
view
of
this

type
of

master

cylinder

The
handbrake
is
of
the
mechanical
type
with
the
handle

linked
to
the
rear
shoe

operating

lever
through
a
system
of

rods
and
wires
See

Fig
D
3

As
on

previous
models
a

brake

pressure
differential
warn

ing
light
switch
is

incorporated
with
dual
brake
circuits
The

front
and
rear
brake

systems
are
connected
to
the
switch
which

provides
a

warning
via
a

warning
light
on
the
instnllnent
panel

when
a

pressure
difference
of
13
to
17

kg
sq
cm
IB5
to
242

lb
sq
in
occurs
between
the
front
and
rear

systems

Brake

piping
layouts
of
the
single
and
tandem
master

cylinder
systems
are
shown
in

Figs
D
4
and
0
5

FRONT
DISC
BRAKE
Friction

pads

The
disc
brakes
are
self

adjusting
but
the
friction

pads

should
be
checked
for
wear
after
the
fIrst
6
000
un
4
000
miles

and
then

every
5
000
km
3
000
miles
The

pads
must
be

replaced
if
the
friction

lining
on

any
pad
has
worn
to
less
than

1
0
mm
0
04
in

The
thickness
of
the

pads
can

easily
be
checked
after
remov

ing
the
anti
rattle

clip
from
the
calliper
plate

Full

servicing
procedures
are

given
in
the
section
BRAKING

SYSTEM
for
vehicles
fitted
with
Ll4
Ll6
and
Ll8

engines

FRONT
DISC
BRAKE
Removal
and
Installation

Refer
to

the
section
BRAKING
SYSTEM
for
the
Ll4
L16

and
LIB

engines
for
full
details
of
the
removal

and
installation

procedures

Check
the
thickness
of
the
friction

pads
as

previously

described

and

replace
them
if

necessary
Check

the
brake
disc
for

scoring
and
out
of

round
The

standard
diSc
thickness
is
10
0
mm
0
394

in
and
must
not

be

reground
below
8
40
mm
0
331
in
The
run
out

of
the

disc
should
be
less
than
0
06
mm

0
0024
in
and
can
be

checked

with
a
dial

gauge
positioned
near

the
outer

diameter

of
the
disc
as

previously
described

REAR
DRUM
BRAKE
Removal
and
Installation

The
rear
drum
brakes
See

Fig
D
6
can
be
removed
and

inspected
as
described
in
the

section
BRAKING
SYSTEM
for

vehicles
fItted

with
L14
L16
LIB

engines

Examine
the
brake
drums
for

scoring
and
out
of

round

The

maximum
inner
diameter
of
the

drum
must
not

exceed

229
6
mm
9
040

in
after

reconditioning
Out
of
round
should

be
below
0
05
mm
0
002
in

Renew

the
brake
shoe

linings
if

they
are
contaminated
or

incorrectly
seated
or
if
the

thickness
of
the

lining
has
been

reduced
to

1
5
mm

0
06
in
or
less
Oil
or

grease
can
be
re

moved
from
the

linings
by
cleaning

thoroughly
with
carbon

tetrachloride
or

petrol

Check
the
shoe

return

springs
and

replace
them
if

they

have
become
weakened
Check
the

bores
of
the
wheel

cylinders

for

signs
of
wear

damage
or
corrosion
Renew
the

cylinders

and

pistons
if
the
clearance

between
the
two

parts
exceeds
to

0

15
mm

0
006
in
Renew
the
c

ps
when

overhauling
the

wheel

cylinders

MASTER
V
AC
SERVO
UNIT

Removing
and

Dismantling

The
servo

unit
should
be
removed
and
overhauled
at

yearly

intervals
A
Master
Vac

repair
kit

is
available
and
all

parts

marked
in

Fig
D
7
should
be
renewed
after

dismantling
the

unit
These
items
are
all

supplied
as

part
of
the
repair
kit

The
unit
can
be

removed
as

follows

Remove
the
clevis

pin
from
the

push
rod
and
detach
the

Master
V
ac

unit
from
the
brake

pedal

2
Disconnect

the
brake
tube
from
the
master

cylinder
and

the
vacuum
hooe
from
the
Master
Vac

3
Take

off
the

retaining
nuts

and
remove
the
Master
Vac
and

spacer
then

separate
the
master

cylinder
from
the
Master

Vac

Mark

the
front

cylinder
shell

and
the
rear
shell

and
stud

assembly
before

dismantling
the
unit
then

proceed
as

follows

S31