stop start DATSUN 610 1969 Workshop Manual

Page 36 of 171


and
seats
or
a
weak

diaphragm
return

spring

A

pressure
above
the

specified
figure
may
be
due
to

an

excessively
strong
and
tight
diaphragm

Capacity
test

The

capacity
test
can
be

carried
out
when
the
static

pressure
has
been
tested
and
conforms
with
the

specified
figure

of
0
18

kg
sq
cm
2
6Ib

sq
inJ

Disconnect
the
fuel
line
at

the
carburettor

and

place
a

container
under
the
end
of
the

pipe
to
act
as
a
fuel

sump

Start
the

engine
and
run
it
at
a

speed
of
1000

Lp
m
The

amount

of
fuel
delivered
from
the

pump
in
one
minutc
should

be

1000
cc
2
1
US

pt

If

petrol
does
not
flow
from
the

opcned
end
of

the
pipe

at
the
correct
rate
then
either
the
fuel

pipe
is

clogged
or

the

pump
is
not

operating
correctly

If
the
latter
cause
is

suspected
the

pump
must
be
removed

and

inspected
as
described
below

FUEL
PUMP

Removing
and

Dismantling

Before

removing
the
pump
take
off
the

petrol
tank

cap

and
disconnect
the

pump
inlet
and
outlet

pipes
Blow

through

the

pipes
with

compressed
air
to

make
sure

that

they
are
not

clogged

Remove
the

pump
retaining
nuts

withdraw
the

pump
and

dismantle
it
in
the

following
order

Referring
to

Fig
D
l

Take
out
the
screws

holding
the
two

body
halves

together

and

scparate
the

upper
body
from

the
lower

body

2
Remove
the

cap
and

cap
gasket

3
Unscrew
the
eI
bow
and
connector

4
Take
off

the
valve
retainer
and
remove
the
two
valves

5
To
remove
the

diaphragm
diaphragm
spring
and
lower

body
sealing
washer

press
the

diaphragm
down

against

the
force
of
the

spring
and
tilt
the

diaphragm
at
the
same

time
so
that
the

pull
rod
can
be
unhooked
from
the
rocker

arm

link

Fig
D
7

The
rocker
arm

pin
can

be
driven
out
with
a
suitable

drift

FUEL
PUMP

Inspection
and

Assembly

Check
the

uppcr
and

lower

body
halves
for
cracks

Inspect

the
valve
and
valve

spring
assembly
for

signs
of
wear
and
make

sure
that
the

diaphragm
is
not

holed
or

cracked
also
make
sure

that
the
rocker
arm
is
not
worn
at
the

point
of
contact
with

the

camshaft

The
rocker
arm

pin
may
cause

oil

leakage
if
worn

and

should
be
renewed
Assembly
is
a
reversal
of
the
dismantling
procedure

noting
the

following
points

Fit
new

gaskets
and
lubricate
the
rocker
arm
link
and
the

rocker
arm

pin
before

installing

The

pump
can
be
tested

by
holding
it
approximately
I

metre
3

feet
above

the
level
of
fuel

and
with
a

pipe
connected

between
the
pump
and
fuel
strainer

Operate
the
rocker
ann

by
hand
the

pump
is

operating

correctly
if
fuel
is
drawn

up
soon
after

the
rocker
ann
is

released

CARBURETTOR
IDLING
ADJUSTMENT

The

idling
speed
cannot
be

adjusted
satisfactorily
if
the

ignition
timing
is
incorrect

if
the
spark
plugs
are

dirty
or
if

the
valve
clearances
are
not

correctly
adjusted

Before

adjusting
the

idling
speed
set
the
hot
valve

clearances

t
o
0
25
mm
0
0098
in
for
the
intake
valves

and

0
30
mm
0
0118
in
for
the
exhaust
valves
as
described
in

the
ENGINE

section

Idling
adjustment
is
carried
out

with
the
throttle

stop

screw
in

conjunction
with
the

idling
adjustment
screw

See

Fig
D
8

Run
the

engine
until
it
attains
its
normal

operating

temperature
and
then
switch
off

Starting
from
the
fully
closed

position
unscrew
the

idling
adjustment
screw

by
approximately
three
turns

Screw
the
throttle

stop
screw
in

by
two
or
tftr
e
turns
and

start

th
engine

Unscrew
the
throttle

stop
screw
until
the

engine
commences

to
run

unevenly
then
screw
in
the

idling
adjustment
screw
so

that
the
engine
runs

smoothly
at
the

highest
speed

Readjust
the
throttle

stop
screw
to

drop
the

engine
speed

of

approximately
600
r

p
m
is
obtained

WARNING
Do
not

attempt
to
screw

the

idling
adjustment

screw

down
completely
or
the

tip
of
the
screw

may
be

damaged

FAST
IDLE
OPENING
ADJUSTMENT

The
choke
valve
is

synchronized
with
the
throttle
valve

and
connected
to
it

by
levers
as
shown
in

Fig
D
9
The
fast

idle
opening
can
be
check

by
fully
closing
the
choke
valve
and

measuring
the
clearance
between
the

primary
throttle
valve
and

the
wall
of

the
throttle
chamber
This
clearance

being
shown

as
A

in
the
illustration
The
clearance
for

the
carburettor

types
is
as
follows

Carburettor

type
Throttle

opening

angle

180

180

190
Dimension
A

213304
361

13304
4
I

13282
331
1
55mm
0
06lin

1
55mm
0
06Iin

1
3
mm
0
051
in

35

Page 40 of 171


FLOAT
LEVEL

Adjustment

A
constant
fuel

level
in
the
float

chamber
is
maintained

by

the
float
and
ball
valve

Fig
D
12
If
the
fuel
level
is
not

in

accordance
with
the
level

gauge
line
it
will
be

necessary
to
care

fully
bend

the
float
seat
until
the
float

upper
position
is

correctly

set

Fig
D
13

The
clearance
H
between
the
valve
stem

and
float
seat

should
be
1
0
mm
0
039
in
with
the
float

fully
lifted
as
shown

Adjustment
can

be
carried
out

by
carefully
bending
the
float

stopper
Fig
D
14
until
the

required
clearance
is
obtained

SU
TWIN
CARBURETTORS

Adjustments

It
is
essential
that
the
two

carburettors
are

correctly
adjusted

if

peak
m3l1ce
and
economical
fuel

consumption
is
to
be

realized
Incorrect
carburettor

a
ljustment
will
have
an
adverse

affect

during
idling
and
on

acceleration
etc

Carburettor

synchronization
and

idling
adjustment

Run
the

engine
until
it
reaches
its
normal

operating

temperature
remove
the
air
cleaner
and
slacken

the
front

and

rear
throttle

adjusting
screws
the
balance
screw
and
the
fast

idling
setting
screw
Make
sure
that
the
front
and
rear
throttle

shafts
are
not
connected

Fully
tighten
the

idling
adjustment

nuts
of

the
front

and
rear

carburettors

Fig
D
15

the
back

off
each
nut

by
an

equal
amount
and

by
one
and
a
half
to
two

tUrns

Screw
in
the
front
and
rear
throttle

adjusting
screws

by
a

few
turns
and
start
the

engine
Allow
the

engine
to
reach
its

normal

operating
temperature
before

proceding
to

the
next

stage

Adjust
the
front
and
rear
throttle

adjusting
screws
until

the

engine
speed
is
reduced
to

approximately
600
700
r

p
m

The

engine
should
turn
over

smoothly
and

consistently
Apply

a

flow
meter
to
the
front
carburettor
air
cleaner

flange
and
turn

the

adjustment
screw
on
the
flow
meter
so
that
the

upper
end

of
the
float
in
the

glass
tube
is
in

line
with
the
scale
Uft
off
the

flow
meter

and
apply
it
to

the
rear
carburettor
air
cleaner

flange

without

altering
the

setting
of
the
flow
meter

adjusting
screw

If

the

position
of
the
flow

meter
float
is
not

aligned
with
the

scale

adjust
the
rear
carburettor

throttle
adjusting
screw
to

align
the
float
with
the
mark
on
the
scale

With
the
carburettor
flow

correctly
adjusted
turn
the

idling
adjustment
nuts

of
both
carburettors

approximately
1
8

of

a
turn

either
way
to
obtain

a
fast

and
stable

engine
speed

Both
nuts
must

be
turned

by
an

equal
amount

Back
off
the
front
and
rear
throttle

adjusting
screws
and

adjust
the

engine
speed
to

the

specified
value
of

650
r

p
m

for

the
standard

engine
or
700
r

p
m
with
vehicles
fitted
with

automatic
transmission
Make
sure

that
the
air
flow
of

both

carburettors
remains

unchanged
Screw
in
the
balance
screw

until
the
screw
head
contacts
the

throttle
shafts
without

changing
the

idling

speed
setting

Move
the
throttle

connecting
shaft
and
accelerate
the

engine
a
few
times
then
check
that
the

idling
speed
is

unchanged

Turn
the
fast
idle

setting
screw

to
increase
the

engine
speed

to

approximately
1500

r

p
m
and
recheck
with
the
flow
meter
that
the
air
flow
for
both
carburettors
is

correctly
matched
If

the
air
flow
is
uneven

it
will
be

necessary
to

readjust
the
balance

screw

Finally
back
off

the
fast
idle

setting
screw

Fig
D
16

and
decrease
the

engine
speed
Apply
the
flow
meter
to

the

carburettors
to
confirm
that
the
float

positions
are
even
Re

adjust
if

necessary
by
means
of

the
throttle

adjusting
screws

Stop
the

engine
and
fit
the
air
cleaner

SU
TWIN
CARBURETTOR

Dismantling

Piston
and
suction
chamber

Dismantling

Unscrew
the
plug
and
withdraw
the

piston
damper
Fig
D

17
Remove
the
four
set
screws

and
lift
out

the
suction

chamber
withdraw
the

spring
nylon
washer
and
the

piston

Take
care
not
the

damage
the

jet
needle
and
the
interior
of

the

suction
chamber

Do
not
remove
the

jet
needle
from
the

piston
unless

absolutely
necessary
If
a

replacement
is
to
be
fitted
ensure
that

the
shoulder
of
the
needle
is
flush
with
the
lower
face
of

the

piston
This

operation
can

be
accomplished
by
holding
a
strai

edge
over
the
shoulder
of
the
needle
and
then

tightening
the

set
screw
as
shown
in
Fig
D
18

Wash
the
suction
chamber
and

piston
with
dean
solvent

and

dry
with

compressed
air
Lubricate
the
piston
rod
with
a

light
oil
Do

NOT
lubricate
the

large
end
of
the

piston
or
the

interior
of
the
suction
chamber

NOZZLE

Dismantling

The
nozzle
See
Fig
D
19
can
be
removed

quite
easily

but
should
not
be
dismantled
unless

absolutely
necessary
as

reassembly
of

the
nozzle
sleeve
washer
and
nozzle
sleeve

set
screw
is
an

extremely
intricate

operation

To
remove
the
nozzle
detach
the

connecting
plate
from

the
nozzle
head

pulling
lightly
on

the
starter
lever
to
ease
the

operation
Loosen
the

retaining
clip
take
off
the
fuel
line
and

remove
the
nozzle
Be
careful
not
to

damage
either
the
jet

needle
oc

the
nozzle
Remove
the
idle

adjusting
nut
and

spring

The
nozzle
sleeve
can
be
removed
if

necessary
by
taking
out

the
set
screw
but
as
previously
stated
should
not
be
dismantled

unless

absolutely
necessary

SU
TWIN
CARBUREfTOR

Assembly

Assemble
the

piston
assembly
into

position
but
do
not

fill
with

damper
oil

Assemble
the
nozzle
sleeve
washec
and
set
screw

by

temporarily
tightening
the
set
screw

Set
the
piston
to
its

fully

closed

position
and
insert
the
nozzle
until
it
contacts

the
nozzle

sleeve
When

the
nozzle

jet
contacts
the

jet
needle
the
nozzle

sleeve
must
be

slightly
adjusted
so

that
it
is
at

right
angles
to
the

centre
axis

and
positioned
to
leave
the
nozzle

jet
clear
of

the

jet
needle
Raise
the

piston
without

disturbing
the
setting
and

allow
it
to

drop
The

piston
should

drop
smoothly
until
the

stop
pin
strikes
the
venturi
with
a

liaht
metallic
click
See
below

under

Centering
the

jet
Tighten
the
nozzle
sleeve
set
screw

remove
the

nozzle
install
the
idle

adjustinJ
spring
and

adjusting

nut
on
the
nozzle
sleeve
and
refit
the
nozzle

39

Page 42 of 171


1

Oil
cap
nut

2
Suction

chomber

3
Suction

piston

4

Li

tingpin

S

Stop
pin

6
Oil

dDmper

7

Plunger
3

j

I

r

L
2

1

Fig
0
17

Inspecting
the

suction

piston

STlq
O

OO

Fig
D
20

Checking
the
float
level
SU

twin
carburettors

q
J

iT

j

I

@

@

J
1
Conn

ctingrod

2

Wi
guard

3
Choke

lever

4

Connecting
plate

7
S
Thrott

adjusting
SC
Tt
W

6
Fast
id
lever

7

Throttle

adjusting
p1at

8
Throttle

valv

9

Throttlevalv
cletlran

B

Fig
D
22

Adjusting
the

starting
interlock

opening
inteN
lli
i

D

U
I

i

n

1
Jet
n
edle

2
Set
screw

Fig
D
18

Installing
the

jet
needle

1
Nozzle
sleeve

2
Wa
sher

3
Nozz
det
V
d
C1e
W

4

Ad
u
ting
him

5

dlingadjustment
spring

6

Idling
adjustment
nut

Z
Nozz
c
J

Fig
D
l9

Dismantling
the
nozzle

assembly

3

I
Float
lever

2
Bend
here

loadju5t

dimension
H

3
Va
veslem
r

F

Fig
D
21

Adjusting
the
float

level
SU

twin
carburettors

Fig
D
23

Checking
the

damper
oil

41

Page 109 of 171


interQ
8
j

@W
2

m
tV

r
ReJld

cop
level

th
elk

FIg
M
I

llIecking
the

specific
gra
ity
of
the

battery
electrolyte
I
Thermal
u
e

Hydrometer

f
j
0
l

Q

I
iJ

Qy@

I
@
@

@
ti

II
@
@

Fig
M
3
Brush
cover
removed

j
i

Fill
M
2
Starter
motor

components

1

L
u
uJIner

pin

2
Drive
mil
Nack

t

3
Dult
COPD

4
E
mmtle
r

5
Aut
mzl

6
Solmoid
mlch

7
Arm
zturr

8
Thnut

9
IJriv
mil

blllck
t
bush

10
17uust

WdSMr

11

Stop
washer

12
CiTc
ip
13
PirUon

srap
collar

14
Pinion

IS
IWfni1l6
clutch

16
Field

coil

17
Yok

18
Politive
brwh

19

N
J1iP
bnuh

20
Bnuh

rprinK

21
Brullr
holder

22

Bearing
bwh

23
Rmr
COJIU

24

Through
botrr
@

FIg
M
5
Yoke

assembly
removed

Fill
M
4
Solenoid
switch
1

108
Fig
M
6
Annatore

assembly
and

engagemenr

lever

removed

Page 110 of 171


ElectrIcal

EquIpment

DESCRIPTION

BATTERY
Maintenance

STARTER
MOTOR

Removal
and

Dismantling

STARTER
MOTOR

Testing

STARTER
MOTOR

Assembly
and
Installation

ALTERNATOR
Removal

Dismantling
and

Inspection

DESCRIPTION

A
12
volt

negative
earth
electrical

system
is
used
in
which

the

battery
is

charged
by
an
alternator
In
the
alternator
a

magnetic
field
is

produced
by
the
rotor

which
consists
of
the

alternator
shaft
field
coil

p
le

pieces
and

slip
rings

Output
current
is

generated
in
the
armature
coils
located

in
the
stator
Six
silicon
diodes
are

incorporated
in
the
alternator

caSing
to

rectify
the

alternating
current

supply
A
voltage

regulator
and

pilot
lamp
relay
are
built
in
the

regulator
box

which

nonnally
does
not

give
trouble
or

require
attention

The
starter
motor
is
a

brush

type
series
wound
motor

in

which

positive
meshing
of
the

pinion
and

ring

gear
teeth
are

secured

by
means
of
an

overrunning
clutch

BATTERY
Maintenance

The

battery
should
be
maintained
in
a
clean
and

dry

condition
at
all
times
or
a
current

leakage
may
occur

between

the
terminals
If

frequent
topping

up
is

required
it
is
an

indication
of

overcharging
or
deterioration
of
the

battery

When

refitting
the
cables
clean
them

thoroughly
and
coat

their

terminals
and
the
terminal

posts
with

petroleum
jelly

Check
the
level
of
the

electrolyte
in
the

battery
at

frequent

intervals
and

top
up
if

necessary
to

the
level
mark
on

the

battery
case
with
distilled
water
A

hydrometer
test
should
be

carried
out

to
determine
the
state

of

charge
of

the

battery
by

measuring
the

specific
gravity
of
the

electrolyte
It
should
be

pointed
out

that
the
addition
of

sulphuric
acid
will
not

normally

be

necessary
and
should

only
be
carried
out

by
an

expert
when

required

The

specific
gravity
of
the

electrolyte
should
be
ascertained

with
the

battery

fully
charged
at
an

electrolyte
temperature
of

200C
680F

The

specific
gravity
of
the

electrolyte
decreases
or
increases

by
0
0007
when
its

temperature
rises
or
falls

by
10C
1
80F

respectively

The

temperature
referred

to
is
that
of
the

electrolyte
and

not
the
ambient

temperature
to
correct
a

reading
for
an
air

temperature
it
will
be

necessary
to

add
0
0035
to
the

reading

for

every
50C
above
200C

Conversely
0
0035
must

be
deducted

for

every
SOC
below
200C
Test
each
cell

separately
and
draw

the

liquid
into
the

hydrometer
several
times
if
a
built
in

thermometer
type
is
used

The
correct

specific
gravity
readings
should
be
as
follows
ALTERNATOR

Assembly
and
Installation

HEAD
LAMPS

Replacing

HORN

INSTRUMENT
PANEL
Removal

WINDSCREEN
WIPERS

WINDSCREEN
WASHERS

IGNITION
SWITCH
AND
STEERING
LOCK

Cold
climates

Temperature
climates

Tropical
climates
Permissible

value

Over
1
22

Over
1
20

Over
1
18
Fully
charged
at
200C

680F

1
28

1

26

1
23

The

battery
should
be

recharged
if
a
low

specific
gravity

reading
is
indicated

Always
disconnect
both
terminals
of
the

battery
when

charging
and
clean
the
terminal

posts
with
a

soda

solution
Remove
the
vent

plugs
and

keep
the
electrolyte

temperature
below
450C
l130F
during
charging

Check
the

specific
gravity
after

charging
and
if
it
is
above

1
260
at

200C
680C
add
distilled
water

STARTER
MOTOR
Removal
and
Dismantling

As
previously
stated
the
starter
motor

is
brush

type
series

wound
motor
in
which
the

positive
meshing
of
the

pinion
and

ring
gear
teeth
are
secured

by
an

overrunning
clutch
The
over

running
clutch

employs
a
shift
lever
to
slide
the

pinion
into

mesh
with
the
flywheel
ring

gear
teeth
when
the
starter
is

operated

When
the
engine
starts
the

pL
lion
is

permitted
to
overrun

the
clutch
and
armature

but
is
held
in
mesh
until
the
shift
lever

is
released
An

exploded
view
of
the
starter

is
shown
in

Fig
M
2

To
remove
the
starter

motor

proceed
as
follows

Disconnect
the

battery
earth
cable

2
Disconnect
the
black
and

yellow
wire
from
the
solenoid

terminal
and
the
black
cable
from
the

battery
terminal

3
Remove
the
two
bolts

securing
the
starter
motor
to
the

clutch

housing
Pull
the
starter
motor

assembly
forwards

and
withdraw

it
from
the
v
hicle

To
dismantle
the
starter

motor
ftrst
remove
the
brush

cover
and
lift
out

the
brushes
as
shown
in

Fig
M
3

Loosen
the
nut

securing
the

connecting
plate
to

the

solenoid
M
terminal
Remove
the
solenoid

retaining
screws

take
out

the
cotter

pin
and
withdraw

the
shift
lever

pin
Remove

the
solenoid

assembly
as
shown
in

Fig
M
4

Remove
the
two

through
bolts

and
rear
cover

assembly

then
remove

the
yoke
assembly
by
lightly
tapping
it
with
a

wooden
mallet

Fig
M
S
Withdraw
the
armature
and
shift

lever

Fig
M
6
Remove
the
pinion

stopper
from
the

armature
shaft

by
removing
the

stopper
washer
pushing
the

109

Page 112 of 171


stopper
to

the
overrunning
clutch

side
and
removing
the

stopper
clip
Remove
the

stopper
and

overrunning
clutch
as

shown

inFig
M
7

Oean

the
dismantled

components
and
check
them
for

wear
or

damage

Cbeck
the
brushes
and
renew

them
if
worn
below
6
5mm

0
257
in
Fit
new
brushes
if
the
brush
contact
is
loose
Cbeck

the
brush
holders
and

spring
clips
and
make
sure

that

they
are

not
bent
or
distorted
The
brushes
should
move

freely
in

their

housings
and
can
be
eased
with
a
file
if

necessary
The
brush

spring
tension
should

be
approximately
0

8kg
1
76Ib

and

can
be
checked
with
a

spring
balance
as

shown
in
Fig
M
S

Armature

assembly

Make
sure
that
the
surface
of
the
commutator

is
not

rough
or

pitted
Oean
and

lightly
polish
with
a
No
500

emery

cloth
if

necessary
If
the
commutator
is

badly
worn
or

pitted

it
should
be
skimmed
in
a
lathe

only
a

light
cut
must

be
taken

to
remove

the
minimum
amount

of
metal
If
the
commutator

diameter
wear
limit
of
0
2mm
0
OS
in

is
exceeded
the

assembly
must
be

renewed

Undercut

the
mica
between
the
commutator

segments

when
the

depth
of
mica
from
the
surface
of
the

segment
is

less
than
0
2mm
0
08

in
The

depth
should
be
between

0
5
0
8mm
0
0197
0
0315
in
as
shown
in

Fig
M
9

The
armature
shaft
should
be
checked
for

straightness

by
mounting
between

the
centres
of
lathe
and

positioning

a
dial

gauge
as
shown
in

Fig
M
I
O
Renew

the
armature

if
the

bend
of
the
shaft
exceeds
0
08mm
0
0031
in

Field
coils

testing

Test
the
field
coils
for

continuity
by
connecting
a

circuit

tester
between
the

positive
terminal
of
the
field
coil
and
the

positive
terminal
of
the
brush
holder
as
shown
in

Fig
M

I
I
If

a

reading
is
not

obtained
the
field
circuit
or
coil
is

open

Cbnnect
the
tester
to
the

yoke
and
field
coil

positive

teoninal
as

shown
in

Fig
M
12
to

check
the
field
coils
for

earthing

Unsolder
the
connected

part
of
each
coil
and
check
the

circuit
for

earthing
in
a
similar
manner

Renew
the
field

coils

if

they
are

open
earthed
or
short
circuited

Outch
assembly

The

overrunning
clutch
must
be

replaced
if
it
is

slipping

or

dragging
Examine
the

pinion
and
sleeve

making
sure
that

the

sleeve
is
able
to
slide

freely

along
the
armature
shaft

spline

Inspect
the

pinion
teeth
for

signs
of

rubbing
and
check
the

fly

wheel

ring
gear
for

damage
or
wear

Bearings

Inspect
the
metal

bearing
bushes
for
wear
and
side

play

The
bushes
must

be
renewed
if
the
clearance

between
the

bearing

bush

and
armature
shaft

is
in
excess
of
0
02mm
0
008
in

New

bearing
bushes
must
be

pressed
in
so
that

they
are
flush

with
the
end
of
the
case
and
reamed
ou
t
to

give
a
clearance
of

0
03
0
10
mm
0
0012
0
0039
in

H
Solenoid

assembly

Inspect
the
solenoid
contact
surface
and

replace
if

showing

signs
of

wear
or

roughness
Replace
the

pinion
sleeve

spring
if

weakened

Check
the
series
coil

by
connecting
an

8
12

volt

supply

between
the
Sand
M
terminals
as
shown
in

Fig
M
13
The

series
coil
is
normal
if
the

plunger
operates

Test
the
shunt
coil

by
connecting
the
S
terminal
the
M

terminal
and
the
solenoid

body
as
shown
in
the
lower
illustration

of

Fig
M
13

Open
the
M
terminal
when
the

plunger
is
operated

the
shunt
coil
is

satisfactory
if
the

plunger
stays
in
the

operated

position

Measure
the

length
L
between

theylonger
adjusting
nut

and
solenoid
cover

Press
the

plunger
against
a

firm
surface
as

shown
in

Fig
M
14
and
check
that
the
dimension
is
within

the
figures

given
Turn
the

adjusting
nut
if

necessary
until
the

required
dimension
is
obtained

STARTER
MOTOR

Assembly
and
Installation

The
assembly
and
installation

procedures
are
a
reversal

of
the
removal
and

dismantling
operations
When

assembling

the
starter
smear

the
armature
shaft

spline
with

grease
and

lightly
oil
the

bearing
bushes
and

pinion

ALTERNATOR

The
alternator
is
driven

by
the
fan
belt
and
has
an
advant

age
over
a

dynamo
in
that
it

provides
current
at

low

engine

speeds
thereby
avoiding
battery
drain
Maintenance
is
not

normally
required
but
the
tension
of
the
fan
belt
should
be

checked
and

adjusted
if

necessary
as

described
in
the

section

COOLING
SYSTEM
Care
must
be
taken
not
to

overtighten

the
fan
belt
or

the
alternator

bearings
will
be
overloaded

The
alternator

output
can
be
checked
with
the
alternator

in

the
vehicle

by
carrying
out
the

following
test
Ensure
that
the

battery
is

fully
charged
Withdraw
the
connectors
from
the

alternator
F
and
N
terminals
and
connect
a

jumper
lead
between

the
F
and
A
terminals

Connect
a
voltmeter
to
the
E

and
A
alternator
terminals

with
the

negative
lead
to

terminal
E
and
the

positive
lead
to

the
terminal
A
as
shown
in

Fig
M
IS
Switch
the

headlamps

on
to
full
beam
and
start

the

engine
Increase
the

engine
speed

gradually
and
note

the

reading
on
the
voltmeter
when
the

engine
reaches
a

speed
of

approximately
lOaD

rpm
The

alternator
is

operating

satisfactorily
if
the
voltmeter
shows
a

reading
above
12
5
volts
If

the

reading
is
below
12
5
volts
the

alternator
is
defective
and
should
be
removed
for

inspection

ALTERNATOR
Removal

Disconnect
the

negative
lead
from

the

battery
and
the
two

lead
wires
and
connector
from
the
alternator

Slacken
the
alter

nator

mounting
bolts
and
take
off

the
fan
belt
Take
out

the

mounting
bolts
and
withdraw
the
alternator
from
the
vehicle

III

Page 118 of 171


4
Remove
the
shell
covers

from
the

steering
column
slacken

the

screws
securing
the
meter

housing
and
withdraw
the

panel
from
the
facia

Fig
M
33

5
Pull

out
the
12

pole
round

shaped
connector
and
remove

the

speedometer
cable
union

nut
then
remove
the
instru

ment

panel
completely

WINDSCREEN
WIPERS

A
two

speed
wiper
motor
is
fitted

The
motor
has
an
auto

stop
mechanism
and
drives
the

wiper
arms

through
a
link

mechanism
located
behind
the
instrument
panel
If
the

wiper

system
does
not

operate
check
the
fuses
connectors
control

switch
and
motor
If
the

wiper
speed
does
not

change
the

switch
must

be
repaired
or

replaced
If

the

wiper
motor
becomes

unserviceable
it
can
be
removed
from
the
vehicle
in
the

fOllowing

manner

I
Remove
the
connector

plug
from

the
motor
See

Fig
M

34

2

Working
from
the

passenger
compartment
side
of
the
dash

panel
remove
the
nut

connecting
the

wiper
motor
worm

wheel
shaft
to
the

connecting
rod

3
Remove
the
three
bolts

securing
the

wiper
motor
to

the

cowl
and
lift
out
the
motor

Battery

Starter
motor

Type

Output

No
load

Terminal

voltage

Current

Revolution

Load

Terminal

voltage

Current

Torque

Brushes

Brush

length

Wear
limit

Spring
tension

Commutator

Standard
outer

diameter

Wear
limit

Depth
of

nuca

Repair
limit

Repair
accuracy

Qearance
between
armature

shaft
and

bushing

Repair
liinit

Repair
accuracy

Armature
shaft
ou
ter

diameter

Pinion
side

Rear
end

Wear
limit

Bend
limit
The

wiper
arms
can
be
removed
quite
easily
by
taking
off

the
attachment
bolt
as
shown
in

Fig
M

J
5
and
then

pullin

the

wiper
arm
from
the

pivot
shaft
When

installing
the

wiper

arm
make
sure
that
the
blade
is

positioned
approximately

27mm
1
06
in
away
from
the

bottom
of
the
windscreen
and

tighten
the

wiper
arm
attachment
bolt

WINDSCREEN
WASHERS

The
windscreen
washer
SWItch
and

wiper
switch
are
com

bined
in
a

single
unit
See

Fig
M
36
the
washers
can
be

operated
by
turning
the
switch
in
the

appropriate
direction
It

should
be
pointed
out
that
it
is
inadvisable
to

operate
the
washers

for
more
than
30
seconds
at
a
time
If
the
washers
are

operated

in
short

spells
of

approximately
10
seconds
duration
their

working
efficiency
will
remain

unimpaired
for
a
considerable

length
of
time

IGNITION
SWITCH
AND
STEERING
LOCK

The

steering
lock
is
built
in

to
the

goition
switch
When

the

key
is
turned
to
the
LOCK

position
and

then
removed

the
steering
system
is

automatically
locked

by
the

steering
lock

spindle
which

engages
in
a
notch
in
the
collar
on
the

steering

shaft

See

Fig
M
37
The
heads
of

the
screws
are
sheared
off

on
installation
so
that
the

steering
lock

system
cannot
be

tampered
with
If

the

steering
lock
is
to

be

replaced
it
will
be

necessary
to
remove
the
two

securing
screws
8
and
then
drill

out

the
self

shearing
screws
7
When

installing
a
new

steering

lock

tighten
the
new
self

shearing
screws
until
the
heads
shear

TechnICal
Data

12
volt

HITACHI
S114
87M

1
0KW

12
volts

Less
than
60

amperes

More

than
7000
r

p
m

6
3

volts

Less
than
420

amperes

More
than
0
9

mkg
6
5
lb

ft

16
mm

0
630
in

6
5mm
0
256
in

0
8

kg
1
8
lb

33mm
1
299
in

2mm

0
078
in

0
2mm
0
008
in

0
5
0
8mm
0
0197

0
0315
in

0
2mm
0
008

in

0
03
O
lmm
0
0012

0
0039
in

13mm
0
512
in

11
5
mm

0
453
in

O
lmm
0
0039

in

0
08

mm
0
0031

in
Oearance
between

pinion
and

stopper
0
3
1
5mm
0
0118

0
0591
in

ALTERNATOR

Type
HITACHI
LTl25
06

HITACHI
LTl33
05
USA

Canada

More
than
18

amps
at

14

volts
2500
r

p
m

More
than
25

amps
at

14

volts
5000
r

p
m
Output
current

LTl25
06

Output
current

LT
133
05

More
than
24

amps
at

14

volts
2500
r

p
m

More
than
33

amps
at
14

volts
5000
r

p
m

Brushes

Lengtb

Wear
limit

Spring
pressure
14
5mm
0
571
In

7mm
0
2756
in

0
25
0
35

kg
0
55
0
771b

Slip
ring

Outer
diameter

Reduction
limit

Repair
limit

Repair
accuracy
31
mm
1
220
in

I
mm

0
039

in

O
3mm
0
0118
in

0
05
mm

0
0197
in

VOLTAGE
REGULATOR

Type

Regulating

voltage
HITACHI
TL
lZ
37

14
3
15
3
volts
at
200C
680F

117

Page 136 of 171


ENGINE

Dismantling

Remove

the

engine
from
the
vehicle
as

previously
described

and

carefully
clean
the
exterior

surfaces
The
alternator

distribu

tor

and
starter
motor
should
be
removed
before

washing
Plug

the
carhurettor

air
horn
to

prevent
the

ingress
of

foreign
matter

Place
the

engine
and
transmission
on

the
engine
carrier
ST4797

0000
if

available
and
dismantle
as
follows

Remove
the

gearbox
from
the

engine
Disconnect
the
intake

manifold

water
hose
the
vacuum

hose
and
the
intake
manifold

to
oil

separator
hose
Remove
the
intake
manifold
with
the

carburettor
Fit
the

engine
attachment
ST3720OG18
to
the

cylin

der
block
and

place
tre

engine
on
the
stand
ST371
00000

Remove
the
clutch

@
Ssembly
as
described
in
the
section

CLUTCH
Remove
the
exhaust
manifold
and
heat
baffle

plate

Take
off
the
fan
blades
and
remove
the
water

pump
pulley
and

fan
belt
Remove
the
rocker
cover
hose
manifold
heat
hose
and

by
pass
hoses

Remove
the

generator
bracket
and
the
oil
fIlter
Extract
the

engine
breather

assembly
from
above
Note
that
the
breather

is
fitted
to
the

guide
and
is
installed
with
a
O

ring
which
is

pressed
into
the

cylinder
block

Flatten
the
10ckwasher
and
unscrew
the
crankshaft
pulley

nut
Withdraw
the

pulley
with
the

puller
ST44820000
if
available

but
do
not
hook
it
in
the
V

groove
of
the

pulley

Remove
the
rocker
cover
and
take
off
the
rubber

plug

located
on
the
front
of
the
cylinder
head

Straighten
the
lock

ing
washer
and
remove
the
bolt

securing
the

distributor
drive

gear
and
camshaft

sprocket
to
the
camshaft
Remove
the
drive

gear
and
take
off
the

sprocket
See

Fig
A
3

Remove
the

cylinder
head
bolts
in
reverse

order
to
the

tightening

sequence
sOOwn
in

Fig
A
18
and
lift
off
the

cylinder

head
as
an

assembly
See

Fig
A
4
Note

that
in
addition
to
the

ten

cylinder
head
bolts
there
are
also
two
bolts

securing
the

chain
cover
to

the
head
Invert
the

engine
and
remove
the
oil

sump
Remove
the
chain
cover
and
oil

flinger
Take
off
the
nut

securing
the
oil

pump
sprocket
and
withdraw
the

sprocket
with

the
chain
in

position
as
shown
in

Fig
A5
Remove
the
oil

pump

and
stramer
Note

that
two
of
the

pump
mounting
bolts
are

pipe
guides

Remove
the

timing
chain
crankshaft

sprocket
chain
ten

sioner
and
chain

stop

Remove
the

connecting
rod

caps
and

push
the

piston
and

connecting
rod
assemblies

through
the
tops
of
the
bores

Keep

all

parts
in
order
so

they
can
be
assembled
in
their

original
posi

tions

Take

out
the

flywheel
retaining
bolts
and
withdraw
the

flywheel
Remove
the
main

bearing

caps
but
take
care
not
to

damage
the

pipe
guides
Lift
out

the
crankshaft
and
main
bear

ings
noting
that
the

bearings
must
be
reassembled
in
their

original

positions
Remove
the

piston
rings
with
a
suitable

expander
and

take
off
the

gudgeon
pin
clips
The

piston
should
be
heated
to

a

temperature
of
50
to
600
122
to
1400F
before

extracting

the

gudgeon
pin
Keep
the
dismantled

parts
in
order
so

they

can
be
reassembled
in
their

original
positions

Remove
the
camshaft
rocker
ann
shaft
and
rocker
ann

assemblies
from
the

head

by
taking
off
the
cam

bracket

clamp

ing
nuts
It
is
advisable
to
insert
disused
bolts
in
the
No
1

and

No
5
bracket
holes
as
the
cam
bracket
will
fall
from
the
rocker

ann
shaft
when

it
is
removed
Remove

the
valve

cotters

using

the

special
tool
ST47450000

and
dismantle
the
valve
assemblies
Keep
the

parts
together
so

they
can
be
installed
in
their

original

order

ENGINE

Inspection
and
Overhaul

Cylinder
head
and
valves

Inspection
and
overhaul

procedures
can

be
carried
out

by

following
the
instructions

previously
given
for
the
L14
LI6

and
LIB

engines
noting
the

following
points

Measure
the

joint
face
of
the

cylinder
head

using
a

straight

edge
and
feeler

gauge
The

permissible
amount
of
distortion
is

0
03
mm
0
0012
in
or
less
The
surface
of
the
head
must
be

reground
if
the
maximum
limit
of
0

1
mm

0
0039
in
is

exceeded

Oean
each
valve

by
washing
in
petrol
then

carefully
examine

the
stems
and
heads
Discard

any
valves
with
worn

or

damaged

stems
Use
a

micrometer
to
check
the
diameter
of
the
stems

which
should
be
8
0
mm
0
315
in
for
both
intake
and
exhaust

valves
If

the
seating
face
of
the
valve
is

excessively
burned

damaged
or
distorted
the
valve
must
be
discarded
The
valve

seating
face
and
valve

tip
can
be
refaced
if

necessary
but

only

the
minimum
amount
of
metal
should
be
removed
Check
the

free

length
and
tension
of
each
valve

spring
and

compare
the

figures
obtained
with
those

given
in
Technical
Data
at
the
end

of
this
section
Use
a

square
to
check
the

springs
for
deformation

and

replace
any
spring
with
a
deflection
of
1
6
mm
0
0630
in

or
more

Valve

guides

Measure
the
clearance
between
the
valve

guide
and
valve

stern
The
stem
to

guide
clearance
should

be
0
025
0
055
mm

0
0010
0
0022
in
for
the
intake
valves
and
0
04
0
077
mm

0
0016
0
0030
in
for
the
exhaust
valves
The
maximum
clear

ance

limit
is
0
1
mm
0
0039
in
The
valve

guides
are
held
in

position
with
an
interference
fit
of
0
040
0
069
mm
0
0016

0
0027
in
and
can
be
removed

using
a

press
and
valve

guide

replacer
set
ST49730000
under
2
ton

pressure
This

operation

can

be
carried
out
at
room

temperature
but
will
be
more
effec

tively

performed
at
a

higher
temperature
Valve

guides
are

available
with
oversize
diameters
of
0
2
mm
0
0079
in
The

cylinder
head
guide
bore
must
be
reamed
out
at

normal
room

temperature
and
the
new

guides
pressed
in
after

heating
the

cylinder
head
to
a

temperature
of

approximately
800
C
1760F

The
standard
valve

guide
requires
a
bore
of
14
0
14
018
mm

0
551
0
552

in
and
the
oversize
valve

guide
a
bore
of
14
2

14
218
mm
0
559
0
560
in
Ream
out
the
bore
of
the

guides

to
obtain
the
desired
finish
and
clearance
Use
the
reamer
set

ST49710000
to

ream
the
bore
to
8
000
8
015
mm
0
3150

0
3156
in
The
valve
seat

surface
must

be
concentric
with
the

guide
bore
and
must
be
corrected
if

necessary
using
the
new

valve

guide
as
axis

Valve
seat
inserts

Check
the
valve
seat

inserts
for

signs
of

pitting
The

inserts

cannot
be

replaced
but

may
be
corrected
if

necessary
using
a

valve
seat
cutter

ST49720000

Scrape
the
seat

with
the
450

cutter
then

reduce
the
width
of
the

contacting
faces

using
the

150
and
600
cutters
for
the
intake
valve
inserts
and
150
cutter

for
the
exhaust
valve
inserts
Seat
correction
dimensions
are

shown
in
millimeters
in

Fig
A
6

Lap
each
valve
into
its
seat
after

correcting
the
seat
inserts

Place
a
small

quantity
of
fme

grinding
paste
on

the

seating
face

of
the
valve

and
lap
in
as

previously
described
for
the
Ll4
LI6

and
L
18

engines

S5

Page 140 of 171


that
it
is
clear
of
the
oil
hole
Install
the

bearing
caps
and

tighten
the

bolts
to
a

torque

reading
of
10
0
1
LO

kgm
72
3

79
51b
ft

The
standard
main

bearing
clearance
is
0
03
0
06
mm

0
0012
0
0024

in
with
a
wear
limit
of
0
1
mm
0
0039

in

If
the

specified
limit
is
exceeded
an

undersize
bearing
must

be

fitted
and
the
crankshaft

journal
ground
accordingly
Bearings

are
available
in
four
undersizes
See
Technical
Data

Connecting
rod

bearing
clearance

Check
the

connecting
rod

bearing
clearances
in
a
similar

manner
to
the
main

bearing
clearances
The
standard
clearance

is
0
03
0
06
mm
0
0012
0
0024
in
with
a
wear
limit
of
0

1

mm
0
0039
in
Undersize

bearings
must
be
fitted
and
the

crankpins
reground
if
the

specified
limit
is
exceeded
Bearings

are
available
in
four
undersizes
See
Technical

Data

Fitting
the
crankshaft

bearings

Check

the
fit
of
the

bearing
shells
in
the

following
manner

Install
the

bearings
on
the
main

bearing
caps
and

cylinder
block

bearing
recess
and

tighten
the

cap
bolts
to
the

specified
torque

reading
of
10
0
11
0

kgm
72
3
79
5
Ib
ft
Slacken

one
of
the

cap
baits
and
check
the
clearance
between
the

cap
and

cylinder

block
with
a
feeler

gauge
as
described
for
the
L14
Ll6
and

LIS

engines
The

bearing
crush
should
be
from
0
to
0
04
mm

0
to
0
0016
in

Replace
the

bearing
if
the
clearance
is
not
correct

Check
the

connecting
rod

bearings
in
a

similar
manner

after

tightening
the
rod

cap
bolts
to
a

torque
reading
of

4
5
5
0

kgm
32
6
36
2
Ib
ft

ENGINE

Assembling

Make
sure
that
all

components
are

perfectly
clean
before

starting
to
assemble
the

engine
Refer
to

the
instructions

given

for
the
L14
U6
and
LIS

engines

Cylinder
Head

Install
the
valve

spring
seats
and
valves
Fit
the
oil
seal

rings
on
the
valve
stems

and

place
the
seal

ring
covers
over

the

oil
seal

rings
Note

that
a

gap
of
from
0
3
to
0
7
mm
0
0118

to
0
0276
in
should
be

present
between
the
seal

ring
cover
and

spring
seat

If
the

gap
is
less
than
0
3
mm
0
0118
in

the
oil

seal

ring
or
the
cover
must
be

replaced
Assemble
the
valve

springs
and
retainers

Compress
the
valve

springs
and
install
the

cotters
See
instructions
for
the
LI4
U6
and
Ll8

engines

Assemble

the
camshaft

brackets
valve
rockers
seats

spacers

and

springs
on
the
rocker
shafts
in
the
order
shown
in

Fig
A
l
O

Note

that
the
exhaust
rocker
shaft
has
identification
marks

but

the
intake
rocker
shaft
has
not
Make
sure
that
the
oil
holes

point
in
the
direction
shown
It

may
be
advisable
to
insert

any

convenient
bolts
into
the
bolt
holes
of
the
front
and
rear
cam

shaft
brackets
to

prevent
the

assembly
from

being
displaced

Mount
the
camshaft
on

the
head
fit

the
rocker

assembly

and

tighten
the

nuts
Make
sure
that
the
mark
on
the

flange
of

the
camshaft
is

aligned
with
the
arrow
mark
on
the
No
I
earn

shaft
bracket
as
shown
in

Fig
A
II

Pistons
and

connecting
rods

Assemble
the

pistons
gudgeon
pins
and

connecting
rods

in
accordance
with
the

cylinder
numbers
Heat
the

piston
to
a

temperature
of
500
to
600
1220
to

1400F
and

press
the

gudgeon
pin
in

by
hand
The

pistons
and

connecting
rods
must
be
assembled
as
shown
in

Fig
A
12
with

the
arrow
mark
on
the
head
of
the

piston
pointing
to
the
front

of
the

engine

Fit
new

clips
to
both
ends
of
the

gudgeon
pins
as
indicated

in
Fig
A
13
Fit
the

piston
rings
with
the
marks

facing
upwards

Place
the

bearings
on
the

connecting
rods
and

caps
making
sure

that
the
backs
of
the

bearing
shells
are

perfectly
clean

Assembling
the

engine

Insert
the
oilscal
into
the

grooves
of
the

cylinder
block

and
rear

bearing
cap
Fit
the
seal
down
with
the

speCial
tool

ST49750000
if
available
as
shown
in

Fig
A
14

and
trim
off

the
excess
with
a
knife

Apply
sealing
agent
to

the
oil

plug
and

install
it
in
the
cylinder
block

Fit
the
main

bearings
lubricate
with
clean

engine
oil
and

install
the
crankshaft
Fit
the

bearing
caps
and

tighten
the
bolts

to

a

torque
reading
of
10
0
to
I
LO

kgm
72
3
to
79
5
Ib
ft

Note
that

liquid
packing
should
be

applied
to

the
rear
bear

ing
cap
surfaces
as
shown
in

Fig
A
15

Fit
the
thrust
washers
at
both
sides
of
the
No
2

bearing

with

the
oil
channel
in

the
washers

facing
the
thrust

face
of
the

crankshaft
Install
the
rear

bearing

cap
side
seal
so

that
is

projects

0
2
to

0
6
mm
0
008
to

0
024
in

from
the
lower
surface
of

the

cylind
r

block
then

apply
liquid
packing
to
the

projecting

tip

Install
the

engine
rear

plate
Fit
the

flywheel
and

tighten

the
bolts
to
a

lorque
reading
of
10
0
to
11
0

kgm
72
3
to
79
5

ib
ft

using
new
lock
washers

Lubricate
the
crankshaft

journals
pistons
and
cylinder

bores
with
clean

engine
oil
and
install
the

piston
and

connecting

rod
assemblies
The

pistons
should
be

arranged
so
that

the
arrow

marks
face
towards
the
front
and
with
the

piston
ring
gaps
at

1800
to
each
other
Make
sure
the

gaps
do
not
face
to
the

thrust
side
of
the

piston
or
in
the
same
axial
direction
as
the

gudgeon
pin

Install
the

connecting
rod

caps
o
that
the
marks
face
the

same

way
and

tighten
the
bolts
to
a

torque
reading
of
4
5
to

5
0

kgm
32
6
to
36
2
Ib
ft
Bend
the
lock
washers
as
shown

in

FigA16

Fit
the
oil

jet
to
the
front
of
the

cylinder
block
Install

the
chain
tensioner
and

stopper
crankshaft

sprocket
and
timing

chain

Note
that
the

timing
mark
on
the
chain
must
be

aligned

with
the
mark
on
the

sprocket
as
shown
in

Fig
A
17

Smear
the

mounting
face
of
the
oil

pump
with

sealing
agent

Three
Bond
No
4
or

equivalent
install

the

pump
and

tempora

rily
tighten
the

mounting
bolts

Adjust
the
tension
of
the
oil

pump
chain

using
the

pin
as
the
central

point
then

tighten
the

mounting
bolts

Install
the
oil
thrower
Fit
the
chain
cover
into

position

after

coating
the
new
cover

gasket
with

sealing
compound
Cut

off
the

projecting
parts
of
the

gasket

Fit
the
crankshaft

pulley
and

tighten
the

pulley
nut
to
a

torque
reading
of
15
0
to
20
0

kgm
108
5
to
144
61b
ft
Bend

the
lock
washer
Install
the
oil
strainer
and
oil

pump

Invert
the

engine
and
set
the
No
I

piston
to

T
D
C
of
the

compression
stroke
Note

that
the
notch
on
the
crankshaft

S9

Page 150 of 171


The

type
D3034C
carburettor
has
certain
additional

features

These
include
a

power
valve
mechanism
to

improve
the

performance

at

high
speed
a
fuel
cut
off
valve
which
cuts
the
fuel

supply

when
the

ignition
key
is
turned
to
the
off
position
and
an

idling

limiter
to

maintain
the

emissions
below
a

certain
level

Sectional
views
of
the
two

types
of

pumps
are
shown
in

Figs
8
1
and
B
2
An
EP
3
electrical
fuel

pump
is

located
in
the

centre

of
the
spare
wheel

housing
in
the
boot

Fig
B
3
shows
a

sectional
view
of
the

pump
with
its
contact

the
pump
mechanisms

solenoid

relay
and
built
in
filter

The
air
cleaner
uses
a

viscous

paper
type
element
which

should
be

replaced
every
40
000
km
24
000
miles

Cleaning

is
not

required
and
should
not
be

attempted

The

cartridge
type
fuel
strainer

incorporates
a
fibre
clement

which
should
be
renewed
at
inervals
not

exceeding
40
000
km

24
000
miles
Fit
B
4
shows
a
sectional
view
of

the
assembly

The
fuel
lines
should
not
be
disconnected
from
the
strainer
when

the
fuel
tank
is
full

unless
absolutely
necessary
as
the
strainer

is
below
the
fuel
level

FUEL
PUMP

Testing

Disconnect
the
fuel
hose
from
the

pump
outlet
Connect

a
hose
with

an
inner
diameter
of
approximately
6
mm
0
024

in
to

the

pump
outlet
and

place
a

container
under
the
end
of

the

pipe
Note
that
the
inner

diameter
of
the

pipe
must
not
be

too

small
or

the
pipe
will
be

incapable
of

delivering
the
correct

quantity
of
fuel
when

testing
Hold
the
end
of
the
hose
above
the

level
of
the

pump
and

operate
the

pump
for
more
than
IS

seconds
to
check
the

delivery
capacity
The

capacity
should
be

I
400
cc

3
24
U
S

pts
in
one
minute
or
less
The

pump
must

be
removed
from
the
vehicle
if
it
does
not

operate
or
if
a

reduced

quantity
of
fuel
flows
from
the
end
of
the
hose
Remove

the
pump
from
the
vehicle
and
test
as
follows

Connect
the

pump
to
a

fully
charged
battery
If
the

pump

now

operates
and

discharges
fuel

correctly
the
fault
does
not

lie
in
the

pump
but

may
be
attributed
to

any
of
the

following

causes

Battery
voltage
drop

poor
battery
earth
loose

wiring

loose
connections
blocked
hoses
or
a

faulty
carburettor

If
the

pump
does
not

operate
and

discharge
fuel
when

connected
to
the

battery
then
the

pump
itself
is

faulty
and

must
be
checked
as
follows

First
make
sure
that
current
is

flowing
This
will
be
indica

ted

by
sparking
at

the
tenninals
If
current
flows
the
trouble
is

caused

by
a

sticking

pump
plunger
or

piston
The

pump
must

be
dismantled
in

this
case
and
the

parts
thoroughly
cleaned
in

petrol

If

the
current
does
not
flow
a
coil
or
lead
wire
is
broken

and
the

pump
must

be
renewed
A

reduced
fuel
flow
is
caused

by
a

faulty
pump
inlet
or

discharged
valve
or
blocked
filter

mesh
The

pump
must

of
course

be
dismantled
and
serviced
as

necessary

FUEL
PUMP

Removing
and

Dismantling

Remove
the
bolts

attaching
the
fuel

pump
cover
to

the

floor

panel
see

Fig
B
S
Remove
the
bolts

attaching
the

pump
to
the
cover

2
Disconnect
the
cable
and
fuel
hoses
Withdraw

the

pump
Dismantle
as
follows

Slacken
the

locking
band
screws
and

remove
the
strainer

strainer

spring
filter
strainer
seal
and

locking
band

Remove
the

snap
ring
Withdraw
the
four
screws
from
the

yoke
and
remove

the
electromagnetic
ulJ
it
Press
the

plunger
down
and
withdraw
the
inlet
vaive

the

packing

and
the
cylinder
and

plunger
assembly

A
defective
eledrical
unit

cannot
be
dismantled
as

it
is

sealed
and
must

be
renewed
as
a

complete
unit

FUEL
PUMP

Inspection
and

Assembly

Wash
the
strainer
filter
and

gasket
in

petrol
and

dry
using

compressed
air
Renew
the
filter
and

gasket
if

necessary
Note

that
the
filter
should
be
cleaned
every
40
000

km
24
000

miles
Wash
the

plunger
piston
and
inlet
valve
in

petrol
and

make
sure
the

piston
moves

smoothly
in
the

cylinder
Replace

the

parts
if
found
to
be
defective

Insert
the

plunger
assembly
into
the

cylinder
of
the
electri

cal
unit
and
move

the

assembly
up
and
down
to

make
sure
tha
t

the
contacts
are

operated
If
the
contacts
do
not

operate
the

electrical
unit
is

faulty
and
must

be
renewed

Assembly
is
a
reversal
of

the
dismantling
procedures
tak

ing
care
to
renew
the

gaskets
as

necessary

CARBURETIOR

Idling
Adjustment

The
D3034C
carburettor
fitted
to

engines
equipped
with

an
emission
control

system
must
be

adjusted
as
described
under

the

heading
IGNITION
TIMING
AND
IDLING
SPEED
in
the

section
EMISSION
CONTROL
SYSTEM

Reference
should
be
made
to
carburettor

idling
adjustment

procedures
for
the
L14
L16

and
LI8

engines
when

adjusting

the
type
DAK
340
carburettor
fitted
to
the
G
18

engine
A
smooth

engine
speed
of

approximately
550

rpm
should
be
attained
in

this
case

FUEL
lEVEL

Adjustment
DAK
340earburettor

A
constant
fuellevcl
in
the
float
chamber
is
maintained

by

the
float
and
needle
valve
See

Fig
8
6
If

the
fuel
level
does
not

correspond
with
the
level

gauge
line
it
will
be

necessary
to

care

fully
bend
the
float
seat
until
the
float

upper
position
is

correctly

set

The
clearance
H
between
valve
stem
and
float
seat

should

be
I
5
mm
0
0059
in
with
the
float

fully
lifted

Adjustment

can
be
carried
out

by
carefully
bending
the
float
stopper
3

FUEL
lEVEL

Adjustment
D3034Ccarburettnr

The
fuel
level
should

correspond
with
the
level

gauge
line

Adjustment
can

be
carried
out
if

necessary
by
changing
the

gaskets
between
the
float
chamber

body
and
needle
valve
seat

The
gaskets
are
shown
as
item
4
in

Fig
B
7
When

correctly

adjusted
there
should
be
a

clearance
of

approximately
7
mm

0
027
in
between
float
and
chamber
as
indicated

STARTING

INTERLOCK
VALVE
OPENING

The

choke
valve
at
its

fully
closed
position
automatically

opens
the
throttle
valve
to
an

optimum
angle
of
14

degrees
on

the

type
DAK
340
carburettor
and
13
5

degrees
on
the
D3034C

carburettor
With
the
choke
valve

fully
closed
the
clearance

G

I
in

Fig
8
should
be
1

I
mm
0
0433

in
This
clearance

S19

Page:   1-10 11-20 next >