Injector DODGE RAM 1999 Service Owner's Guide
Page 1452 of 1691
H - T E STS W /O C O DES - D IE SEL
1999 D odge P ic ku p R 1500
1999 ENGINE PERFORMANCE
CHRY - Trouble Shooting - No Codes - Diesel
Ram Pickup
INTRODUCTION
Before using this article, perform steps in BASIC DIAGNOSTIC
PROCEDURES - TRUCKS - DIESEL and SELF-DIAGNOSTICS - JEEP, TRUCKS & RWD
VANS articles. Use this article to diagnose driveability problems
existing when a hard Diagnostic Trouble Code (FTC) is not present.
NOTE: Some driveability problems may have been corrected by
manufacturer with a revised Powertrain Control Module (PCM).
Check with manufacturer for latest PCM application.
Symptom checks direct the technician to malfunctioning
component(s) for further diagnosis. A symptom should lead to a
specific component, system test or adjustment.
Use TEST PROCEDURES under INTERMITTENTS to locate
driveability problems that DO NOT occur when the vehicle is being
tested. These test procedures should also be used if an intermittent
(soft) FTC was present, but no problem is found during self-diagnostic\
testing.
NOTE: For specific testing procedures, see SELF-DIAGNOSTICS -
JEEP, TRUCKS & RWD VANS article. For specifications, see ON
-VEHICLE ADJUSTMENTS - TRUCKS - DIESEL or SERVICE &
ADJUSTMENT SPECIFICATIONS - TRUCKS article.
SYMPTOMS
SYMPTOM DIAGNOSIS
Symptom checks cannot be used properly unless the problem
occurs while the vehicle is being tested. To reduce diagnostic time,
ensure steps in BASIC DIAGNOSTIC PROCEDURES - TRUCKS - DIESEL and
SELF-DIAGNOSTICS - JEEP, TRUCKS & RWD VANS articles were performed
before diagnosing a symptom. Symptoms available for diagnosis are as
follows:
* Black Exhaust Smoke
* White Exhaust Smoke
* Blue Exhaust Smoke
BLACK EXHAUST SMOKE
* Air filter dirty or plugged:
* Air intake system restricted:
* Exhaust system restriction is above specification:
* Poor fuel quality:
* Fuel injection pump malfunctioning:
* Fuel injector malfunctioning or leaking:
* Fuel return system restricted:
* Intake manifold restricted:
* Turbocharger problem.
WHITE EXHAUST SMOKE
Page 1453 of 1691
* Air in fuel system:
* Coolant leak into combustion chamber:
* Block heater malfunction in cold weather:
* Clogged or defective fuel filter:
* Poor fuel quality:
* Fuel injector malfunctioning or loose:
* Restricted or blocked fuel injection or supply lines:
* Intake/exhaust valves not adjusted properly (tight):
* Intake heaters malfunctioning:
* Internal engine damage.
BLUE EXHAUST SMOKE
* Air filter dirty or plugged:
* Air intake system restricted:
* Air leak in intake between turbocharger and intake
manifold:
* Restricted exhaust:
* Restricted turbocharger drain tube:
* Crankcase ventilation plugged:
* Valve stems, guides or seals worn or defective:
* Piston rings improperly gapped, worn or broken:
* Internal engine wear:
* Turbocharger failure.
INTERMITTENTS
INTERMITTENT PROBLEM DIAGNOSIS
Intermittent fault testing requires duplicating circuit or
component failure to identify problem. These procedures may lead to
PCM setting a Diagnostic Trouble Code (FTC) which may help in
diagnosis.
If problem vehicle does not produce DTCs, monitor voltage or
resistance values using a Digital Volt-Ohmmeter (DVOM) while
attempting to reproduce conditions causing intermittent fault. A
status change on DVOM indicates a fault has been located.
Use a DVOM to pinpoint faults. When monitoring voltage,
ensure ignition switch is in ON position or engine is running. Ensure
ignition switch is in OFF position or negative battery cable is
disconnected when monitoring circuit resistance. Status changes on
DVOM during test procedures indicate area of fault.
TEST PROCEDURES
Intermittent Simulation
To reproduce conditions creating an intermittent fault, use
following methods:
* Lightly vibrate component
* Heat component
* Wiggle or bend wiring harness
* Spray component with water
* Remove/apply vacuum source
Monitor circuit/component voltage or resistance while
simulating intermittent. If engine is running, monitor for diagnostic
trouble codes. Use test results to identify a faulty component or
circuit.
Page 1462 of 1691
* Charging System
* Cruise Control System
* Intake Manifold Air Heater
* Tachometer
* Torque Convertor Clutch Engagement (A/T Only)
* Transmission Overdrive Solenoid (A/T Only) Components are
grouped into 2 categories. The first category covers INPUT
DEVICES, which control or produce voltage signals monitored
by the PCM. The second category covers OUTPUT SIGNALS, which
are components controlled by the PCM. See PCM INPUT SIGNALS
and ECM/PCM OUTPUT SIGNALS.
ECM INPUT SIGNALS
Accelerator Pedal Position Sensor (APPS)
APPS sensor is mounted on top left of engine. See Fig. 2.
Sensor provides DC voltage input signal to Engine Control Module (ECM)\
to indicate throttle position. On previous engines, there were
linkages between accelerator pedal, throttle position sensor and
injection pump. On this engine, no linkage exists between accelerator
pedal and injection pump. ECM uses input signals from APPS sensor to
determine proper fuel delivery. ECM also outputs this signal to PCM.
Battery Voltage
Battery voltage input signal provides operating voltage to
Engine Control Module (ECM). This input signal keeps ECM memory alive
and informs ECM what generator output voltage is when engine is
running. ECM memory is used to store Diagnostic Trouble Codes (DTCs),
store APPS sensor voltages from previous key cycles and provide a
speed control adaptive memory.
Camshaft Position Sensor (CMP)
Camshaft Position (CMP) sensor is a hall effect sensor (0-5
volts switched), located below injection pump in rear face of timing
gear cover. Sensor is not used for fuel control. Sensor is used only
for diagnostic purposes.
CCD Bus Circuits
These circuits are connected between Engine Control Module
(ECM) and Powertrain Control Module (PCM) to allow communication
between modules.
Crankshaft Position Sensor (CKP)
Crankshaft Position (CKP) sensor delivers input signal (35
tooth wheel with gap) to Engine Control Module (ECM) to indicate
engine speed and crankshaft position. ECM uses CKP signal along with
other input signals for controlling injector firing sequence and
timing. Sensor is located below fuel transfer pump, on side of engine
block. See Fig. 2.
Data Link Connector (DLC)
Data Link Connector (DLC) provides an input signal to Engine
Control Module (ECM) when using scan tool to retrieve Diagnostic
Trouble Codes (DTCs) from ECM. Input signal may also be used when
performing various tests on the ECM and electronic control system.
Data link connector is a 16-pin connector located at lower edge of
driver's side of instrument panel, just above accelerator pedal.
Engine Coolant Temperature (ECT) Sensor
Engine coolant temperature sensor delivers input signal to
Engine Control Module (ECM) to indicate engine coolant temperature.
ECM uses input signal for controlling fuel control and timing. Engine
coolant temperature sensor is located on front of head, near
Page 1465 of 1691
located in power distribution center at driver's side front corner of
engine compartment, near the battery. Automatic Shutdown (ASD) relay
may also be referred to as Auto Shutdown (ASD) relay.
Battery Temperature Sensor
Battery temperature sensor delivers input signal to
Powertrain Control Module (PCM) to indicate the battery temperature.
PCM uses battery temperature input to modify rate of output from the
charging system. Battery temperature sensor is snapped into battery
tray below driver's side battery.
Battery Voltage
Battery voltage input signal provides operating voltage to
Powertrain Control Module (PCM). This input signal keeps PCM memory
alive and informs PCM what generator output voltage is when engine is
running. PCM memory is used to store Diagnostic Trouble Codes (DTCs),
store APPS sensor voltages from previous key cycles and provide a
speed control adaptive memory.
Brake Switch
Brake switch delivers input signal to Powertrain Control
Module (PCM) to indicate when brakes are applied. PCM uses input
signal for controlling cruise control system and transmission torque
converter clutch operation on A/T models. Brake switch is located near
top of brake pedal and may also be referred to as brakelight switch.
CKP Sensor
Crankshaft Position (CKP) sensor delivers input signal (35
tooth wheel with gap) to Engine Control Module (ECM) to indicate
engine speed and crankshaft position. ECM uses CKP signal along with
other input signals for controlling injector firing sequence and
timing. Sensor is located below fuel transfer pump, on side of engine
block. See Fig. 2.
Cruise Control System Switches
Cruise control system functions, controlled by momentary
contact switches, are monitored through multiplexed input signal to
Powertrain Control Module (PCM). Resistance monitored at this input
signal, in conjunction with the length of time the PCM measures the
resistance, determines which switch feature has been selected.
Data Link Connector (DLC)
Data Link Connector (DLC) provides an input signal to
Powertrain Control Module (PCM) when using scan tool to retrieve
Diagnostic Trouble Codes (DTCs) from PCM. Input signal may also be
used when performing various tests on the PCM and electronic control
system. DLC is a 16-pin connector located at lower edge of driver's
side of instrument panel, just above accelerator pedal.
Fuel Level Sensor
The Powertrain Control Module (PCM) sends a 5-volt signal to
the fuel level sensor. The fuel level sensor will return a signal to
PCM. This signal is used for fuel gauge operation and to prevent
setting a false misfire or fuel system trouble codes. If fuel level is
less than 15 percent, PCM will not set code.
Ignition Sense
Ignition switch position input to Powertrain Control Module
(PCM). PCM uses input to determine proper output functions, including
cruise control, generator output, sensor supply and transmission
functions.
Transmission Speed Sensor (A/T Models)
Page 1472 of 1691
converter lock-up. ECM uses various input signals such as transmission
temperature, output shaft speed, central module timer, engine speed,
APPS and brake switch position to determine operation of transmission
torque converter clutch solenoid. Transmission torque converter clutch
solenoid is located on transmission valve body.
FUEL SYSTEM
FUEL DELIVERY
Fuel Injection Pump
A camshaft-driven Bosch VP44 in-line fuel injection pump is
used to supply high pressure fuel to each fuel injector in precise
metered amounts at the correct time. See Fig. 2. The pump is timed to
camshaft gear. Pump output is controlled by integral Fuel Pump Control
Module (FPCM). Because of electronic control, idle speeds and pump
timing are not adjustable. See ON-VEHICLE ADJUSTMENTS - TRUCKS -
DIESEL article. FPCM can operate engine if crankshaft position sensor
signal does not exist. Fuel injection occurs near completion of
compression stroke for each cylinder.
Fuel injection pump contains an overflow valve which allows
excess fuel to return to the fuel tank. Overflow valve is located on
side of fuel injection pump and is used to attach the fuel return line
to the fuel injection pump.
Fuel Transfer Pump
Fuel transfer pump is located on driver's side of cylinder
block, above starter. See Fig. 2. A 12 volt, 12-amp electric vane-type
pump supplies low fuel pressure from fuel tank, through fuel
heater/fuel filter/water separator to fuel injection pump. Fuel
transfer pump contains internal check valves to prevent fuel from
bleeding back into fuel tank during engine shutdown. Pump will self
prime with ignition on for 2 seconds. Pump has 2 modes, 100 percent
duty cycle (10 psi) when engine is running and 25 percent duty cycle
(7 psi) when engine is cranking.
Fuel Filter/Water Separator
Fuel filter/water separator, located on left side of engine,
protects injection pump by removing water and contaminants from fuel.
See Fig. 2 . Assembly also includes fuel heater and Water-In-Fuel (WIF)
sensor.
In-Tank Fuel Filter
A separate in-tank fuel filter is attached to bottom of fuel
tank module. In-tank fuel filter does not require service under normal
conditions.
FUEL CONTROL
Fuel Injector
Fuel injector delivers atomized fuel into the cylinder.
During fuel injection, fuel pressure from fuel injection pump
increases to fuel injector opening pressure or pop pressure of 4500
psi (316 kg/cm
). This is the pressure required to lift fuel injector
needle valve from its seat, allowing fuel to be injected into the
cylinder. Once fuel pressure decreases to less then the opening
pressure, a spring forces needle valve closed and stops fuel injection
into the cylinders. Each fuel injector is connected to injection pump
by a high pressure (as much as 17,405 psi) line.
Fuel Injection Timing
Pump output is controlled by integral Fuel Pump Control
Page 1475 of 1691
E - T H EO RY/O PER ATIO N - R W D - G ASO LIN E
1999 D odge P ic ku p R 1500
1999 ENGINE PERFORMANCE
CHRY - Theory & Operation - Trucks & RWD Vans - Gasoline
Dakota, Durango, Ram Pickup, Ram Van, Ram Wagon
INTRODUCTION
This article covers the basic description and operation of
engine performance related systems and components. Read this article
before working on unfamiliar systems.
COMPUTERIZED ENGINE CONTROLS
POWERTRAIN CONTROL MODULE (PCM)
The PCM is a digital computer that controls ignition timing,
air/fuel ratio, fuel injector pulse width, ignition coil(s), spark
advance, emission control devices, cooling fan, charging system, idle
speed, cruise control (if equipped), fuel pump and tachometer. For PCM\
location, see PCM LOCATION. PCM uses data from various input sources
to control output devices in order to achieve optimum engine
performance for all operating conditions.
PCM has voltage converters that convert battery voltage to
regulated 5-volt output. The 5-volt output powers battery temperature
sensor, Camshaft Position (CMP) sensor on models equipped with
Distributorless Ignition System (DIS) or distributor on models without\
DIS, Crankshaft Position (CKP) sensor, Engine Coolant Temperature
(ECT) sensor, Intake Air Temperature (IAT) sensor, logic circuits,
Manifold Absolute Pressure (MAP) sensor, Throttle Position (TP) sens\
or
and Vehicle Speed Sensor (VSS) on some models.
PCM LOCATION
\
\
\
\
\
\
\
Application Location
Dakota & Durango ................. Right Front Fender, Near Firewall
Ram Pickup, Ram Van & Ram Wagon .... On Firewall, Near Wiper Motor
\
\
\
\
\
\
\
NOTE: Components are grouped into 2 categories. The first category,
INPUT DEVICES, includes components that control or produce
voltage signals monitored by the PCM. The second category,
OUTPUT SIGNALS, includes components controlled by the PCM
(this is accomplished by the PCM grounding individual
circuits).
INPUT DEVICES
Vehicles are equipped with different combinations of input
devices. Not all devices are used on all models. To determine
component location and input usage on a specific model, see
appropriate wiring diagram in WIRING DIAGRAMS article. Available input
signals include:
A/C Switch
Switch signals PCM that A/C has been selected. PCM then
activates A/C compressor clutch relay and maintains idle speed at a
preprogrammed RPM. This is done through control of Idle Air Control
Page 1476 of 1691
(IAC) motor.
Battery Temperature Sensor
PCM uses sensor to determine battery temperature and to
control battery charging rate. Temperature data along with battery
voltage data, is used by PCM to vary charging rate. System voltage is
higher at colder temperatures and is gradually reduced at warmer
temperatures.
Battery Voltage
PCM monitors battery voltage to determine fuel injector pulse
width and generator field control. This is done to compensate for
reduced current flow through injector caused by lowered voltage.
Brake Switch
This switch may also be referred to as a brakelight switch.
PCM uses this switch input to maintain idle speed at a preprogrammed
RPM when brakes are applied. If PCM receives an input signal from
brake switch when speed control system is on, PCM will turn speed
control system off.
Camshaft Position (CMP) Sensor
On models equipped with a distributor, CMP sensor is made up
of a Hall Effect switch (sync signal generator) and a rotating pulse
ring (shutter) on distributor shaft. See Fig. 1. On Distributorless
Ignition System (DIS), CMP sensor reads slots in cam timing sprocket.
PCM uses this information along with information from Crankshaft
Position (CKP) sensor to determine if fuel injectors and ignition
coils are properly sequenced for correct cylinders.
Fig. 1: Cut-Away View Of Hall Effect Distributor (Typical)
Courtesy of Chrysler Corp.
Crankshaft Position (CKP) Sensor
CKP sensor detects sets of slots on flywheel/torque converter
Page 1477 of 1691
drive plate. PCM uses this information to determine fuel injection
sequence, ignition signal and spark timing.
Cruise Control Switch
Cruise control switch provides PCM with 3 separate inputs.
ON/OFF switch input informs PCM that cruise control system has been
activated. SET/COAST switch input informs PCM that set vehicle speed
has been selected, or if depressed will decelerate until switch is
released. RESUME/ACCEL switch input informs PCM that a previously set
speed has been selected or, if depressed, will increase speed until
released. PCM uses these inputs to control cruise control servo.
Engine Coolant Temperature (ECT) Sensor
ECT sensor monitors engine coolant temperature. PCM uses ECT
sensor information to adjust air/fuel mixture and idle speed and to
control radiator cooling fans as necessary.
Fuel Level Sensor
PCM supplies a 5-volt reference signal to fuel module in gas
tank. Fuel level sensor sends a signal to PCM indicating fuel level.
PCM monitors this signal to prevent a false misfire signal if fuel
level is less than 15 percent. PCM also sends this signal to fuel
gauge.
Heated Oxygen Sensor (HO2S)
HO2S produces a small electrical voltage (0-1 volt) when
exposed to heated exhaust gas. HO2S is electrically heated for faster
warm-up. Heating element is powered through Auto Shutdown (ASD) relay.\
HO2S acts like a rich/lean (air/fuel ratio) switch by
monitoring oxygen content in exhaust gas. This information is used by
PCM to adjust air/fuel ratio by adjusting injector pulse width.
HO2S produces low voltage when oxygen content in exhaust gas
is high. When oxygen content in exhaust gas is low, HO2S produces a
higher voltage.
Ignition Switch
Ignition switch sends signal to PCM indicating whether switch
is on, off or cranking (ST). When PCM receives ON signal, it energizes\
ASD relay coil and supplies power to sensors and actuators. When PCM
receives ST signal, it controls fuel injection rate, idle speed,
ignition timing, etc. for optimum cranking conditions.
Intake Air Temperature (IAT) Sensor
IAT sensor measures temperature of incoming intake air. This
information is used by PCM to adjust air/fuel mixture.
Manifold Absolute Pressure (MAP) Sensor
MAP sensor monitors intake manifold vacuum. Sensor transmits
information on manifold vacuum and barometric pressure to PCM. MAP
sensor information is used with information from other sensors to
adjust air/fuel mixture.
Oil Pressure Sensor
Sensor sends a signal to PCM to indicate oil pressure.
Park/Neutral (P/N) Switch (A/T Models)
This switch may also be referred to as a Park/Neutral
Position (PNP) switch. P/N switch is available on vehicles equipped
with A/T only. Switch prevents engine starter from engaging if vehicle
is in any gear except Park or Neutral.
P/N switch input (varied with gear selection) is used to
determine idle speed, fuel injector pulse and ignition timing.
Page 1479 of 1691
diagram in appropriate WIRING DIAGRAMS article. For theory
and operation on each output component, refer to indicated
system.
A/C Clutch Relay
See A/C CLUTCH RELAY under MISCELLANEOUS CONTROLS.
Auto Shutdown (ASD) Relay
See AUTO SHUTDOWN (ASD) RELAY & FUEL PUMP RELAY under
MISCELLANEOUS CONTROLS.
Distributorless Ignition System (DIS)
See DISTRIBUTORLESS IGNITION SYSTEM (DIS) under IGNITION
SYSTEM.
Evaporative Canister Purge Control Solenoid (EVAP-CPCS)
See EVAPORATIVE (EVAP) EMISSIONS SYSTEM under EMISSION
SYSTEMS.
Fuel Injectors
See FUEL CONTROL under FUEL SYSTEM.
Fuel Pump Relay
See AUTO SHUTDOWN (ASD) RELAY & FUEL PUMP RELAY under
MISCELLANEOUS CONTROLS.
Generator
See GENERATOR under MISCELLANEOUS CONTROLS.
Idle Air Control (IAC) Motor
See IDLE SPEED under FUEL SYSTEM.
Ignition Coil
See IGNITION SYSTEM.
In-Tank Fuel Pump
See FUEL DELIVERY under FUEL SYSTEM.
Limp-In Mode
See LIMP-IN MODE under MISCELLANEOUS CONTROLS.
Malfunction Indicator Light (MIL)
See MALFUNCTION INDICATOR LIGHT under SELF-DIAGNOSTIC SYSTEM.
Radiator Fan Relay
See RADIATOR FAN RELAY under MISCELLANEOUS CONTROLS.
Serial Communications Interface (SCI) Transmit
See SERIAL COMMUNICATIONS INTERFACE (SCI) under SELF-
DIAGNOSTIC SYSTEM.
Shift Indicator Light
See SHIFT INDICATOR LIGHT under MISCELLANEOUS CONTROLS.
Speed Control Servo
See SPEED CONTROL SERVO under MISCELLANEOUS CONTROLS.
Tachometer
See TACHOMETER under MISCELLANEOUS CONTROLS.
Torque Converter Clutch (TCC) Solenoid
See TORQUE CONVERTER CLUTCH (TCC) SOLENOID under
MISCELLANEOUS CONTROLS.
Page 1480 of 1691
Transmission Governor Pressure Solenoid
See TRANSMISSION GOVERNOR SOLENOID under MISCELLANEOUS
CONTROLS.
Transmission Overdrive/Override (OD/OR) Switch Indicator
Light
See TRANSMISSION OVERDRIVE/OVERRIDE (OD/OR) SWITCH INDICATOR
under MISCELLANEOUS CONTROLS.
Transmission Overdrive (OD) Solenoid
See TRANSMISSION OVERDRIVE (OD) SOLENOID under MISCELLANEOUS
CONTROLS.
FUEL SYSTEM
FUEL DELIVERY
Auto Shutdown (ASD) Relay
See AUTO SHUTDOWN (ASD) RELAY & FUEL PUMP RELAY under
MISCELLANEOUS CONTROLS.
Fuel Pressure Regulator
Fuel pressure regulator is a mechanical device, used to
maintain a constant pressure across fuel injector tip. Spring and
rubber diaphragm will move from an open to closed position keeping
fuel pressure constant. Excess fuel is returned to fuel tank.
Regulator is located in in-tank fuel pump module. Regulator
includes an internal fuel filter. Excess fuel is routed directly into
fuel tank without using a return line. See Fig. 2.
Fig. 2: Cross-Sectional View Of In-Tank Fuel Filter/Fuel Pressure
Regulator (Typical)
Courtesy of Chrysler Corp.
In-Tank Fuel Pump