Reverse FORD SIERRA 1986 1.G Engine Electrical Systems Workshop Manual

Page 4 of 24

The ignition advance is a function of the
ESC II module, and is controlled by vacuum.
The module is connected to the carburettor
by a vacuum pipe, and a transducer in the
module translates the vacuum signal into an
electrical voltage. From the vacuum signal,
the module determines engine load; engine
speed and temperature are determined from
the crankshaft speed/position sensor and the
engine coolant temperature sensor. The
module has a range of spark advance settings
stored in its memory, and a suitable setting is
selected for the relevant engine speed, load
and temperature. The degree of advance can
thus be constantly varied to suit the prevailing
engine speed and load conditions.
ESC Hybrid (Electronic Spark Control
Hybrid) system
This system is fitted to 1.8 CVH models,
and comprises various sensors and an ESC
Hybrid module, in addition to the coil and
spark plugs. The distributor serves purely to
distribute the HT voltage to the spark plugs
and consists simply of a rotor arm mounted
directly on the end of the camshaft, and a
distributor cap.
The electrical impulse which is required to
switch off the low tension circuit is generated
by a crankshaft speed/position sensor which
is activated by a toothed wheel on the
crankshaft. The toothed wheel has 35 equally
spaced teeth with a gap in the 36th position.
The gap is used by the sensor to determine
the crankshaft position relative to TDC (top
dead centre) of No 1 piston.
Engine load information is supplied to the
ESC Hybrid module by a vacuum transducer
within the module which is connected to the
inlet manifold by a vacuum pipe. Additional
inputs are supplied by an inlet
manifold-mounted engine coolant temperature
sensor, and an air charge temperature sensor
mounted in the base of the air cleaner. The
module selects the optimum ignition advance
setting based on the information received from
the various sensors. The degree of advance
can thus be constantly varied to suit the
prevailing engine conditions.
In addition to the ignition circuit, the module
also controls an electric choke heater, and a
solenoid valve which in turn controls a throttle
damper on the carburettor. The electric choke
heater is operated by the module using
information supplied by the engine coolant
temperature sensor. The heater is used to
slow down the rate at which the choke comes
off, thereby improving driveability and overall
fuel consumption when the engine is cold. The
solenoid valve controls the vacuum supply to
the carburettor throttle damper. The throttle
damper prevents sudden closing of the throttle
during deceleration, thus maintaining
combustion of the air/fuel mixture which
reduces harmful exhaust gas emissions.
Note that there is no provision for
adjustment of ignition timing with the ESC
Hybrid system.
EEC IV (Electronic Engine Control IV)
system
2.0 litre SOHC fuel injection models
This system controls both the ignition and
fuel injection systems. The EEC IV module
receives information from a “Hall effect”
distributor sensor (similar to that described
previously in this Section for the ESC system),
an engine coolant temperature sensor
mounted in the inlet manifold, a throttle
position sensor, and an air flow meter.
Additionally, on models equipped with
automatic transmission and/or air
conditioning, additional inputs are supplied to
the module to allow it to raise the idle speed
to compensate for the additional engine load
imposed by the automatic transmission/air
conditioning. The module provides outputs to
control the fuel pump, fuel injectors, idle
speed, and ignition circuit. Using the inputs
from the various sensors, the EEC IV module
computes the optimum ignition advance, and
fuel injector pulse duration to suit the
prevailing engine conditions. This system
gives very accurate control of the engine
under all conditions, improving fuel
consumption and driveability, and reducing
exhaust gas emissions. A “limited operation
strategy” (LOS) means that the vehicle is still
driveable, albeit at reduced power and
efficiency, in the event of a failure in the
module or its sensors.
2.0 litre DOHC fuel injection models
A development of the EEC IV system is
used to control both the ignition and fuel
injection systems. The module receives
information from a crankshaft speed/position
sensor (similar to that described for the ESC
Hybrid system), except that the sensor is
activated by a toothed disc on the rear of the
crankshaft, inside the cylinder block), a
throttle position sensor, an engine coolant
temperature sensor, a fuel temperature
sensor, an air charge temperature sensor, a
manifold absolute pressure (MAP) sensor, and
a vehicle speed sensor (mounted on the
gearbox). Additionally, on models with a
catalytic converter, an additional input is
supplied to the EEC IV module from an
exhaust gas oxygen (HEGO) sensor. On
models with automatic transmission,
additional sensors are fitted to the
transmission, to inform the EEC IV module
when the transmission is in neutral, and when
the kickdown is being operated.
The module provides outputs to control the
fuel pump, fuel injectors, idle speed, ignition
system and automatic transmission.
Additionally, on models with air conditioning,
the EEC IV module disengages the air
conditioning compressor clutch when starting
the engine, and when the engine is suddenly
accelerated. On models fitted with a catalytic
converter, the EEC IV module also controls
the carbon canister-purge solenoid valve.
Using the inputs from the various sensors,
the EEC IV module computes the optimum
ignition advance, and fuel injector pulse
duration to suit the prevailing engine
conditions. A “limited operation strategy” (LOS)means that the vehicle is still driveable, albeit at
reduced power and efficiency, in the event of a
failure in the module or one of its sensors.
1.6 litre and 1.8 litre (R6A type) CVH models
A development of the EEC IV system is
used to control both the ignition and fuel
injection systems. A fully electronic
Distributorless Ignition System (DIS) is fitted,
replacing the mechanical distribution of high
tension voltage (by a rotating distributor) with
“static” solid-state electronic components.
The system selects the most appropriate
ignition advance setting for the prevailing
engine operating conditions from a three-
dimensional map of values stored in the EEC
IV control module memory. The module
selects the appropriate advance value
according to information supplied on engine
load, speed, and operating temperature from
various sensors.
The EEC IV module receives information
from a crankshaft speed/position sensor
(similar to that described for the ESC Hybrid
system), except that on 1.6 litre engines, the
sensor is activated by a toothed disc on the
flywheel), a throttle position sensor, an engine
coolant temperature sensor, an air charge
temperature sensor, a manifold absolute
pressure (MAP) sensor, a vehicle speed
sensor (mounted on the gearbox), and an
exhaust gas oxygen sensor.
The module provides outputs to control the
fuel pump, fuel injector, throttle valve control
motor, pulse-air control solenoid, carbon
canister purge solenoid (where applicable),
and the ignition system.
Using the inputs from the various sensors,
the EEC IV module computes the optimum
ignition advance and fuel injector pulse dura-
tion to suit the prevailing engine conditions. A
“limited operation strategy” (LOS) means that
the vehicle will still be driveable, albeit at
reduced power and efficiency, in the event of
a failure in the module or one of its sensors.
Precautions
General
It is necessary to take extra care when
working on the electrical system to avoid
damage to semi-conductor devices (diodes
and transistors), and to avoid the risk of
personal injury. In addition to the precautions
given in the “Safety first!” Section at the
beginning of this manual, take note of the
following points when working on the system.
Always remove rings, watches, etc before
working on the electrical system. Even with
the battery disconnected, capacitive
discharge could occur if a component live
terminal is earthed through a metal object.
This could cause a shock or nasty burn.
Do not reverse the battery connections.
Components such as the alternator or any
other having semi-conductor circuitry could
be irreparably damaged.
If the engine is being started using jump
leads and a slave battery, connect the
batteries positive to positive and negative to
negative. This also applies when connecting a
battery charger.
5•4Engine electrical systems