jump start FORD SIERRA 1990 2.G Engine Electrical Systems Workshop Manual

Page 3 of 24

General information
The electrical system is of the 12 volt
negative earth type, and consists of a 12 volt
battery, alternator with integral voltage
regulator, starter motor and related electrical
accessories, components and wiring. The
battery is of the low maintenance or
maintenance-free “sealed for life” type and is
charged by an alternator which is belt-driven
from the crankshaft pulley. The starter motor
is of the pre-engaged type, incorporating an
integral solenoid. On starting the solenoid
moves the drive pinion into engagement with
the flywheel ring gear before the starter motor
is energised. Once the engine has started, a
one-way clutch prevents the motor armature
being driven by the engine until the pinion
disengages from the flywheel.
The ignition system is responsible for
igniting the air/fuel mixture in each cylinder at
the correct moment in relation to engine
speed and load. A number of different ignition
systems are fitted to models within the
Sierra/P100 range, ranging from a basic
breakerless electronic system to a fully
integrated engine management system
controlling ignition and fuel injection systems.
The ignition system is based on feeding low
tension voltage from the battery to the coil
where it is converted to high tension voltage.
The high tension voltage is powerful enough
to jump the spark plug gap in the cylinders
many times a second under high compression
pressures, providing that the system is in
good condition. The low tension (or primary)
circuit consists of the battery, the lead to the
ignition switch, the lead from the ignition
switch to the low tension coil windings
(terminal + /15) and also to the supply terminal
on the electronic module, and the lead from
the low tension coil windings (terminal -/1) to
the control terminal on the electronic module.
The high tension (or secondary) circuit
consists of the high tension coil windings, the
HT (high tension) lead from the coil to the
distributor cap, the rotor arm, the HT leads to
the spark plugs, and the spark plugs.
The system functions in the following
manner. Current flowing through the low
tension coil windings produces a magnetic
field around the high tension windings. As the
engine rotates, a sensor produces an
electrical impulse which is amplified in the
electronic module and used to switch off the
low tension circuit.
The subsequent collapse of the magnetic
field over the high tension windings produces
high tension voltage which is then fed to the
relevant spark plug via the distributor cap and
rotor arm. The low tension circuit is
automatically switched on again by the
electronic module, to allow the magnetic field
to build up again before the firing of the next
spark plug. The ignition is advanced and
retarded automatically to ensure that thespark occurs at the correct instant in relation
to the engine speed and load.
To improve driveability during warm-up
conditions and to reduce exhaust emission
levels, a vacuum-operated,
temperature-sensitive spark control system is
fitted to certain vehicles.Inductive discharge system
This is the least sophisticated system fitted
to the Sierra/P100 range, and comprises a
breakerless distributor and an electronic
switching/amplifier module in addition to the
coil and spark plugs.
The electrical impulse which is required to
switch off the low tension circuit is generated
by a magnetic trigger coil in the distributor. A
trigger wheel rotates within a magnetic stator,
the magnetic field being provided by a
permanent magnet. The magnetic field across
the two poles (stator arm and trigger wheel) is
dependent on the air gap between the two
poles. When the air gap is at its minimum, the
trigger wheel arm is directly opposite the
stator arm, and this is the trigger point. As the
magnetic flux between the stator arm and
trigger wheel varies, a voltage is induced in
the trigger coil mounted below the trigger
wheel, and this voltage is sensed and then
amplified by the electronic module and used
to switch off the low tension circuit. There is
one trigger wheel arm and one stator arm for
each cylinder (4).
The ignition advance is a function of the
distributor and is controlled both mechanically
and by a vacuum operated system. The
mechanical governor mechanism consists of
two weights which move out from the
distributor shaft as the engine speed rises due
to centrifugal force. As they move outwards,
they rotate the trigger wheel relative to the
distributor shaft and so advance the spark.
The weights are held in position by two light
springs and it is the tension of the springs
which is largely responsible for correct spark
advancement.
The vacuum control consists of a
diaphragm, one side of which is connected
via a small bore hose to the carburettor or
inlet manifold and the other side to the
distributor. Depression in the inlet manifold
and/or carburettor, which varies with engine
speed and throttle position, causes the
diaphragm to move, so moving the baseplate
and advancing or retarding the spark. A fine
degree of control is achieved by a spring in
the diaphragm assembly.
ESC (Electronic Spark Control) system
This system is only fitted to early
“Economy” models, and comprises a “Hall
effect” distributor, and an ESC module, in
addition to the coil and spark plugs.
The electrical impulse which is required to
switch off the low tension circuit is generated
by a sensor in the distributor. A trigger vane
rotates in the gap between a permanent
magnet and the sensor. The trigger vane has
four cut-outs, one for each cylinder. When
one of the trigger vane cut-outs is in line with
the sensor, magnetic flux can pass betweenthe magnet and the sensor. When a trigger
vane segment is in line with the sensor, the
magnetic flux is diverted through the trigger
vane away from the sensor. The sensor
senses the change in magnetic flux and sends
an impulse to the ESC module, which
switches off the low tension circuit.
The ignition advance is a function of the
ESC module and is controlled by vacuum. The
module is connected to the inlet manifold by a
vacuum pipe, and a transducer in the module
translates the vacuum signal into electrical
voltage. From the vacuum signal, the ESC
module determines engine load, and engine
speed is determined from the interval
between impulses supplied by the distributor
sensor. The module has a range of spark
advance settings stored in its memory, and a
suitable setting is selected for the relevant
engine speed and load. The degree of
advance can thus be constantly varied to suit
the prevailing engine speed and load
conditions.
ESC II (Electronic Spark Control II)
system
1.8 and 2.0 litre SOHC carburettor models
This system is a development of the ESC
system described previously in this Section,
but it enables more accurate control of engine
operation due to the inclusion of additional
monitoring features and control outputs.
Vehicles fitted with the ESC II system have an
electric inlet manifold heater which warms the
air/fuel mixture when the engine is cold, thus
reducing the amount of fuel enrichment
required, lowering fuel consumption and
improving driveability when the engine is cold.
The heater is operated by the ESC II module
receiving information on the engine temperature
from an engine coolant temperature sensor
mounted in the inlet manifold.
On 2.0 litre SOHC models, the ESC II
module operates a carburettor stepper motor
to control the engine idle speed. Using
information on engine speed, load,
temperature and throttle position (supplied by
a switch on the carburettor), the module
operates the stepper motor to maintain a
constant idle speed. On models equipped
with automatic transmission and/or air
conditioning, additional inputs are supplied to
the module to allow it to operate the stepper
motor to compensate for the additional engine
load imposed by the automatic
transmission/air conditioning. The ESC II
module also operates a “power hold” relay
which allows the stepper motor to function
briefly after the ignition has been switched off
in order to perform an anti-run-on and
manifold ventilation cycle.
2.0 litre DOHC carburettor models
A development of the ESC II system is used
to control the operation of the engine. The
module receives information from a
crankshaft speed/position sensor (similar to
that described for the ESC Hybrid system),
except that the sensor is activated by a
toothed disc on the rear of the crankshaft,
inside the cylinder block), and an engine
coolant temperature sensor.
1General information and
precautions
Engine electrical systems 5•3
5

Page 4 of 24

The ignition advance is a function of the
ESC II module, and is controlled by vacuum.
The module is connected to the carburettor
by a vacuum pipe, and a transducer in the
module translates the vacuum signal into an
electrical voltage. From the vacuum signal,
the module determines engine load; engine
speed and temperature are determined from
the crankshaft speed/position sensor and the
engine coolant temperature sensor. The
module has a range of spark advance settings
stored in its memory, and a suitable setting is
selected for the relevant engine speed, load
and temperature. The degree of advance can
thus be constantly varied to suit the prevailing
engine speed and load conditions.
ESC Hybrid (Electronic Spark Control
Hybrid) system
This system is fitted to 1.8 CVH models,
and comprises various sensors and an ESC
Hybrid module, in addition to the coil and
spark plugs. The distributor serves purely to
distribute the HT voltage to the spark plugs
and consists simply of a rotor arm mounted
directly on the end of the camshaft, and a
distributor cap.
The electrical impulse which is required to
switch off the low tension circuit is generated
by a crankshaft speed/position sensor which
is activated by a toothed wheel on the
crankshaft. The toothed wheel has 35 equally
spaced teeth with a gap in the 36th position.
The gap is used by the sensor to determine
the crankshaft position relative to TDC (top
dead centre) of No 1 piston.
Engine load information is supplied to the
ESC Hybrid module by a vacuum transducer
within the module which is connected to the
inlet manifold by a vacuum pipe. Additional
inputs are supplied by an inlet
manifold-mounted engine coolant temperature
sensor, and an air charge temperature sensor
mounted in the base of the air cleaner. The
module selects the optimum ignition advance
setting based on the information received from
the various sensors. The degree of advance
can thus be constantly varied to suit the
prevailing engine conditions.
In addition to the ignition circuit, the module
also controls an electric choke heater, and a
solenoid valve which in turn controls a throttle
damper on the carburettor. The electric choke
heater is operated by the module using
information supplied by the engine coolant
temperature sensor. The heater is used to
slow down the rate at which the choke comes
off, thereby improving driveability and overall
fuel consumption when the engine is cold. The
solenoid valve controls the vacuum supply to
the carburettor throttle damper. The throttle
damper prevents sudden closing of the throttle
during deceleration, thus maintaining
combustion of the air/fuel mixture which
reduces harmful exhaust gas emissions.
Note that there is no provision for
adjustment of ignition timing with the ESC
Hybrid system.
EEC IV (Electronic Engine Control IV)
system
2.0 litre SOHC fuel injection models
This system controls both the ignition and
fuel injection systems. The EEC IV module
receives information from a “Hall effect”
distributor sensor (similar to that described
previously in this Section for the ESC system),
an engine coolant temperature sensor
mounted in the inlet manifold, a throttle
position sensor, and an air flow meter.
Additionally, on models equipped with
automatic transmission and/or air
conditioning, additional inputs are supplied to
the module to allow it to raise the idle speed
to compensate for the additional engine load
imposed by the automatic transmission/air
conditioning. The module provides outputs to
control the fuel pump, fuel injectors, idle
speed, and ignition circuit. Using the inputs
from the various sensors, the EEC IV module
computes the optimum ignition advance, and
fuel injector pulse duration to suit the
prevailing engine conditions. This system
gives very accurate control of the engine
under all conditions, improving fuel
consumption and driveability, and reducing
exhaust gas emissions. A “limited operation
strategy” (LOS) means that the vehicle is still
driveable, albeit at reduced power and
efficiency, in the event of a failure in the
module or its sensors.
2.0 litre DOHC fuel injection models
A development of the EEC IV system is
used to control both the ignition and fuel
injection systems. The module receives
information from a crankshaft speed/position
sensor (similar to that described for the ESC
Hybrid system), except that the sensor is
activated by a toothed disc on the rear of the
crankshaft, inside the cylinder block), a
throttle position sensor, an engine coolant
temperature sensor, a fuel temperature
sensor, an air charge temperature sensor, a
manifold absolute pressure (MAP) sensor, and
a vehicle speed sensor (mounted on the
gearbox). Additionally, on models with a
catalytic converter, an additional input is
supplied to the EEC IV module from an
exhaust gas oxygen (HEGO) sensor. On
models with automatic transmission,
additional sensors are fitted to the
transmission, to inform the EEC IV module
when the transmission is in neutral, and when
the kickdown is being operated.
The module provides outputs to control the
fuel pump, fuel injectors, idle speed, ignition
system and automatic transmission.
Additionally, on models with air conditioning,
the EEC IV module disengages the air
conditioning compressor clutch when starting
the engine, and when the engine is suddenly
accelerated. On models fitted with a catalytic
converter, the EEC IV module also controls
the carbon canister-purge solenoid valve.
Using the inputs from the various sensors,
the EEC IV module computes the optimum
ignition advance, and fuel injector pulse
duration to suit the prevailing engine
conditions. A “limited operation strategy” (LOS)means that the vehicle is still driveable, albeit at
reduced power and efficiency, in the event of a
failure in the module or one of its sensors.
1.6 litre and 1.8 litre (R6A type) CVH models
A development of the EEC IV system is
used to control both the ignition and fuel
injection systems. A fully electronic
Distributorless Ignition System (DIS) is fitted,
replacing the mechanical distribution of high
tension voltage (by a rotating distributor) with
“static” solid-state electronic components.
The system selects the most appropriate
ignition advance setting for the prevailing
engine operating conditions from a three-
dimensional map of values stored in the EEC
IV control module memory. The module
selects the appropriate advance value
according to information supplied on engine
load, speed, and operating temperature from
various sensors.
The EEC IV module receives information
from a crankshaft speed/position sensor
(similar to that described for the ESC Hybrid
system), except that on 1.6 litre engines, the
sensor is activated by a toothed disc on the
flywheel), a throttle position sensor, an engine
coolant temperature sensor, an air charge
temperature sensor, a manifold absolute
pressure (MAP) sensor, a vehicle speed
sensor (mounted on the gearbox), and an
exhaust gas oxygen sensor.
The module provides outputs to control the
fuel pump, fuel injector, throttle valve control
motor, pulse-air control solenoid, carbon
canister purge solenoid (where applicable),
and the ignition system.
Using the inputs from the various sensors,
the EEC IV module computes the optimum
ignition advance and fuel injector pulse dura-
tion to suit the prevailing engine conditions. A
“limited operation strategy” (LOS) means that
the vehicle will still be driveable, albeit at
reduced power and efficiency, in the event of
a failure in the module or one of its sensors.
Precautions
General
It is necessary to take extra care when
working on the electrical system to avoid
damage to semi-conductor devices (diodes
and transistors), and to avoid the risk of
personal injury. In addition to the precautions
given in the “Safety first!” Section at the
beginning of this manual, take note of the
following points when working on the system.
Always remove rings, watches, etc before
working on the electrical system. Even with
the battery disconnected, capacitive
discharge could occur if a component live
terminal is earthed through a metal object.
This could cause a shock or nasty burn.
Do not reverse the battery connections.
Components such as the alternator or any
other having semi-conductor circuitry could
be irreparably damaged.
If the engine is being started using jump
leads and a slave battery, connect the
batteries positive to positive and negative to
negative. This also applies when connecting a
battery charger.
5•4Engine electrical systems