air condition INFINITI FX35 2006 Service Manual

Page 1461 of 4462

BASIC SERVICE PROCEDURE EC-77
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
BASIC SERVICE PROCEDUREPFP:00018
Basic InspectionNBS003LP
1. INSPECTION START
1. Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.
2. Open engine hood and check the following:
–Harness connectors for improper connections
–Wiring harness for improper connections, pinches and cut
–Vacuum hoses for splits, kinks and improper connections
–Hoses and ducts for leaks
–Air cleaner clogging
–Gasket
3. Confirm that electrical or mechanical loads are not applied.
–Headlamp switch is OFF.
–Air conditioner switch is OFF.
–Rear window defogger switch is OFF.
–Steering wheel is in the straight-ahead position, etc.
4. Start engine and warm it up until engine coolant temperature indicator points the middle of gauge.
Ensure engine stays below 1,000 rpm.
5. Run engine at about 2,000 rpm for about 2 minutes under no load.
6. Make sure that no DTC is displayed with CONSULT-II or GST.
OK or NG
OK >> GO TO 3.
NG >> GO TO 2.
2. REPAIR OR REPLACE
Repair or replace components as necessary according to corresponding Diagnostic Procedure.
>> GO TO 3.
SEF983U
SEF976U
SEF977U

Page 1468 of 4462

EC-84
[VQ35DE]
BASIC SERVICE PROCEDURE
Revision: 2006 December 2006 FX35/FX45
Accelerator Pedal Released Position LearningNBS003LT
DESCRIPTION
Accelerator Pedal Released Position Learning is an operation to learn the fully released position of the accel-
erator pedal by monitoring the accelerator pedal position sensor output signal. It must be performed each time
harness connector of accelerator pedal position sensor or ECM is disconnected.
OPERATION PROCEDURE
1. Make sure that accelerator pedal is fully released.
2. Turn ignition switch ON and wait at least 2 seconds.
3. Turn ignition switch OFF and wait at least 10 seconds.
4. Turn ignition switch ON and wait at least 2 seconds.
5. Turn ignition switch OFF and wait at least 10 seconds.
Throttle Valve Closed Position LearningNBS003LU
DESCRIPTION
Throttle Valve Closed Position Learning is an operation to learn the fully closed position of the throttle valve by
monitoring the throttle position sensor output signal. It must be performed each time harness connector of
electric throttle control actuator or ECM is disconnected.
OPERATION PROCEDURE
1. Make sure that accelerator pedal is fully released.
2. Turn ignition switch ON.
3. Turn ignition switch OFF and wait at least 10 seconds. Make sure that throttle valve moves during above 10 seconds by confirming the operating sound.
Idle Air Volume LearningNBS003LV
DESCRIPTION
Idle Air Volume Learning is an operation to learn the idle air volume that keeps each engine within the specific
range. It must be performed under any of the following conditions:
Each time electric throttle control actuator or ECM is replaced.
Idle speed or ignition timing is out of specification.
PREPARATION
Before performing Idle Air Volume Learning, make sure that all of the following conditions are satisfied.
Learning will be cancelled if any of the following conditions are missed for even a moment.
Battery voltage: More than 12.9V (At idle)
Engine coolant temperature: 70 - 100 °C (158 - 212 °F)
Park/neutral position switch: ON
Electric load switch: OFF
(Air conditioner, headlamp, rear window defogger)
On vehicles equipped with daytime light systems, if the parking brake is applied before the engine
is started the headlamp will not be illuminated.
Steering wheel: Neutral (Straight-ahead position)
Vehicle speed: Stopped
Transmission: Warmed-up
For models with CONSULT-II, drive vehicle until “ATF TEMP SE 1” in “DATA MONITOR” mode of “A/T”
system indicates less than 0.9V.
For models without CONSULT-II, drive vehicle for 10 minutes.
OPERATION PROCEDURE
With CONSULT-II
1. Perform EC-84, "Accelerator Pedal Released Position Learning" .
2. Perform EC-84, "
Throttle Valve Closed Position Learning" .
3. Start engine and warm it up to normal operating temperature.
4. Check that all items listed under the topic PREPARATION (previously mentioned) are in good order.

Page 1470 of 4462

EC-86
[VQ35DE]
BASIC SERVICE PROCEDURE
Revision: 2006 December 2006 FX35/FX45
11. Wait 20 seconds.
12. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.
13. If idle speed and ignition timing are not within the specification, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the DIAGNOSTIC PROCE-
DURE below.
DIAGNOSTIC PROCEDURE
If idle air volume learning cannot be performed successfully, proceed as follows:
1. Check that throttle valve is fully closed.
2. Check PCV valve operation.
3. Check that downstream of throttle valve is free from air leakage.
4. When the above three items check out OK, engine component parts and their installation condi-
tion are questionable. Check and eliminate the cause of the incident.
It is useful to perform EC-138, "
TROUBLE DIAGNOSIS - SPECIFICATION VALUE" .
5. If any of the following conditions occur after the engine has started, eliminate the cause of the
incident and perform Idle Air Volume Learning all over again:
Engine stalls.
Erroneous idle.
Fuel Pressure CheckNBS003LW
FUEL PRESSURE RELEASE
With CONSULT-II
1. Turn ignition switch ON.
2. Perform “FUEL PRESSURE RELEASE” in “WORK SUPPORT” mode with CONSULT-II.
3. Start engine.
4. After engine stalls, crank it two or three times to release all fuel pressure.
5. Turn ignition switch OFF.
ITEM SPECIFICATION
Idle speed 650 ± 50 rpm (in P or N position)
Ignition timing 15 ± 5 ° BTDC (in P or N position)
SEC897C
SEF214Y

Page 1472 of 4462

EC-88
[VQ35DE]
TROUBLE DIAGNOSIS
Revision: 2006 December 2006 FX35/FX45
TROUBLE DIAGNOSISPFP:00004
Trouble Diagnosis IntroductionNBS003LX
INTRODUCTION
The engine has an ECM to control major systems such as fuel con-
trol, ignition control, idle air control system, etc. The ECM accepts
input signals from sensors and instantly drives actuators. It is essen-
tial that both input and output signals are proper and stable. At the
same time, it is important that there are no malfunctions such as vac-
uum leaks, fouled spark plugs, or other malfunctions with the engine.
It is much more difficult to diagnose an incident that occurs intermit-
tently rather than continuously. Most intermittent incidents are
caused by poor electric connections or improper wiring. In this case,
careful checking of suspected circuits may help prevent the replace-
ment of good parts.
A visual check only may not find the cause of the incidents. A road
test with CONSULT-II (or GST) or a circuit tester connected should
be performed. Follow the WORK FLOW on EC-89, "
WORK FLOW" .
Before undertaking actual checks, take a few minutes to talk with a
customer who approaches with a driveability complaint. The cus-
tomer can supply good information about such incidents, especially
intermittent ones. Find out what symptoms are present and under
what conditions they occur. A DIAGNOSTIC WORKSHEET like the
example on EC-92, "
DIAGNOSTIC WORKSHEET" should be used.
Start your diagnosis by looking for conventional malfunctions first.
This will help troubleshoot driveability malfunctions on an electroni-
cally controlled engine vehicle.
MEF036D
SEF233G
SEF234G

Page 1476 of 4462

EC-92
[VQ35DE]
TROUBLE DIAGNOSIS
Revision: 2006 December 2006 FX35/FX45
10. DETECT MALFUNCTIONING PART BY DIAGNOSTIC PROCEDURE
Inspect according to Diagnostic Procedure of the system.
NOTE:
The Diagnostic Procedure in EC section described based on open circuit inspection. A short circuit inspection
is also required for the circuit check in the Diagnostic Procedure. For details, refer to Circuit Inspection in GI-
28, "How to Perform Efficient Diagnosis for an Electrical Incident" .
Is malfunctioning part detected?
Yes >> GO TO 11.
No >> Monitor input data from related sensors or check voltage of related ECM terminals using CON- SULT-II. Refer to EC-133, "
CONSULT-II Reference Value in Data Monitor" , EC-110, "ECM Termi-
nals and Reference Value" .
11 . REPAIR OR REPLACE THE MALFUNCTIONING PART
1. Repair or replace the malfunctioning part.
2. Reconnect parts or connectors disconnected during Diagnostic Procedure again after repair and replace- ment.
3. Check DTC. If DTC is displayed, erase it, refer to EC-67, "
HOW TO ERASE EMISSION-RELATED DIAG-
NOSTIC INFORMATION" .
>> GO TO 12.
12. FINAL CHECK
When DTC was detected in step 2, perform DTC Confirmation Procedure or Overall Function Check again,
and then make sure that the malfunction have been repaired securely.
When symptom was described from the customer, refer to confirmed symptom in step 3 or 4, and make sure
that the symptom is not detected.
OK or NG
NG (DTC*1 is detected)>>GO TO 10.
NG (Symptom remains)>>GO TO 6.
OK >> 1. Before returning the vehicle to the customer, make sure to erase unnecessary DTC*
1 in ECM
and TCM (Transmission Control Module). (Refer to EC-67, "
HOW TO ERASE EMISSION-
RELATED DIAGNOSTIC INFORMATION" and AT- 4 1 , "HOW TO ERASE DTC" .)
2. If the completion of SRT is needed, drive vehicle under the specific driving pattern. Refer to EC-
64, "Driving Pattern" .
3. INSPECTION END
*1: Include 1st trip DTC.
*2: Include 1st trip freeze frame data.
DIAGNOSTIC WORKSHEET
Description
There are many operating conditions that lead to the malfunction of
engine components. A good grasp of such conditions can make trou-
bleshooting faster and more accurate.
In general, each customer feels differently about a incident. It is
important to fully understand the symptoms or conditions for a cus-
tomer complaint.
Utilize a diagnostic worksheet like the one on the next page in order
to organize all the information for troubleshooting.
Some conditions may cause the MIL to come on steady or blink and
DTC to be detected. Examples:
Vehicle ran out of fuel, which caused the engine to misfire.
Fuel filler cap was left off or incorrectly screwed on, allowing fuel
to evaporate into the atmosphere.
SEF907L

Page 1480 of 4462

EC-96
[VQ35DE]
TROUBLE DIAGNOSIS
Revision: 2006 December 2006 FX35/FX45
Fail-Safe ChartNBS003LZ
When the DTC listed below is detected, the ECM enters fail-safe mode and the MIL lights up.
When there is an open circuit on MIL circuit, the ECM cannot warn the driver by MIL lighting up when
there is malfunction on engine control system.
Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected
as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by
means of operating fail-safe function.
The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands
the driver to repair the malfunction.
DTC No. Detected items Engine operating condition in fail-safe mode
P0102
P0103 Mass air flow sensor circuit Engine speed will not rise more than 2,400 rpm due to the fuel cut.
P0117
P0118 Engine coolant tempera-
ture sensor circuit Engine coolant temperature will be determined by ECM based on the time after turning
ignition switch ON or START.
CONSULT-II displays the engine coolant temperature decided by ECM.
Condition Engine coolant temperature decided
(CONSULT-II display)
Just as ignition switch is turned
ON or START 40
°C (104 °F)
More than approx. 4 minutes after
ignition ON or START 80
°C (176 °F)
Except as shown above 40 - 80
°C (104 - 176 °F)
(Depends on the time)
When the fail-safe system for engine coolant temperature sensor is activated, the cooling
fan operates while engine is running.
P0122
P0123
P0222
P0223
P2135 Throttle position sensor The ECM controls the electric throttle control actuator in regulating the throttle opening in
order for the idle position to be within +10 degrees.
The ECM regulates the opening speed of the throttle valve to be slower than the normal
condition.
So, the acceleration will be poor.
P0643 Sensor power supply ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.
P2100
P2103 Throttle control motor relay ECM stops the electric throttle control actuator control, throttle valve is maintained at a
fixed opening (approx. 5 degrees) by the return spring.
P2101 Electric throttle control function ECM stops the electric throttle control actuator control, throttle valve is maintained at a
fixed opening (approx. 5 degrees) by the return spring.
P2118 Throttle control motor ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.
P2119 Electric throttle control actuator (When electric throttle control actuator does not function properly due to the return spring
malfunction:)
ECM controls the electric throttle actuator by regulating the throttle opening around the
idle position. The engine speed will not rise more than 2,000 rpm.
(When throttle valve opening angle in fail-safe mode is not in specified range:)
ECM controls the electric throttle control actuator by regulating the throttle opening to 20
degrees or less.
(When ECM detects the throttle valve is stuck open:)
While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops,
the engine stalls.
The engine can restart in N or P position, and engine speed will not exceed 1,000 rpm or
more.
P2122
P2123
P2127
P2128
P2138 Accelerator pedal position
sensor The ECM controls the electric throttle control actuator in regulating the throttle opening in
order for the idle position to be within +10 degrees.
The ECM regulates the opening speed of the throttle valve to be slower than the normal
condition.
So, the acceleration will be poor.
Engine operating condition in fail-safe mode Engine speed will not rise more than 2,500 rpm due to the fuel cut

Page 1482 of 4462

EC-98
[VQ35DE]
TROUBLE DIAGNOSIS
Revision: 2006 December 2006 FX35/FX45
1 - 6: The numbers refer to the order of inspection.
(continued on next page) ECM 22333333333
EC-477
,
EC-481
Intake valve timing control solenoid valve cir-
cuit 32 13223 3
EC-181
Park/neutral position (PNP) switch circuit 3 3 3 3 3 EC-489
Refrigerant pressure sensor circuit 2 3 3 4EC-662
Electrical load signal circuit 3EC-626
Air conditioner circuit 223333333 3 2AT C - 4 0
ABS actuator and electric unit (control unit) 4BRC-11
SYMPTOM
Reference
page
HARD/NO START/RESTART (EXCP. HA)
ENGINE STALL
HESITATION/SURGING/FLAT SPOT
SPARK KNOCK/DETONATION
LACK OF POWER/POOR ACCELERATION
HIGH IDLE/LOW IDLE
ROUGH IDLE/HUNTING
IDLING VIBRATION
SLOW/NO RETURN TO IDLE
OVERHEATS/WATER TEMPERATURE HIGH
EXCESSIVE FUEL CONSUMPTION
EXCESSIVE OIL CONSUMPTION
BATTERY DEAD (UNDER CHARGE)
Warranty symptom code AA AB AC AD AE AF AG AH AJ AK AL AM HA

Page 1498 of 4462

EC-114
[VQ35DE]
TROUBLE DIAGNOSIS
Revision: 2006 December 2006 FX35/FX45
33 R/L Camshaft position sensor
(PHASE) (bank 1) [Engine is running]
Warm-up condition
Idle speed
NOTE:
The pulse cycle changes depending on rpm
at idle 1.0 - 4.0V
[Engine is running]
Engine speed: 2,000 rpm 1.0 - 4.0V
34 OR Intake air temperature sen-
sor [Engine is running] Approximately 0 - 4.8V
Output voltage varies with intake
air temperature.
40
41
42 LG
B
P Fuel injector No. 6
Fuel injector No. 4
Fuel injector No. 2 [Engine is running]
Warm-up condition
Idle speed
NOTE:
The pulse cycle changes depending on rpm
at idle BATTERY VOLTAGE
(11 - 14V)
[Engine is running]
Warm-up condition
Engine speed: 2,000 rpm BATTERY VOLTAGE
(11 - 14V)
45 GY EVAP canister purge vol-
ume control solenoid valve [Engine is running]
Idle speed
Accelerator pedal is not depressed even
slightly, after engine starting BATTERY VOLTAGE
(11 - 14V)
[Engine is running]
Engine speed is about 2,000 rpm (More
than 100 seconds after starting engine) BATTERY VOLTAGE
(11 - 14V)
TER-
MINAL NO. WIRE
COLOR ITEM CONDITION DATA (DC Voltage)
PBIB1039E
PBIB1040E
SEC984C
SEC985C
SEC990C
SEC991C

Page 1499 of 4462

TROUBLE DIAGNOSIS EC-115
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX4547 L Sensor power supply
(Throttle position sensor) [Ignition switch: ON]
Approximately 5V
48 LG Sensor power supply
(EVAP control system pres-
sure sensor) [Ignition switch: ON]
Approximately 5V
49 PU Sensor power supply
(Refrigerant pressure sen-
sor) [Ignition switch: ON]
Approximately 5V
50 W Throttle position sensor 1 [Ignition switch: ON]
Engine stopped
Selector lever: D
Accelerator pedal: Fully released
More than 0.36V
[Ignition switch: ON]
Engine stopped
Selector lever: D
Accelerator pedal: Fully depressed Less than 4.75V
51 L/W Mass air flow sensor [Engine is running]
Warm-up condition
Idle speed
1.0 - 1.2V
[Engine is running]
Warm-up condition
Engine speed: 2,500 rpm 1.6 - 2.0V
55 W/R Heated oxygen sensor 2
(bank 2) [Engine is running]
Revving engine from idle to 3,000 rpm
quickly after the following conditions are met
–Engine: After warming up
–After keeping the engine speed between
3,500 and 4,000 rpm for 1 minute and at idle
for 1 minute under no load 0 - Approximately 1.0V
57 G A/F sensor 1 (Bank 2) [Engine is running]
Warm-up condition
Idle speed Approximately 2.6V
58 Y Approximately 2.3V
76 P Approximately 3.1V
77 BR Approximately 2.3V
60
61
62 PU
L
Y Ignition signal No. 5
Ignition signal No. 3
Ignition signal No. 1 [Engine is running]
Warm-up condition
Idle speed
NOTE:
The pulse cycle changes depending on rpm
at idle 0 - 0.2V
[Engine is running]
Warm-up condition
Engine speed: 2,500 rpm 0.1 - 0.4V
TER-
MINAL NO. WIRE
COLOR ITEM CONDITION DATA (DC Voltage)
SEC986C
SEC987C

Page 1504 of 4462

EC-120
[VQ35DE]
TROUBLE DIAGNOSIS
Revision: 2006 December 2006 FX35/FX45
ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION
Item DIAGNOSTIC TEST MODE
WORK SUP-
PORT SELF-DIAGNOSTIC
RESULTS DATA
MONI-
TOR DATA
MONI- TOR
(SPEC) ACTIVE
TEST DTC & SRT
CONFIRMATION
DTC*1FREEZE
FRAME
DATA*
1
SRT
STATUS DTC
WORK SUP-
PORT
ENGINE CONTROL COMPONENT PARTS
INPUT
Crankshaft position sensor (POS) ××××
Camshaft position sensor (PHASE) ××××
Mass air flow sensor ×××
Engine coolant temperature sensor ×××××
Air fuel ratio (A/F) sensor 1 ×××××
Heated oxygen sensor 2 ×××××
Vehicle speed sensor ××××
Accelerator pedal position sensor ×××
Throttle position sensor ××××
Fuel tank temperature sensor ××××
EVAP control system pressure
sensor ×××
Intake air temperature sensor ××××
Knock sensor ×
Refrigerant pressure sensor ××
Closed throttle position switch
(accelerator pedal position sensor
signal) ××
Air conditioner switch ××
Park/neutral position (PNP) switch ×××
Stop lamp switch ×××
Power steering pressure sensor ×××
Battery voltage ××
Load signal ××
Fuel level sensor ×××
ICC steering switch ×××
ASCD steering switch ×××
ICC brake switch ×××
ASCD brake switch ×××
Snow mode switch ××

Page:   < prev 1-10 ... 161-170 171-180 181-190 191-200 201-210 211-220 221-230 231-240 241-250 ... 590 next >