ECO mode ISUZU AXIOM 2002 Service Owner's Guide

Page 745 of 2100

5C±65 POWER±ASSISTED BRAKE SYSTEM
Leading/Trailing Drum Brakes (4y2 Model)
A05RS003
This drum brake assembly is a leading/trailing shoe
design. Both brake shoes are held against the wheel
cylinder pistons by the upper return spring and to the fixed
anchor plate by the lower return spring. When the brakes
are applied, the wheel cylinder pistons expand pushing
both shoes out contacting the drum.
With forward wheel rotation, the forward brake shoe will
wrap into the drum and becomes self-energized.
With reverse wheel rotation, the rear brake shoe is
self-energized. Force from the brake shoes is transferred
to the anchor plate through the braking plate to the axle
flange. Adjustment is automatic and occurs on any
service brake application. Also, with leading/trailing
brakes, it is normal for the front shoe to wear at a faster
rate than the rear shoe.

Page 800 of 2100

5D1±2
PARKING BRAKE SYSTEM (4x4 Model)
Operation
When pulled in the direction ªAº, the parking lever presses
the secondary shoe against the brake drum using the
lever/shoe joint ªBº as a fulcrum and pushes the strut in
the direction ªCº. The strut ,in turn, presses the primary
shoe against the brake drum. Counter force ªDº to the
primary shoe is transmitted again to the secondary shoe
through the fulcrum ªBº. The secondary shoe contacts the
drum thereby producing braking effect. Clearance which
may result from worn parking brake shoe lining can be
adjusted by turning the adjusting screw. Refer to
Parking
Brake Adjustment
in this Section.
A05RS002
Legend
(1) Direction ªAº
(2) Lever/Shoe Joint ªBº as a fulcrum
(3) Direction ªCº
(4) Counter Force ªDº
(5) Parking Lever
(6) Secondary Shoe
(7) Adjusting Screw Notch(8) Parking Cable Guide
(9) Primary Shoe
(10) Strut
(11) Shoe Expanding Direction
(12) Parking Brake Cable Guide
(13) Adjusting Hole Plug
(14) Adjusting Screw Notch

Page 803 of 2100

5D1±5
PARKING BRAKE SYSTEM (4x4 Model)
Removal
1. Remove rear wheels (1).
2. Remove 2 bolts to remove the caliper assembly (2)
from the support bracket. Refer to
ªRear Disc Brakesº
in Power Assisted Brake System
section. Temporarily
hang the caliper with wire etc.
3. Remove rotor (drum) (3).
4. Remove holding spring (4), upper return spring (5)
and lower return spring (6).
5. Previously remove the rear cable from the parking
brake lever, then remove the brake shoe assembly
(7).
308RW004
Legend
(1) Parking Brake Lever
6. Remove cable fixing bolt (8) and bolt (9) (10) (11).
7. Remove nut (12).
8. Remove nut (13) and retainer (14).
9. Remove rear cable (15).
Installation
1. Apply grease (BESCO L±2 or equivalent) to the
connecting portion of the rear cable and equalizer.
Install rear cable (15).
2. Install retainer (14).
Tighten nut (13) to the specified torque.
Torque: 41N´m (30lb ft)
3. Tighten nut (12) to the specified torque.
Torque: 15N´m (11lb ft)
4. Tighten bolt (11) (10) (9) to the specified torque.
Torque: 6.5N´m (57lb in)
To adjust the parking brake, refer to
Parking Brake
Adjustment
in this section.
5. Tighten the cable fixing bolt (8) to the specified
Torque: 6.5N´m (57lb in)6. Install shoe assembly (7).
After installation of the shoe and cable assembly,
apply special grease (included in the repair kit) to the
following portions indicated in the figure.
308RS005
7. Install lower return spring (6) and upper return spring
(5).
The parking brake lever side (secondary side) return
spring must be installed on the outer side of the
primary side return spring.
308RS003
Legend
(1) Outer Side
(2) Parking Lever
8. Install holding spring (4).
9. Install rotor (drum) (3).
10. Install caliper assembly (2).
11. Install rear wheels (1).

Page 804 of 2100

5D1±6
PARKING BRAKE SYSTEM (4x4 Model)
Inspection and Repair
Parking Brake Lining Inspection
Check the shoe assemblies for wear by removing the
brake drum.
Replace the shoe assemblies if the lining thickness is less
than 1.0 mm (0.039 in).
Minimum limit: 1.0 m (0.039 in)
308RS004
Parking Brake Rotor (Drum) Inspection
Refer to ªRear Disc Brakesº in Power-Assisted Brake
System
section for inspection procedure of the rotor
(drum).
Parking Brake Adjustment
1. Prior to lever stroke adjustment, adjust rear brake
shoe/rotor (drum) gap. Perform this procedure with
loosening the adjust nut of the hand brake lever.
2. Remove the adjusting hole plug (rubber) and turn the
shoe adjusting screw downward with a small
screwdriver so that shoes will expand until they get
into close touch with the rotor. (Turn down the
adjusting screw notch by notch until the rotor does not
turn.)
3. Turn the adjusting screw in the opposite direction
(upward) until the rotor can be turned lightly. Standard
number of notches to turn upward: 7 or 8 notches
Turn the rotor and make sure that there is no brake
dragging.
4. After the rear brake shoe/rotor (drum) gap has been
adjusted, perform parking brake cable adjustment.
5. Turn the adjusting nut so that the parking brake lever
travels 6±8 notches when pulled up with a force of 30
kg (66 lb).
6. Make sure there is no brake dragging. Then tighten
the cable lock nut
Torque : 13 N´m (113 lb in)7. When poor braking effect possibly resulting from
insufficient break±in is felt, or just after replacement
of parking brake shoe, be sure to conduct break±in as
follows:
8. Forward 50 km/h (30 mph) y 400 m (About 30
seconds) with a lever pull force of 15 kg (33 lb).
9. Backward 10 km/h (6 mph) y 50 m (About 18
seconds) with a lever pull force of 15 kg (33 lb).
NOTE: Break±in procedures must be performed under
safe conditions and traffic rules.
If braking effect still remains poor after the above
break±in, wait for some time until parking brake shoe
cools down and repeat the procedures 8. and 9. noted
above.
On completion of break±in, inspect parking brake
lever stroke, and if the lever does not come within the
specified number of notches when pulled up,
readjust.
Excessive break±in may cause premature wear of
the parking brake lining.

Page 960 of 2100

6D3±18
STARTING AND CHARGING SYSTEM (6VE1 3.5L)
d. Re-connect harness connector to generator, run
engine at moderate speed, with electrical
accessories turned off.
e. Measure voltage across battery. If above 16.0V,
replace or repair generator.
f. Connect ammeter at generator output terminal.
Turn on accessories, load battery with carbon pile
to obtain maximum amperes output.
Maintain voltage at 13.0V or above.
1. If within 15 amperes of rated output, generator is
OK.2. If not within 15 amperes of rated output, replace or
repair generator.
Generator
Removal
1. Disconnect battery ground cable.
2. Move drive belt tensioner to loose side using wrench
then remove drive belt (1).
3. Disconnect the wire from terminal ªBº and disconnect
the connector (4).
4. Remove generator fixing bolt (3).
5. Remove generator assembly (2).
060RW002
Inspection
1. Disconnect the wiring connector from generator.
2. With the engine stopped, turn starter switch to ªonº
and connect a voltmeter between connector terminal
L (1) and ground or between terminal S (2) and
ground.
066RX002If there is no voltage present, then perform
appropriate repair.
3. Reconnect the wiring connector to the generator, run
the engine at must indicate idle speed, and turn off all
electrical devices other than engine.
4. Measure battery voltage. If it exceeds 16V, repair or
replace the generator.
5. Connect an ammeter to output terminal of generator,
and measure output current under load by turning on
the other electrical devices (eg., headlights). At this
time the amperes must not be less than 15A and the
voltage must not be less than 13V.

Page 1000 of 2100

6E±33
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Diagnosis
Strategy-Based Diagnostics
Strategy-Based Diagnostics
The strategy-based diagnostic is a uniform approach to
repair all Electrical/Electronic (E/E) systems. The
diagnostic flow can always be used to resolve an E/E
system problem and is a starting point when repairs are
necessary. The following steps will instruct the technician
how to proceed with a diagnosis:
1. Verify the customer complaint.
To verify the customer complaint, the technician
should know the normal operation of the system.
2. Perform preliminary checks.
Conduct a thorough visual inspection.
Review the service history.
Detect unusual sounds or odors.
Gather diagnostic trouble code information to
achieve an effective repair.
3. Check bulletins and other service information.
This includes videos, newsletters, etc.
4. Refer to service information (manual) system
check(s).
ªSystem checksº contain information on a system
that may not be supported by one or more DTCs.
System checks verify proper operation of the
system. This will lead the technician in an
organized approach to diagnostics.
5. Refer to service diagnostics.
DTC Stored
Follow the designated DTC chart exactly to make an
effective repair.
No DTC
Select the symptom from the symptom tables. Follow the
diagnostic paths or suggestions to complete the repair.
You may refer to the applicable component/system check
in the system checks.
No Matching Symptom
1. Analyze the complaint.
2. Develop a plan for diagnostics.
3. Utilize the wiring diagrams and the theory of
operation.
Combine technician knowledge with efficient use of the
available service information.
Intermittents
Conditions that are not always present are called
intermittents. To resolve intermittents, perform the
following steps:
1. Observe history DTCs, DTC modes, and freeze
frame data.
2. Evaluate the symptoms and the conditions described
by the customer.3. Use a check sheet or other method to identify the
circuit or electrical system component.
4. Follow the suggestions for intermittent diagnosis
found in the service documentation.
Most Scan Tools, such as the Tech 2, have data-capturing
capabilities that can assist in detecting intermittents.
No Trouble Found
This condition exists when the vehicle is found to operate
normally. The condition described by the customer may
be normal. Verify the customer complaint against another
vehicle that is operating normally. The condition may be
intermittent. Verify the complaint under the conditions
described by the customer before releasing the vehicle.
1. Re-examine the complaint.
When the complaint cannot be successfully found or
isolated, a re-evaluation is necessary. The complaint
should be re-verified and could be intermittent as
defined in
Intermittents section, or could be normal.
2. Repair and verify.
After isolating the cause, the repairs should be made.
Validate for proper operation and verify that the
symptom has been corrected. This may involve road
testing or other methods to verify that the complaint
has been resolved under the following conditions:
Conditions noted by the customer.
If a DTC was diagnosed, verify a repair by
duplicating conditions present when the DTC was
set as noted in the Failure Records or Freeze
Frame data.
Verifying Vehicle Repair
Verification of the vehicle repair will be more
comprehensive for vehicles with OBD II system
diagnostics. Following a repair, the technician should
perform the following steps:
IMPORTANT:Follow the steps below when you verify
repairs on OBD II systems. Failure to follow these steps
could result in unnecessary repairs.
1. Review and record the Failure Records and the
Freeze Frame data for the DTC which has been
diagnosed (Freeze Frame data will only be stored for
an A or B type diagnostic and only if the MIL(ºCheck
Engineº lamp) has been requested).
2. Clear the DTC(S).
3. Operate the vehicle within conditions noted in the
Failure Records and Freeze Frame data.
4. Monitor the DTC status information for the DTC which
has been diagnosed until the diagnostic test
associated with that DTC runs.
General Service Information
OBD II Serviceablity Issues
With the introduction of OBD II diagnostics across the
entire passenger car and light-duty truck market in 1996,
illumination of the MIL (ªCheck Engineº lamp) due to a
non-vehicle fault could lead to misdiagnosis of the
vehicle, increased warranty expense and customer

Page 1002 of 2100

6E±35
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Inspect all wires in the engine compartment for proper
connections, burned or chafed spots, pinched wires,
contact with sharp edges or contact with hot exhaust
manifolds or pipes.
Basic Knowledge of Tools Required
NOTE: Lack of basic knowledge of this powertrain when
performing diagnostic procedures could result in an
incorrect diagnosis or damage to powertrain
components. Do not attempt to diagnose a powertrain
problem without this basic knowledge.
A basic understanding of hand tools is necessary to effec-
tively use this section of the Service Manual.
Serial Data Communications
Class 2 Serial Data Communications
Government regulations require that all vehicle
manufacturers establish a common communication
system. This vehicle utilizes the ªClass 2º communication
system. Each bit of information can have one of two
lengths: long or short. This allows vehicle wiring to be
reduced by transmitting and receiving multiple signals
over a single wire. The messages carried on Class 2 data
streams are also prioritized. If two messages attempt to
establish communications on the data line at the same
time, only the message with higher priority will continue.
The device with the lower priority message must wait.
The most significant result of this regulation is that it
provides Scan tool manufacturers with the capability to
access data from any make or model vehicle that is sold.
The data displayed on other Scan tools will appear the
same, with some exceptions. Some Scan tools will only
be able to display certain vehicle parameters as values
that are a coded representation of the true or actual value.
On this vehicle the Scan tool displays the actual values for
vehicle parameters. It will not be necessary to perform
any conversions from coded values to actual values.
On-Board Diagnostic (OBD II)
On-Board Diagnostic Tests
A diagnostic test is a series of steps, the result of which is
a pass or fail reported to the diagnostic executive. When
a diagnostic test reports a pass result, the diagnostic
executive records the following data:
The diagnostic test has been completed since the last
ignition cycle.
The diagnostic test has passed during the current
ignition cycle.
The fault identified by the diagnostic test is not
currently active.
When a diagnostic test reports a fail result, the diagnostic
executive records the following data:
The diagnostic test has been completed since the last
ignition cycle.
The fault identified by the diagnostic test is currently
active.
The fault has been active during this ignition cycle.
The operating conditions at the time of the failure.Remember, a fuel trim DTC may be triggered by a list of
vehicle faults. Make use of all information available (other
DTCs stored, rich or lean condition, etc.) when
diagnosing a fuel trim fault.
Comprehensive Component Monitor
Diagnostic Operation
Comprehensive component monitoring diagnostics are
required to monitor emissions-related input and output
powertrain components. The
CARB OBD II
Comprehensive Component Monitoring List Of
Components Intended To illuminate MIL
is a list of
components, features or functions that could fall under
this requirement.
Input Components:
Input components are monitored for circuit continuity and
out-of-range values. This includes rationality checking.
Rationality checking refers to indicating a fault when the
signal from a sensor does not seem reasonable, i.e.
Throttle Position (TP) sensor that indicates high throttle
position at low engine loads or MAP voltage. Input
components may include, but are not limited to the
following sensors:
Vehicle Speed Sensor (VSS)
Crankshaft Position (CKP) sensor
Throttle Position (TP) sensor
Engine Coolant Temperature (ECT) sensor
Manifold Absolute Pressure (MAP) sensor
Mass Air Flow (MAF) sensor
In addition to the circuit continuity and rationality check,
the ECT sensor is monitored for its ability to achieve a
steady state temperature to enable closed loop fuel
control.
Output Components:
Output components are diagnosed for proper response to
control module commands. Components where
functional monitoring is not feasible will be monitored for
circuit continuity and out-of-range values if applicable.
Output components to be monitored include, but are not
limited to, the following circuits:
Control module controlled EVAP Canister Purge
Valve
Electronic Transmission controls
A/C relays
VSS output
MIL control
Cruise control inhibit
Refer to PCM and Sensors in General Descriptions.
Passive and Active Diagnostic Tests
A passive test is a diagnostic test which simply monitors a
vehicle system or component. Conversely, an active test,
actually takes some sort of action when performing
diagnostic functions, often in response to a failed passive
test. For example, the EGR diagnostic active test will
force the EGR valve open during closed throttle decel
and/or force the EGR valve closed during a steady state.
Either action should result in a change in manifold
pressure.

Page 1010 of 2100

6E±43
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Menu
The following table shows which functions are used
for the available equipment versions.
060R100018
DTC Modes
060R100077
On OBD II vehicles there are options available in Tech 2
DTC mode to display the enhanced information available.
After selecting DTC, the following menu appears:
1. Read DTC Info by Priority
2. Freeze Frame
3. Fail Records (not all applications)
4. DTC Info
5. Clear Info
060RW223
The following is a brief description of each of the sub
menus in DTC Info and DTC. The order in which they
appear here is alphabetical and not necessarily the way
they will appear on the Tech 2.
DTC Information Mode
Use the DTC info mode to search for a specific type of
stored DTC information.
DTC Status
This selection will display any DTCs that have not run
during the current ignition cycle or have reported a test
failure during this ignition up to DTCs. DTC tests which
run and pass will cause that DTC number to be removed
from Tech 2 screen.
Fail This Ignition
This selection will display all DTCs that have failed during
the present ignition cycle.
History
This selection will display only DTCs that are stored in the
PCM's history memory. It will display all type A and B
DTCs that have requested the MIL and have failed within
the last 40 warm-up cycles. In addition, it will display all
type C and type D DTCs that have failed within the last 40
warm-up cycles.
Last Test Failed
This selection will display only DTCs that have failed the
last time the test run. The last test may have run during a
previous ignition cycle if a type A or type B DTC is
displayed. For type C and type D DTCs, the last failure
must have occurred during the current ignition cycle to
appear as Last Test Fail.
MILSVC or Message Request
This selection will display only DTCs that are requesting
the MIL. Type C and type D DTCs cannot be displayed
using this option. This selection will report type B DTCs
only after the MIL has been requested.

Page 1024 of 2100

6E±57
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Primary System-Based Diagnostic
Primary System-Based Diagnostic
There are primary system-based diagnostics which
evaluate system operation and its effect on vehicle
emissions. The primary system-based diagnostics are
listed below with a brief description of the diagnostic
function:
Oxygen Sensor Diagnosis
The fuel control heated oxygen sensors (Bank 1 HO2S 1
and Bank 2 HO2S 1) are diagnosed for the following
conditions:
Heater performance (time to activity on cold start)
Slow response
Response time (time to switch R/L or L/R)
Inactive signal (output steady at bias voltage ±
approx. 450 mV)
Signal fixed high
Signal fixed low
The catalyst monitor heated oxygen sensors (Bank 1
HO2S 2 and Bank 2 HO2S 2) are diagnosed for the
following conditions:
Heater performance (time to activity on cold start).
Signal fixed low during steady state conditions or
power enrichment (hard acceleration when a rich
mixture should be indicated).
Signal fixed high during steady state conditions or
deceleration mode (deceleration when a lean mixture
should be indicated).
Inactive sensor (output steady at approx. 438 mV).
If the oxygen sensor pigtail wiring, connector or terminal
are damaged, the entire oxygen sensor assembly must
be replaced. DO NOT attempt to repair the wiring,
connector or terminals. In order for the sensor to function
properly, it must have clean reference air provided to it.
This clean air reference is obtained by way of the oxygen
sensor wire(s). Any attempt to repair the wires, connector
or terminals could result in the obstruction of the
reference air and degrade oxygen sensor performance.
Refer to
On-Vehicle Service, Heated Oxygen Sensors in
this section.
Fuel Control Heated Oxygen Sensor
The main function of the fuel control heated oxygen
sensors is to provide the control module with exhaust
stream oxygen content information to allow proper fueling
and maintain emissions within mandated levels. After it
reaches operating temperature, the sensor will generate
a voltage, inversely proportional to the amount of oxygen
present in the exhaust gases. The control module uses
the signal voltage from the fuel control heated oxygen
sensors while in closed loop to adjust fuel injector pulse
width. While in closed loop, the PCM can adjust fuel
delivery to maintain an air/fuel ratio which allows the best
combination of emission control and driveability. The fuel
control heated oxygen sensors are also used to
determine catalyst efficiency.
HO2S Heater
Heated oxygen sensors are used to minimize the amount
of time required for closed loop fuel control to begin
operation and to allow accurate catalyst monitoring. The
oxygen sensor heater greatly decreases the amount of
time required for fuel control sensors (Bank 1 HO2S 1 and
Bank2 HO2S 1) to become active. Oxygen sensor
heaters are required by catalyst monitor and sensor
(Bank 1 HO2S 2 and Bank 2 HO2S 2) to maintain a
sufficiently high temperature which allows accurate
exhaust oxygen content readings further away from the
engine.
Catalyst Monitor Heated Oxygen Sensors
and Diagnostic Operation
TS24067
To control emissions of hydrocarbons (HC), carbon
monoxide (CO), and oxides of nitrogen (NOx), a
three-way catalytic converter is used. The catalyst within
the converter promotes a chemical reaction which
oxidizes the HC and CO present in the exhaust gas,
converting them into harmless water vapor and carbon
dioxide. The catalyst also reduces NOx, converting it to
nitrogen. The PCM has the ability to monitor this process
using the pre-catalyst and post-catalyst heated oxygen
sensors. The pre-catalyst sensor produces an output
signal which indicates the amount of oxygen present in
the exhaust gas entering the three-way catalytic
converter. The post-catalyst sensor produces an output
signal which indicates the oxygen storage capacity of the
catalyst; this in turn indicates the catalyst's ability to
convert exhaust gases efficiently. If the catalyst is
operating efficiently, the pre-catalyst signal will be far
more active than that produced by the post-catalyst
sensor.
In addition to catalyst monitoring, the heated oxygen
sensors have a limited role in controlling fuel delivery. If
the sensor signal indicates a high or low oxygen content
for an extended period of time while in closed loop, the
PCM will adjust the fuel delivery slightly to compensate.

Page 1043 of 2100

6E±76
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Exhaust Gas Recirculation (EGR)
Diagnosis
An EGR flow check diagnosis of the linear EGR system is
covered by DTC P0401. Pintle position error diagnosis is
covered by DTC P0402, P0404, P1404, P0405, P0406. If
EGR diagnostic trouble codes P0401 and/or P0402,
P0404, P1404, P0405, P0406 are encountered, refer to
the DTC charts.
Engine Tech 2 Data Definitions and
Ranges
A/C CLUTCH ± Tech 2 Displays ON or OFF ±
Indicates whether the PCM has commanded the A/C
clutch ON. Used in A/C system diagnostic.
A/C REQUEST Ð Tech 2 Displays YES or NO Ð
Indicates the state of the A/C request input circuit from the
HVAC controls. The PCM uses the A/C request signal to
determine whether A/C compressor operation is being
requested.
AIR/FUEL RATIO Ð Tech 2 Range 0.0-25.5 Ð
Air/fuel ratio indicates the PCM commanded value. In
closed loop, the air/fuel ratio should normally be
displayed around ª14.2-14.7º. A lower air/fuel ratio
indicates a richer commanded mixture, which may be
seen during power enrichment or TWC protection modes.
A higher air/fuel ratio indicates a leaner commanded
mixture. This can be seen during deceleration fuel mode.
AP1 ÐTech 2 Range 0%-100% Ð
AP (accelerator pedal) angle is computed by the PCM
from the AP sensor voltage. AP angle should display
ª13%º at idle and ª85-89%º at wide open throttle.
AP2 ÐTech 2 Range 0%-100% Ð
AP (accelerator pedal) angle is computed by the PCM
from the AP sensor voltage. AP angle should display
ª85-89%º at idle and ª11-15%º at wide open throttle.
AP3 ÐTech 2 Range 0%-100% Ð
AP (accelerator pedal) angle is computed by the PCM
from the AP sensor voltage. AP angle should display
ª85-89%º at idle and ª32-36%º at wide open throttle.
BAROMETRIC PRESSURE Ð Tech 2 Range 10-105
kPa/0.00-5.00 Volts Ð
The barometric pressure reading is determined from the
MAP sensor signal monitored during key up and wide
open throttle (WOT) conditions. The barometric pressure
is used to compensate for altitude differences and is
normally displayed around ª61-104º depending on
altitude and barometric pressure.
CHECK TRANS LAMP Ð AUTO TRANSMISSION Ð
Indicates the need to check for a DTC with the Tech 2
when the lamp is flashing 0.2 seconds ON and 0.2
seconds OFF.
DESIRED EGR POS. Ð Tech 2 Range 0%-100% Ð
Represents the EGR pintle position that the PCM is
commanding.
DESIRED IDLE Ð Tech 2 Range 0-3187 RPM Ð
The idle speed that the PCM is commanding. The PCM
will compensate for various engine loads based on engine
coolant temperature, to keep the engine at the desired
speed.ECT Ð (Engine Coolant Temperature) Tech 2
Range ±40C to 151C (±40F to 304F) Ð
The engine coolant temperature (ECT) is mounted in the
coolant stream and sends engine temperature
information to the PCM. The PCM applies 5 volts to the
ECT sensor circuit. The sensor is a thermistor which
changes internal resistance as temperature changes.
When the sensor is cold (high resistance), the PCM
monitors a high signal voltage and interprets that as a cold
engine. As the sensor warms (decreasing resistance),
the voltage signal will decrease and the PCM will interpret
the lower voltage as a warm engine.
EGR DUTY CYCLE Ð Tech 2 Range 0%-100% Ð
Represents the EGR valve driver PWM signal from the
PCM. A duty cycle of 0% indicates that no EGR flow is
being commanded; a 100% duty cycle indicates
maximum EGR flow commanded.
EGR FEEDBACK Ð Tech 2 Range 0.00-5.00 Volts Ð
Indicates the EGR pintle position sensor signal voltage
being monitored by the PCM. A low voltage indicates a
fully extended pintle (closed valve); a voltage near 5 volts
indicates a retracted pintle (open valve).
ENGINE LOAD Ð Tech 2 Range 0%-100% Ð
Engine load is calculated by the PCM from engine speed
and MAF sensor readings. Engine load should increase
with an increase in RPM or air flow.
ENGINE RUN TIME Ð Tech 2 Range
00:00:00-99:99:99 Hrs:Min:Sec Ð
Indicates the time elapsed since the engine was started.
If the engine is stopped, engine run time will be reset to
00:00:00.
ENGINE SPEED Ð Range 0-9999 RPM Ð
Engine speed is computed by the PCM from the 58X
reference input. It should remain close to desired idle
under various engine loads with engine idling.
EVAP PURGE PWM Ð Tech 2 Range 0%-100% Ð
Represents the PCM commanded PWM duty cycle of the
EVAP purge solenoid valve. ª0%º displayed indicates no
purge; ª100%º displayed indicates full purge.
FUEL PUMP Ð Tech 2 Displays ON or OFF Ð
Indicates the PCM commanded state of the fuel pump
relay driver circuit.
HO2S BANK 1, SEN. 1
Ð Tech 2 Range 0-1132 mV Ð
Represents the fuel control exhaust oxygen sensor
output voltage. Should fluctuate constantly within a range
between 10 mV (lean exhaust) and 1000 mV (rich
exhaust) while operating in closed loop.
HO2S BANK 1, SEN. 2
Ð Tech 2 Range 0-1000mV Ð
Monitors the exhaust oxygen sensor output voltage. The
PCM monitors the operating efficiency of catalytic
converter by comparing the output voltages of sensor 1
and sensor 2 in this bank. If the catalytic converter is
operating efficiently, the output voltage of sensor 1 will
give a greater fluctuation than that of sensor 2. If the
PCM detects an abnormal level of voltage fluctuation
from sensor 2, a DTC P0420 will be set, indicating that the
catalytic converter for this bank is no longer operating
efficiently.

Page:   < prev 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 ... 120 next >