reset ISUZU TF SERIES 2004 User Guide

Page 2073 of 4264

3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-77


F0: Diagnostic Trouble Code
F0: Read DTC Infor By Priority
F1: Clear DTC Information
F2: DTC Information
F0: History
F1: MIL SVS or Message Requested
F2: Last Test Failed
F3: Test Failed Since Code Cleared
F4: Not Run Since Code Cleared
F5: Failed This Ignition
F3: Freeze Frame/Failure Record
F1: Data Display
F0: Engine Data
F1: O2 Sensor Data
F2: Snapshot
F3: Miscellaneous Test
F0: Lamps
F0: Malfunction Indicator Lamps
F1: Relays
F0: Fuel Pump Relay
F1: A/C Clutch Relay
F2: EVAP
F0: Purge Solenoid
F3: IAC System
F0: RPM Control
F1: IAC Control
F4: Fuel System
F0: Fuel Trim Reset

F4: System Information
F0: MIL/System Status

F0: Diagnostic Trouble Code
The purpose of the "Diagnostic Trouble Codes" mode is
to display stored trouble code in the
ECM.
When "Clear DTC Information" is selected, a "Clea
r
DTC Information", warning screen appears.
This screen informs you that by cleaning DTC's "all
stored DTC information in the ECM will be erased".
After clearing codes, confirm system operation by test
driving the vehicle.
Use the "DTC Information" mode to search for a
specific type of stored DTC information.
History
This selection will display only DTCs that are stored in
the ECM's history memory. It will not display Type B
DTCs that have not requested the MIL ("Check Engine
Lamp"). It will display all type A and B DTCs tha
t
requested the MIL and have failed within the last 40
warm-up cycles. In addition, it will display all type C and
D DTCs that have failed within the last 40 warm-up
cycles.

MIL SVC or Message Request
This selection will display only DTCs that are requesting
the MIL. Type C and Type D DTCs cannot be displayed
using the MIL. Type C and D DTCs cannot be displayed
using this option.
This selection will report type B DTCs only after the MIL
has been requested.

Last Test Failed
This selection will display only DTCs that have failed the
last time the test run. The last test may have run during
a previous ignition cycle of a type A or type B DTC is
displayed. For type C and type D DTCs, the last failure
must have occurred during the current ignition cycle to
appear as last test fail.

Test Failed Since Code Cleared
The selection will display all active and history DTCs
that have reported a test failure since the last time
DTCs were cleared. DTCs that last failed more that 40
warm-up cycles before this option is selected will not be
displayed.

Not Run Since Code Cleared
This selection will display up to DTCs that have not run
since the DTCs were last cleared. Since any displayed
DTCs have not run, their condition (passing or failing) is
unknown.

Failed This Ignition
This selection will display all DTCs that have failed
during the present ignition cycle.

Freeze Frame/Failure Record
This selection will display stored various vehicle
information at the moment an emission related faul
t
when the MIL ("Check Engine Lamp") is commanded
on.
The Freeze Frame data will not be erased unless the
associated history DTC is cleared.

Page 2076 of 4264


6E-80 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Tech 2
Parameter
Units Idle 2000rpm Definitions
23 A/C Request (Air
Conditioning) On/Off Off Off This displays the air conditioner request signal. This should display "On" when the air
conditioner switch is switched on.
24 A/C Clutch On/Off Off Off This displays whether the ECM has commanded the A/C compressor clutch "On" or
"Off".
25 EVAP Purge
Solenoid
(Evaporative
Emission) % 50  80 0 This displays the duty signal from the ECM to control the canister purge solenoid
valve.
26 Fuel Trim Cell 49  52 13  17 This displays dependent on engine speed and MAF sensor reading.
A plot of engine speed versus MAF amount is divided into the cells.
Fuel trim cell indicates which cell is currently active.
27 Fuel Pump On/Off On On This displays operating status for the fuel pump main relay.
This should display "On" when the key switch is turned on and while engine is
running.
28 Deceleration Fuel
Cutoff Active/ Inactive Inactive Inactive The ECM will command the deceleration fuel mode when it detects a closed throttle
position while the vehicle is traveling.
While in decreasing fuel mode, the ECM will decrease the amount of fuel delivered
by entering open loop and decreasing the injector pulse width.
29 Power Enrichment Yes/No No No The ECM will command power enrichment mode "Yes" when a large increase in
throttle position and load is detected.
While in power enrichment mode, the ECM will increase the amount of fuel delivered
by entering open loop and increasing the injector pulse width.
30 Vehicle Speed km/h or mph 0 0 This displays vehicle speed.
The vehicle speed is measured by ECM from the vehicle speed sensor.
31 Cam Signal Present/ Missing Present Present This displays input signal from the camshaft position sensor.
When the correct pulse is generated, signal is received.
32 PSP Switch
(Power Steering
Pressure) Normal Pressure /
High Pressure Normal PressureNormal PressureThis displays the power steering pressure signal.
This should display "High Pressure" when the steering is steered.
33 Security Code
Status Programmable/
Not
Programmable Programmable Programmable This should display "Programmable" when the correct security code & secret code
are programmed.
34 Security Code Okay/ Not Okay Okay Okay This should display "Okay" when the security code is correctly accepted.
35 Immobilizer
System Normal /
Abnormal Normal Normal This should display "Normal" when the immobilizer is correctly operated.
36 Malfunction
Indicator Lamp On/Off Off Off This displays operating status for the Check Engine Lamp.
This should display "On" when the Check Engine Lamp is turned on.
37 Time From Start   This displays the engine time elapsed since the engine was started.
If the engine is stopped, engine run time will be reset to 00:00:00

Page 2080 of 4264

6E-84 3.5L ENGINE DRIVEABILITY AND EMISSIONS

F4: Fuel System
F0: Fuel Trim Reset
When the Tech 2 is operated, "Long Term Fuel Trim" is
reset to 0%.
Fuel Trim Reset
B1 Long Term Fuel Trim (Bank 1) 3 %
B2 Long Term Fuel Trim (Bank 2) 3 %
B1 Short Term Fuel Trim (Bank 1) 
1 %
B2 Short Term Fuel Trim (Bank 2) 
2 %
Fuel Trim Cell 53
Fuel Trim Learned (Bank 1) Yes
Fuel Trim Learned (Bank 2) Yes
B1 Long Term Fuel Trim 0%


Press "Reset" key.

Then, B1 & B2 Long Term Fuel Trim is reseted to
0%.

Press "Quit" Key.

Page 2136 of 4264

6E-140 3.5L ENGINE DRIVEABILITY AND EMISSIONS Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up) Recovery Condition Related Failure Parts Related
ECM Pin
No. Related
Multiple
DTC
P1508 B Idle Air Control System
Low/Closed 1. No DTC relating to MAF sensor, IAT sensor,
ECT sensor, TPS, CMP sensor, CKP sensor,
VSS and system voltage.
2. Engine speed is between 675rpm and
6000rpm.
3. Engine coolant temperature is more than
75C.
4. Intake air temperature is between -10C and
80C.
5. Vehicle is stopping.
6. Small amount of intake air through the idle air
control valve. (Idle air control valve is sticking
at close position.) Above conditions are met
for 2 seconds. 1. IAC valve harness open circuit, short to
ground circuit or short to voltage circuit.
2. Poor connector connection.
3. IAC valve malfunction.
4. IAC valve is sticking at close position.
5. ECM malfunction. B13/
B14/
B16/
B17 -
22
P1509 B Idle Air Control System
High/Open 1. No DTC relating to MAF sensor, IAT sensor,
ECT sensor, TPS, CMP sensor, CKP sensor,
VSS and system voltage.
2. Engine speed is between 675rpm and
6000rpm.
3. Engine coolant temperature more than 75C.
4. Intake air temperature is between -10C and
80C.
5. Vehicle is stopping.
6. Large amount of intake air through the idle air
control valve. (Idle air control valve is sticking
at open position.) Above conditions are met
for 2 seconds. Fuel cut is operated at high idle
speed.
Correct amount of air intake
through the idle air control
valve. (Correct movement of
the idle air control valve.)

1. IAC valve harness open circuit, short to
ground circuit or short to voltage circuit.
2. Poor connector connection.
3. IAC valve malfunction.
4. IAC valve is sticking at open position.
5. ECM malfunction. B13/
B14/
B16/
B17 - 65 P1601 D CAN BUS Off CAN BUS off condition is detected consecutively.
CAN BUS on condition is
detected consecutively for 2
seconds. 1. ECM and TCM communication circuit open,
short to ground or short to voltage.
2. Electrical interference.
3. ECM malfunction.
4. TCM malfunction. A10/
A11 - 67 U2104 D CAN BUS Reset Counter
Overrun 1. No DTC CAN BUS Off.
2. CAN valid counter does not change for 2
seconds. Torque reduction control is
disable.
CAN valid counter changes
consecutively for 2 seconds. 1. ECM and TCM communication circuit open,
short to ground or short to voltage.
2. Electrical interference.
3. ECM malfunction.
4. TCM malfunction. A10/
A11 P1767/
U2104 (AT)

Page 2306 of 4264

6E-310 3.5L ENGINE DRIVEABILITY AND EMISSIONS
DIAGNOSTIC TROUBLE CODE (DTC) U2104 (FLASH CODE 67) CAN BUS
RESET COUNTER OVER-RUN



RTW46EMF000301
Condition For Setting The DTC and Action Taken When The DTC Sets
Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up)
67 U2104 D CAN BUS Reset
Counter Overrun 1. No DTC CAN BUS Off.
2. CAN valid counter does not change for 2 seconds. Torque reduction control is disable.

CIRCUIT DESCRIPTION
The engine control system in 6VE1 uses high speed
CAN bus system. The individual CAN bus systems are
connected via two interfaces and can exchange
information and data. This allows control modules tha
t
are connected to different CAN bus systems to
communicate. Engine control modules (ECM) in the
vehicle that require continuous, rapid communication
are connected to the high speed CAN bus. The engine
is continuously notified of the current engine load
status. Since the ECM has to react immediately to load
status changes, rapid communication is required
between the ECM and the automatic transmission
control module. The high speed CAN bus in the 6VE1 is
designed as a two-wire CAN bus (twisted pair). The
wires are shielded and twisted. The engine rate is 500
K
band.

DIAGNOSTIC AIDS
 Inspect the wiring for poor electrical connection at the
ECM. Look for possible bent, backed out, deformed
or damaged terminals. Check for weak terminal
tension as well. Also check for a chafed wire tha
t
could short to bare metal or other wiring. Inspect for a
broken wire inside the insulation.
 When diagnosing for a possible intermittent short o
r
open condition, move the wiring harness while
observing test equipment for a change.
 Inspect the wiring for EMI (Erectro-Magnetic
Interference). Check that all wires are properly routed
away from coil, and generator. Also check fo
r
improperly installed electrical options. When this test
is performed, turn “OFF" on electronic auto parts
switches to improperly for a noise preventing.

Page 2307 of 4264

3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-311
Diagnostic Trouble Code (DTC) U2104 (Flash Code 67) CAN Bus Reset
Counter Over-Run

Step Action Value (s) Yes No
1
Was the "On-Board Diagnostic (OBD) System Check"
performed?
- Go to Step 2 Go to On Board
Diagnostic (OBD)
System Check
2
1. Connect the Tech 2.
2. Review and record the failure information.
3. Select "F0: Read DTC Infor By Priority" in "F0:
Diagnostic Trouble Code".
Is the DTC U2104 stored as "Present Failure"?
- Go to Step 3 Refer to
Diagnostic Aids
and Go to Step 3
3
1. Using the Tech2, ignition "On" and engine "Off".
2. Select "Clear DTC Information" with the Tech2 and
clear the DTC information.
3. Operate the vehicle and monitor the "F5: Failed
This Ignition" in "F2: DTC Information"
Was the DTC U2104 stored in this ignition cycle?
- Go to Step 4 Refer to
Diagnostic Aids
and Go to Step 4
4
1. Using the Tech 2, ignition "On" and engine "Off".
2. Select "AW30-40LE" in the system selection menu
"Powertrain".
3. Select "Read DTC Info Ordered By Priority" in the
"Diagnositic Trouble Code".
Was the any DTC's P1767 or U2104 stored in this
ignition cycle?
- Refer to
"Automatic
Transmission
Workshop
Manual" & Go to
DTC Chart
P1767 or U2104 Go to Step 5
5
Check any accessory parts which may cause electric
interference.
Was the problem found?
- Remove the
accessory parts
and verify repair Go to Step 6
6
Check for poor/faulty connection at the TCM or ECM
connector. If a poor/faulty connection is found, repair
as necessary.
Was the problem found?
E-60(A)




- Verify repair Go to Step 7

Page 2419 of 4264

ENGINE DIAGNOSIS (C24SE) 6-13
Fuel Consumption Excessive
Condition Possible cause Correction
Trouble in fuel system Mixture too rich or too lean due to
trouble in fuel injection system Refer to "Abnormal Combustion"
Fuel cut function does not act Refer to "Abnormal Combustion"
Trouble in ignition system Misfiring or abnormal combustion
due to trouble in ignition system Refer to Hard Start or Abnormal
Combustion Troubleshooting
Guide
Others Engine idle speed too high Reset Idle Air Control Valve
Returning of accelerator control
sluggish Correct
Fuel system leakage Correct or replace
Clutch slipping Correct
Brake drag Correct
Selection of transmission gear
incorrect Caution operator of incorrect gear
selection
Oil Problems
Condition Possible cause Correction
Oil pressure too low Wrong oil in use Replace with correct engine oil
Relief valve sticking Replace
Oil pump not operating properly Correct or replace
Oil pump strainer clogged Clean or replace strainer
Oil pump worn Replace
Oil pressure gauge defective Correct or replace
Crankshaft bearing or connecting
rod bearing worn Replace
Oil contamination Wrong oil in use Replace with new engine oil
Oil filter clogged Replace oil filter
Cylinder head gasket damage Replace gasket
Burned gases leaking Replace piston and piston rings or
rebore cylinders
Oil not reaching valve system Oil passage in cylinder head or
cylinder body clogged Clean or correct

Engine Oil Pressure Check
1. Check for dirt, gasoline or water in the engine
oil.
a. Check the viscosity of the oil.
b. Change the oil if the viscosity is outside the
specified standard.
c. Refer to the "Maintenance and Lubrication"
section of this manual.
2. Check the engine oil level.
The level should fall somewhere between the
"ADD" and the "FULL" marks on the oil level
dipstick.
If the oil level does not reach the "ADD" mark on
the oil level dipstick, engine oil must be added. 3. Remove the oil pressure unit.
4. Install an oil pressure gauge.
5. Start the engine and allow the engine to reach
normal operating temperature (About 80C).
6. Measure the oil pressure.
Oil pressure should be:
150 kPa(21.8 psi) at idle speed.
7. Stop the engine.
8. Remove the oil pressure gauge
9. Install the oil pressure unit.
10. Start the engine and check for leaks.

Page 2580 of 4264

6E–4 ENGINE DRIVEABILITY AND EMISSIONS
DIAGNOSTIC TROUBLE CODE (DTC) P0443
EVAPORATIVE (EVAP) EMISSION CONTROL
SYSTEM PURGE CONTROL CIRCUIT ..... 6E-191
Circuit Description ..................................... 6E-191
Diagnostic Aids .......................................... 6E-191
Diagnostic Trouble Code (DTC) P0443
EVAP Emission Control System Purge
Control Circuit .......................................... 6E-192
DIAGNOSTIC TROUBLE CODE (DTC) P0502
VEHICLE SPEED SENSOR (VSS) CIRCUIT
LOW INPUT ................................................ 6E-195
Circuit Description ..................................... 6E-195
Diagnostic Aids .......................................... 6E-195
Diagnostic Trouble Code (DTC) P0502
Vehicle Speed Sensor Circuit Low Input . 6E-196
DIAGNOSTIC TROUBLE CODE (DTC) P0562
SYSTEM VOLTAGE LOW .......................... 6E-202
Circuit Description ..................................... 6E-202
Diagnostic Aids .......................................... 6E-202
Diagnostic Trouble Code (DTC) P0562 System
Voltage Low ............................................. 6E-202
DIAGNOSTIC TROUBLE CODE (DTC) P0563
SYSTEM VOLTAGE HIGH ......................... 6E-204
Circuit Description ..................................... 6E-204
Diagnostic Aids .......................................... 6E-204
Diagnostic Trouble Code (DTC) P0563 System
Voltage High ............................................ 6E-204
DIAGNOSTIC TROUBLE CODE (DTC) P0601
ECM MEMORY CHECKSUM ..................... 6E-206
Circuit Description ..................................... 6E-206
Diagnostic Aids .......................................... 6E-206
Diagnostic Trouble Code (DTC) P0601 ECM
Memory Checksum .................................. 6E-206
DIAGNOSTIC TROUBLE CODE (DTC) P0602
ECU PROGRAMMING ERROR ................. 6E-207
Circuit Description ..................................... 6E-207
Diagnostic Aids .......................................... 6E-207
Diagnostic Trouble Code (DTC) P0602 ECU
Programming Error .................................. 6E-207
DTC P0650 MALFUNCTION INDICATOR LAMP
(MIL) CONTOROL CIRCUIT MALFUNCTION 6E-208
Circuit Description ..................................... 6E-208
Diagnostic Aids .......................................... 6E-208
Diagnostic Trouble Code (DTC) P0650
Malfunction Indicator Lamp (MIL) Control
Circuit Malfunction ................................... 6E-209
DIAGNOSTIC TROUBLE CODE (DTC) P1167
FUEL SUPPLY SYSTEM RICH DURING
DECELERATION FUEL CUT OFF ............. 6E-211
Circuit Description ..................................... 6E-211
Diagnostic Aids .......................................... 6E-211
Diagnostic Trouble Code (DTC) P1167 Fuel Supply System Rich During
Deceleration Fuel Cutoff .......................... 6E-212
DIAGNOSTIC TROUBLE CODE (DTC) P1171
FUEL SUPPLY SYSTEM LEAN DURING
POWER ENRICHMENT ............................. 6E-214
Circuit Description ...................................... 6E-214
Diagnostic Aids .......................................... 6E-215
Diagnostic Trouble Code (DTC) P1171
Fuel Supply System Lean During Power
Enrichment .............................................. 6E-215
DIAGNOSTIC TROUBLE CODE (DTC) P1625
ECM SYSTEM RESET ............................... 6E-217
Circuit Description ...................................... 6E-217
Diagnostic Aids .......................................... 6E-217
Diagnostic Trouble Code (DTC) P1625 ECM
System Reset .......................................... 6E-217
DIAGNOSTIC TROUBLE CODE (DTC) P1626
IMMOBILIZER NO SIGNAL ........................ 6E-218
Circuit Description ...................................... 6E-218
Diagnostic Aids .......................................... 6E-218
Diagnostic Trouble Code (DTC) P1626
Immobilizer No Signal .............................. 6E-219
DIAGNOSTIC TROUBLE CODE (DTC) P1631
IMMOBILIZER WRONG SIGNAL ............... 6E-222
Circuit Description ...................................... 6E-222
Diagnostic Aids .......................................... 6E-222
Diagnostic Trouble Code (DTC) P1631
Immobilizer Wrong Signal ........................ 6E-223
DIAGNOSTIC TROUBLE CODE (DTC) P1648
WRONG SECURITY CODE ENTERED .. 6E-224
Circuit Description ...................................... 6E-224
Diagnostic Aids .......................................... 6E-224
Diagnostic Trouble Code (DTC) P1648 Wrong
Security Code Entered ............................ 6E-225
DIAGNOSTIC TROUBLE CODE (DTC) P1649
IMMOBILIZER FUNCTION NOT
PROGRAMMED ......................................... 6E-226
Circuit Description ...................................... 6E-226
Diagnostic Aids .......................................... 6E-226
Diagnostic Trouble Code (DTC) P1649
Immobilizer Function Not Programmed ... 6E-227
DIAGNOSTIC TROUBLE CODE (DTC) P1693
TACHOMETER OUTPUT LOW VOLTAGE 6E-228
Circuit Description ...................................... 6E-228
Diagnostic Aids .......................................... 6E-228
Diagnostic Trouble Code (DTC) P1693
Tachometer Output Low Voltage ............. 6E-229
SYMPTOM DIAGNOSIS ............................... 6E-232
PRELIMINARY CHECKS ............................. 6E-232
VISUAL/PHYSICAL CHECK ......................... 6E-232
INTERMITTENT ........................................... 6E-232

Page 2625 of 4264

ENGINE DRIVEABILITY AND EMISSIONS 6E–49
Throttle Position Sensor (TPS)
The TPS is a potentiometer connected to throttle shaft
on the throttle body.
The engine control module (ECM) monitors the voltage
on the signal line and calculates throttle position. As the
throttle valve angle is changed when accelerator pedal
moved. The TPS signal also changed at a moved
throttle valve. As the throttle valve opens, the output
increases so that the output voltage should be high.
The throttle body has a throttle plate to control the
amount of the air delivered to the engine.
Engine coolant is directed through a coolant cavity in
the throttle body to warm the throttle valve and to
prevent icing.
Idle Air Control (IAC) Valve
The idle air control valve (IAC) valve is two directional
and gives 2-way control. With power supply to the coils
controlled steps by the engine control module (ECM),
the IAC valve's pintle is moved to adjust idle speed,
raising it for fast idle when cold or there is ex tra load
from the air conditioning or power steering.
By moving the pintle in (to decrease air flow) or out (to
increase air flow), a controlled amount of the air can
move around the throttle plate. If the engine speed is
too low, the engine control module (ECM) will retract the
IAC pintle, resulting in more air moving past the throttle
plate to increase the engine speed.
If the engine speed is too high, the engine control
module (ECM) will ex tend the IAC pintle, allowing less
air to move past the throttle plate, decreasing the
engine speed.
The IAC pintle valve moves in small step called counts.
During idle, the proper position of the IAC pintle is
calculated by the engine control module (ECM) based
on battery voltage, coolant temperature, engine load,
and engine speed.
If the engine speed drops below a specified value, and
the throttle plate is closed, the engine control module
(ECM) senses a near-stall condition. The engine control
module (ECM) will then calculate a new IAC pintle valve
position to prevent stalls.
If the IAC valve is disconnected and reconnected with
the engine running, the idle speed will be wrong. In this
case, the IAC must be reset. The IAC resets when the
key is cycled “On” then “Off”. When servicing the IAC, it
should only be disconnected or connected with the
ignition “Off”.
The position of the IAC pintle valve affects engine start-
up and the idle characteristic of the vehicle.
If the IAC pintle is fully open, too much air will be
allowed into the manifold. This results in high idle
speed, along with possible hard starting and lean air/
fuel ratio. (1) Throttle Position Sensor
(2) Idle Air Control (IAC) Valve
1
2
C haract erist ic of TPS -R ef erenc e-
0 0. 51 1. 52 2. 53 3. 54 4. 55
0 102030405060708090100
Th rot t le An gle ( % ) ( Tec h 2 R ea di n g)
Output Voltage (V)
StepCoilAB CDCoil A High
(EC M J1-28)On On
Coil A Low
(EC M J1-30)On On
Coil B High
(EC M J1-13)On On
Coil B Low
(EC M J1-29)On On

(IAC Valve Close Direction)
(IAC Valve Open Direction)

Page 2647 of 4264

ENGINE DRIVEABILITY AND EMISSIONS 6E–71
F0: Diagnostic Trouble Code
The purpose of the “Diagnostic Trouble Codes” mod e i s
to display stored trouble code in the ECM.
When “Clear DTC Information” is selected, a “Clear
DTC Information”, warning screen appears.
This screen informs you that by cleaning DTC's “all
stored DTC information in the ECM will be erased”.
After clearing codes, confirm system operation by test
driving the vehicle.
Use the “DTC Information” mode to search for a specific
type of stored DTC information.
History
This selection will display only DTCs that are stored in
the ECM's history memory. It will not display Type B
DTCs that have not requested the MIL (“Check EngineLamp”). It will display all type A and B DTCs that
requested the MIL and have failed within the last 40
warm-up cycles. In addition, it will display all type C and
D DTCs that have failed within the last 40 warm-up
cycles.
MIL SVC or Message Request
This selection will display only DTCs that are requesting
the MIL. Type C and Type D DTCs cannot be displayed
using the MIL. Type C and D DTCs cannot be displayed
using this option.
This selection will report type B DTCs only after the MIL
has been requested.
Last Test Failed
This selection will display only DTCs that have failed the
last time the test run. The last test may have run during
a previous ignition cycle of a type A or type B DTC is
displayed. For type C and type D DTCs, the last failure
must have occurred during the current ignition cycle to
appear as last test fail.
Test Failed Since Code Cleared
The selection will display all active and history DTCs
that have reported a test failure since the last time
DTCs were cleared. DTCs that last failed more that 40
warm-up cycles before this option is selected will not be
displayed.
No Run Since Code Cleared
This selection will display up to DTCs that have not run
since the DTCs were last cleared. Since any displayed
DTCs have not run, their condition (passing or failing) is
unknown.
Failed This Ignition
This selection will display all DTCs that have failed
during the present ignition cycle.
F1: Data Display
The purpose of the “Data Display” mode is to
continuously monitor data parameters.
The current actual values of all important sensors and
signals in the system are display through F1 mode.
See the “Typical Scan Data” section.
F2: Snapshot
“Snapshot” allows you to focus on making the condition
occur, rather than trying to view all of the data in
anticipation of the fault.
The snapshot will collect parameter information around
a trigger point that you select.
F3: Miscellaneous Test:
The purpose of “Miscellaneous Test” mode is to check
for correct operation of electronic system actuators.
F0: Diagnostic Trouble Code
F0: Read DTC Infor By Priority
F1: Clear DTC Information
F2: DTC Information
F0: History
F1: MIL SVS or Message Requested
F2: Last Test Failed
F3: Test Failed Since Code Cleared
F4: Not Run Since Code Cleared
F5: Failed This Ignition
F1: Data Display
F0: Engine Data
F1: O2 Sensor Data
F2: Snapshot
F3: Miscellaneous Test
F0: Lamps
F0: Malfunction Indicator Lamps
F1: Relays
F0: Fuel Pump Relay
F1: A/C Clutch Relay
F2: EVAP
F0: Purge Solenoid
F3: IAC System
F0: IAC Control
F1: IAC Reset
F4: Injector Balance Test

Page:   < prev 1-10 11-20 21-30 next >