fuel filter ISUZU TF SERIES 2004 Repair Manual

Page 1832 of 4264

6A-8 ENGINE MECHANICAL (6VE1 3.5L)
Hesitation
Symptom Possible Cause Action
Hesitation on acceleration Throttle Position Sensor adjustment
incorrect Replace throttle valve assembly
Throttle Position Sensor circuit open
or shorted Correct or replace
Excessive play in accelerator linkageAdjust or replace
Mass Airflow Sensor circuit open or
poor connections Correct or replace
Mass Airflow Sensor defective Replace
Intake Air Temperature (IAT) Sensor
circuit open or poor connections Correct or replace
IAT Sensor defective Replace
Hesitation at high speeds
(Fuel pressure too low) Fuel tank strainer clogged Clean or replace
Fuel pipe clogged Clean or replace
Fuel filter clogged Replace
Defective fuel pump system Check and replace
Fuel Pressure Control Valve leaking Replace
Hesitation at high speeds
(Fuel injector not working normally) Power supply or ground circuit for
Multiport Fuel Injection System
shorted or open Check and correct or replace
Fuel Injector defective Replace
Cable of Multiport Fuel Injection
System circuit open or poor
connections Correct or replace

Page 1834 of 4264

6A-10 ENGINE MECHANICAL (6VE1 3.5L)
Engine Lacks Power
Symptom Possible Cause Action
Trouble in fuel system Fuel Pressure Control Valve not
working normally Replace
Fuel injector clogged Clean or replace
Fuel pipe clogged Clean
Fuel filter clogged or fouled Replace
Fuel pump drive circuit not working
normally Correct or replace
Fuel tank not sufficiently breathing
due to clogged Evaporative Emission
Control System circuit Clean or replace
Water in fuel system Clean
Inferior quality fuel in fuel system Use fuel of specified octane rating
Engine Control Module supplied poor
voltage Correct circuit
Throttle Position Sensor cable broken
or poor connections Correct or replace
Throttle Position Sensor defective Replace
Mass Airflow Sensor not working
normally Replace
Manifold Absolute Pressure Sensor
not working normally Replace
Intake Air Temperature Sensor not
working normally Replace
Engine Coolant Temperature Sensor
circuit open or shorted Correct or replace
Engine Coolant Temperature Sensor
defective Replace
Engine Control Module defective Replace
Trouble in intake or exhaust system Air Cleaner Filter clogged Replace filter element
Air duct kinked or flattened Correct or replace
Exhaust system clogged Correct or replace
Ignition failure ———— Refer to Hard Start Troubleshooting
Guide
Heat range of spark plug inadequateInstall spark plugs of adequate heat
range
Ignition coil defective Replace

Page 1839 of 4264

ENGINE MECHANICAL (6VE1 3.5L) 6A-15
Abnormal Combustion
Symptom Possible Cause Action
Trouble in fuel system Fuel pressure control valve defectiveReplace
Fuel filter clogged Replace
Fuel pump clogged Clean or replace
Fuel tank or fuel pipe clogged Clean or replace
Fuel injector clogged Clean or replace
Fuel pump relay defective Replace
Power supply cable for fuel pump
broken or poor connections Reconnect, correct or replace
Mass Airflow (MAF) Sensor circuit
open or defective Correct or replace
MAF Sensor defective Replace
Engine Coolant Temperature (ECT)
Sensor circuit open or shorted Correct or replace
ECT Sensor defective Replace
Throttle Position Sensor adjustment
incorrect Readjust
Throttle Position Sensor defective Replace
Throttle Position Sensor connector
poor connections Reconnect
Vehicle Speed Sensor cable poor
connections or defective Correct or replace
Vehicle Speed Sensor loosely fixed Fix tightly
Vehicle Speed Sensor in wrong
contact or defective Replace
Engine Control Module cable poor
connections or defective Correct or replace

Page 1842 of 4264

6A-18 ENGINE MECHANICAL (6VE1 3.5L)
Fuel Consumption Excessive
Symptom Possible Cause Action
Trouble in fuel system Mixture too rich or too lean due to
trouble in fuel injection system Refer to “Abnormal Combustion"
Fuel cut function does not work Refer to “Abnormal Combustion"
Trouble in ignition system Misfiring or abnormal combustion due
to trouble in ignition system Refer to “Hard Start" or “Abnormal
Combustion"
Others Engine idle speed too high Reset to Section 6E
Returning of accelerator control
sluggish Correct
Fuel system leakage Correct or replace
Clutch slipping Correct
Brake drag Correct
Selection of transmission gear
incorrect Caution operator of incorrect gear
selection
Lubrication Problems
Symptom Possible Cause Action
Oil pressure too low Wrong oil in use Replace with correct engine oil
Relief valve sticking Replace
Oil pump not operating properly Correct or replace
Oil pump strainer clogged Clean or replace strainer
Oil pump worn Replace
Oil pressure gauge defective Correct or replace
Crankshaft bearing or connecting rod
bearing worn Replace
Oil contamination Wrong oil in use Replace with correct engine oil
Oil filter clogged Replace oil filter
Cylinder head gasket damage Replace gasket
Burned gases leaking Replace piston and piston rings or
cylinder body assembly
Oil not reaching valve system Oil passage in cylinder head or
cylinder body clogged Clean or correct

Page 1943 of 4264

ENGINE FUEL (6VE1 3.5L) 6C-1
ENGINE
ENGINE FUEL (6VE1 3.5L)
CONTENTS

Service Precaution................................................. 6C-1
General Description............................................... 6C-2
Fuel Metering.......................................................... 6C-3
Fuel Filter................................................................. 6C-4
Removal............................................................... 6C-4
Inspection............................................................. 6C-4
Installation............................................................ 6C-4
Inspection............................................................. 6C-4
In-Tank Fuel Filter............................................... 6C-4
Fuel Pump Flow Test......................................... 6C-4
Fuel Pump............................................................... 6C-6
Fuel Pump and Associated Parts..................... 6C-6
Removal............................................................... 6C-6
Installation............................................................ 6C-7
Fuel Tube / Quick - Connector Fittings............... 6C-8
Precautions.......................................................... 6C-8
Cautions During Work........................................ 6C-8

Removal................................................................ 6C-8
Reuse of Quick-Connector................................. 6C-9
Assembling Advice.............................................. 6C-9
Fuel Pump Relay..................................................... 6C-10
General Description............................................ 6C-10
Fuel Tank................................................................. 6C-11
Fuel Tank and Associated Parts....................... 6C-11
Removal................................................................ 6C-11
Installation............................................................. 6C-12
Filler Neck................................................................ 6C-13
Removal................................................................ 6C-13
Installation............................................................. 6C-13
Fuel Gauge Unit...................................................... 6C-13
Removal and Installation.................................... 6C-13
Fuel Filler Cap......................................................... 6C-14
General Description............................................ 6C-14
Inspection............................................................. 6C-14
Main Data and Specifications................................ 6C-15
Special Tool.......................................................... 6C-16


Service Precaution
When working on the fuel system, there are several
things to keep in mind:
 Any time the fuel system is being worked on,
disconnect the negative battery cable except
for those tests where battery voltage is
required.
 Always keep a dry chemical (Class B) fire
extinguisher near the work area.
 Replace all pipes with the same pipe and
fittings that were removed.
 Clean and inspect “O" rings. Replace i
f
required.
 Always relieve the line pressure before
servicing any fuel system components.
 Do not attempt repairs on the fuel system until
you have read the instructions and checked
the pictures relating to that repair.
 Adhere to all Notices and Cautions.


All gasoline engines are designed to use only
unleaded gasoline. Unleaded gasoline must be
used for proper emission control system operation.
Its use will also minimize spark plug fouling and
extend engine oil life. Using leaded gasoline can
damage the emission control system and could
result in loss of emission warranty coverage.
All cars are equipped with an Evaporative Emission
Control System. The purpose of the system is to
minimize the escape of fuel vapors to the
atmosphere.

Page 1944 of 4264

6C-2 ENGINE FUEL (6VE1 3.5L)
General Description







RTW36CLF000301
Legend (8) Fuel Rail Left
(1) Fuel Filler Cap (9) Intake Air Port Left Bank
(2) Fuel Tank (10) Fuel Pressure Control Valve
(3) Rollover Valve (11) Common Chamber
(4) Fuel Pump and Sender Assembly (12) Duty Solenoid Valve
(5) Fuel Filter (13) Throttle Valve
(6) Fuel Rail Right (14) Canister
(7) Intake Air Port Right Bank (15) Evapo Control Valve


Page 1946 of 4264

6C-4 ENGINE FUEL (6VE1 3.5L)
Fuel Filter
Removal
CAUTION: When repair to the fuel system has been
completed, start engine and check the fuel system
for loose connection or leakage. For the fuel system
diagnosis, see Section “Driveability and Emission".
1. Disconnect the battery ground cable.
2. Loosen slowly the fuel filler cap.
NOTE: To prevent spouting out fuel to change the
pressure in the fuel tank.
NOTE: Cover opening of the filler neck to prevent any
dust entering.
3. Disconnect the quick connector into the fuel tube
from the fuel filter.
NOTE: Cover the quick connector to prevent any dus
t
entering and fuel leaking.
NOTE: Refer to “Fuel Tube/Quick Connector Fittings” in
this section when performing any repairs.
4. Pull off fuel filter from holder to side member side.
Inspection
1. Replace the fuel filter if the fuel leaks from fuel filter
body or if the fuel filter body itself is damaged.
2. Replace the filter if it is clogged with dirt o
r
sediment.
Installation
1. Install the filter to holder from side member side.
NOTE: Attend direction of fuel filter. (1) to engine side
(2) to fuel tank side.
NOTE: Verify to hang holder hook to fuel filter.


NOTE: Verify to hang holder hook to fuel filter.




RTW36CSH000301
2. Connect the quick connector from the fuel tube to
the fuel filter.
NOTE: Pull of the left checker into the fuel pipe.
NOTE: Refer to “Fuel Tube/Quick Connector Fittings” in
this section when performing any repairs.
3. Tighten fuel filler cap until at least one click are
heard.
4. Connect the battery ground cable.
Inspection
After installation, start engine and check for fuel
leakage.
In–Tank Fuel Filter
The filter is located on the lower end of fuel pickup tube
in the fuel tank. It prevents dirt from entering the fuel
pipe and also stops water unless the filter is completely
submerged in the water. It is a selfcleaning type, no
t
requiring scheduled maintenance. Excess water and
sediment in the tank restricts fuel supply to the engine,
resulting in engine stoppage. In such a case, the tank
must be cleaned thoroughly.

Page 1953 of 4264

ENGINE FUEL (6VE1 3.5L) 6C-11
Fuel Tank
Fuel Tank and Associated Parts




RTW46FLF000301

Legend (7) Fuel Filler Hose
(1) Bolt; Fuel Tank (8)Fuel Tube/Quick Connector
(2) Fuel Tank Band (9)
(3) Rear Side Shield Evapo Tube / Quick Connector – Only Specified
Model
(4) Side Shield (10)Fuel Filter
(5) Retainer (11)Band; Under Shield
(6) Fuel Tank (12)Under Shield

Page 2052 of 4264

6E-56 3.5L ENGINE DRIVEABILITY AND EMISSIONS
GENERAL DESCRIPTION FOR FUEL
METERING
The fuel metering system starts with the fuel in the fuel
tank. An electric fuel pump, located in the fuel tank,
pumps fuel to the fuel rail through an in-line fuel filter.
The pump is designed to provide fuel at a pressure
above the pressure needed by the injectors.
A fuel pressure regulator in the fuel rail keeps fuel
available to the fuel injectors at a constant pressure.
A return line delivers unused fuel back to the fuel tank.

The basic function of the air/fuel metering system is to
control the air/fuel delivery to the engine. Fuel is
delivered to the engine by individual fuel injectors
mounted in the intake manifold.
The main control sensor is the heated oxygen senso
r
located in the exhaust system. The heated oxygen
sensor reports to the ECM how much oxygen is in the
exhaust gas. The ECM changes the air/fuel ratio to the
engine by controlling the amount of time that fuel
injector is "On".
The best mixture to minimize exhaust emissions is 14.7
parts of air to 1 part of gasoline by weight, which allows
the catalytic converter to operate most efficiently.
Because of the constant measuring and adjusting of the
air/fuel ratio, the fuel injection system is called a "closed
loop" system.
The ECM monitors signals from several sensors in
order to determine the fuel needs of the engine. Fuel is
delivered under one of several conditions called
"mode". All modes are controlled by the ECM.

Acceleration Mode
The ECM provides extra fuel when it detects a rapid
increase in the throttle position and the air flow.

Battery Voltage Correction Mode
When battery voltage is low, the ECM will compensate
for the weak spark by increasing the following:
 The amount of fuel delivered.
 The idle RPM.
 Ignition dwell time.

Clear Flood Mode
Clear a flooded engine by pushing the accelerator pedal
down all the way. The ECM then de-energizes the fuel
injectors. The ECM holds the fuel injectors de-
energized as long as the throttle remains above 80%
and the engine speed is below 800 RPM. If the throttle
position becomes less than 80%, the ECM again begins
to pulse the injectors "ON" and "OFF," allowing fuel into
the cylinders.

Deceleration Mode
The ECM reduces the amount of fuel injected when i
t
detects a decrease in the throttle position and the air
flow. When deceleration is very fast, the ECM may cu
t
off fuel completely for short periods.
Engine Speed/Vehicle Speed/Fuel Disable Mode
The ECM monitors engine speed. It turns off the fuel
injectors when the engine speed increase above 6400
RPM. The fuel injectors are turned back on when
engine speed decreases below 6150 RPM.

Fuel Cutoff Mode
No fuel is delivered by the fuel injectors when the
ignition is "OFF." This prevents engine run-on. In
addition, the ECM suspends fuel delivery if no reference
pulses are detected (engine not running) to preven
t
engine flooding.

Run Mode
The run mode has the following two conditions:
 Open loop
 Closed loop
When the engine is first started the system is in "open
loop" operation. In "open loop," the ECM ignores the
signal from the heated oxygen sensor (HO2S). I
t
calculates the air/fuel ratio based on inputs from the TP,
ECT, and MAF sensors.
The system remains in "open loop" until the following
conditions are met:
 The HO2S has a varying voltage output showing
that it is hot enough to operate properly (this
depends on temperature).
 The ECT has reached a specified temperature.

A specific amount of time has elapsed since
starting the engine.
 Engine speed has been greater than a specified
RPM since start-up.
The specific values for the above conditions vary with
different engines and are stored in the programmable
read only memory (PROM). When these conditions are
met, the system enters "closed loop" operation. In
"closed loop," the ECM calculates the air/fuel ratio
(injector on-time) based on the signal from the HO2S.
This allows the air/fuel ratio to stay very close to 14.7:1.

Page 2066 of 4264

6E-70 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Fuel Quality
Fuel quality is not a new issue for the automotive
industry, but its potential for turning on the MIL (“Check
Engine" lamp) with OBD systems is new.
Fuel additives such as “dry gas" and “octane
enhancers" may affect the performance of the fuel. The
Reed Vapor Pressure of the fuel can also create
problems in the fuel system, especially during the spring
and fall months when severe ambient temperature
swings occur. A high Reed Vapor Pressure could sho
w
up as a Fuel Trim DTC due to excessive canister
loading. High vapor pressures generated in the fuel
tank can also affect the Evaporative Emission
diagnostic as well.
Using fuel with the wrong octane rating for your vehicle
may cause driveability problems. Many of the majo
r
fuel companies advertise that using “premium" gasoline
will improve the performance of your vehicle. Mos
t
premium fuels use alcohol to increase the octane rating
of the fuel. Although alcohol-enhanced fuels may raise
the octane rating, the fuel's ability to turn into vapor in
cold temperatures deteriorates. This may affect the
starting ability and cold driveability of the engine.
Low fuel levels can lead to fuel starvation, lean engine
operation, and eventually engine misfire.
Non-OEM Parts
All of the OBD diagnostics have been calibrated to run
with OEM parts.
Aftermarket electronics, such as cellular phones,
stereos, and anti-theft devices, may radiate EMI into the
control system if they are improperly installed. This may
cause a false sensor reading and turn on the MIL
(“Check Engine" lamp).
Environment
Temporary environmental conditions, such as localized
flooding, will have an effect on the vehicle ignition
system. If the ignition system is rain-soaked, it can
temporarily cause engine misfire and turn on the MIL
(“Check Engine" lamp).
Vehicle Marshaling
The transportation of new vehicles from the assembly
plant to the dealership can involve as many as 60 key
cycles within 5Km miles of driving. This type o
f
operation contributes to the fuel fouling of the spark
plugs and will turn on the MIL (“Check Engine" lamp).

Poor Vehicle Maintenance
The sensitivity of OBD diagnostics will cause the MIL
(“Check Engine" lamp) to turn on if the vehicle is no
t
maintained properly. Restricted air filters, fuel filters,
and crankcase deposits due to lack of oil changes o
r
improper oil viscosity can trigger actual vehicle faults
that were not previously monitored prior to OBD. Poo
r
vehicle maintenance can not be classified as a
“non-vehicle fault", but with the sensitivity of OBD
diagnostics, vehicle maintenance schedules must be
more closely followed.
Severe Vibration
The Misfire diagnostic measures small changes in the
rotational speed of the crankshaft. Severe driveline
vibrations in the vehicle, such as caused by an
excessive amount of mud on the wheels, can have the
same effect on crankshaft speed as misfire.
Related System Faults
Many of the OBD system diagnostics will not run if the
ECM detects a fault on a related system or component.
One example would be that if the ECM detected a
Misfire fault, the diagnostics on the catalytic converte
r
would be suspended until Misfire fault was repaired. If
the Misfire fault was severe enough, the catalytic
converter could be damaged due to overheating and
would never set a Catalyst DTC until the Misfire faul
t
was repaired and the Catalyst diagnostic was allowed to
run to completion. If this happens, the customer may
have to make two trips to the dealership in order to
repair the vehicle.
Maintenance Schedule
Refer to the Maintenance Schedule.
Visual/Physical Engine Compartment
Inspection
Perform a careful visual and physical engine
compartment inspection when performing any
diagnostic procedure or diagnosing the cause of an
emission test failure. This can often lead to repairing a
problem without further steps. Use the following
guidelines when performing a visual/physical inspection:
 Inspect all vacuum hoses for punches, cuts,
disconnects, and correct routing.
 Inspect hoses that are difficult to see behind othe
r
components.
 Inspect all wires in the engine compartment fo
r
proper connections, burned or chafed spots, pinched
wires, contact with sharp edges or contact with ho
t
exhaust manifolds or pipes.

Page:   < prev 1-10 ... 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 ... 100 next >