air condition MITSUBISHI MONTERO 1998 Service Manual

Page 1413 of 1501

axle backlash. If backlash is one inch or less, drive axle is not the
source of clunk noise.
Bearing Whine
Bearing whine is a high-pitched sound similar to a whistle.
It is usually caused by malfunctioning pinion bearings. Pinion
bearings operate at drive shaft speed. Roller wheel bearings may whine
in a similar manner if they run completely dry of lubricant. Bearing
noise will occur at all driving speeds. This distinguishes it from
gear whine, which usually comes and goes as speed changes.
Bearing Rumble
Bearing rumble sounds like marbles being tumbled. It is
usually caused by a malfunctioning wheel bearing. The lower pitch is
because the wheel bearing turns at only about 1/3 of drive shaft
speed.
Chatter On Turns
This is a condition where the entire front or rear of vehicle
vibrates when vehicle is moving. The vibration is plainly felt as well
as heard. Extra differential thrust washers installed during axle
repair can cause a condition of partial lock-up that creates this
chatter.
Axle Shaft Noise
Axle shaft noise is similar to gear noise and pinion bearing
whine. Axle shaft bearing noise will normally distinguish itself from
gear noise by occurring in all driving modes (Drive, cruise, coast and
float), and will persist with transmission in Neutral while vehicle is
moving at problem speed.
If vehicle displays this noise condition, remove suspect
axle shafts, replace wheel seals and install a new set of bearings.
Re-evaluate vehicle for noise before removing any internal components.
Vibration
Vibration is a high-frequency trembling, shaking or grinding
condition (felt or heard) that may be constant or variable in level
and can occur during the total operating speed range of the vehicle.
The types of vibrations that can be felt in the vehicle can
be divided into 3 main groups:
* Vibrations of various unbalanced rotating parts of the
vehicle.
* Resonance vibrations of the body and frame structures caused
by rotating of unbalanced parts.
* Tip-in moans of resonance vibrations from stressed engine or
exhaust system mounts or driveline flexing modes.
DRIVE AXLE - RWD TROUBLE SHOOTING
NOTE: This is GENERAL information. This article is not intended
to be specific to any unique situation or individual vehicle
configuration. The purpose of this Trouble Shooting
information is to provide a list of common causes to
problem symptoms. For model-specific Trouble Shooting,
refer to SUBJECT, DIAGNOSTIC, or TESTING articles available
in the section(s) you are accessing. For definitions
of listed noises or sounds, see DRIVE AXLE - NOISE DIAGNOSIS
under POWERTRAIN.
DRIVE AXLE (RWD) TROUBLE SHOOTING
\
\
\
\
\
\
\

CONDITION POSSIBLE CAUSE CORRECTION

Page 1426 of 1501

Air in system Bleed air from system
Undercoating on shocks Remove undercoating
\
\
\
\
\
\
\

Car Leans or Loose stabilizer bar See SUSPENSION
Sways on Corners
Faulty shocks or mountings Replace shocks or
mountings
Broken or sagging springs See SUSPENSION
\
\
\
\
\
\
\

Shock Absorbers Worn seals or reservoir See SUSPENSION
Leaking tube crimped
\
\
\
\
\
\
\

Broken Springs Loose "U" bolts See SUSPENSION
Inoperative shock absorbers Replace shock absorbers
\
\
\
\
\
\
\

WHEEL ALIGNMENT TROUBLE SHOOTING
NOTE: This is GENERAL information. This article is not intended
to be specific to any unique situation or individual vehicle
configuration. The purpose of this Trouble Shooting
information is to provide a list of common causes to
problem symptoms. For model-specific Trouble Shooting,
refer to SUBJECT, DIAGNOSTIC, or TESTING articles available
in the section(s) you are accessing.
BASIC WHEEL ALIGNMENT TROUBLE SHOOTING CHART
\
\
\
\
\
\
\

CONDITION POSSIBLE CAUSE CORRECTION\
\
\
\
\
\
\

Premature Tire Improper tire inflation Check tire pressure
Wear
Front alignment out of See ALIGNMENT SPECS in
tolerance WHEEL ALIGNMENT section
Suspension components worn See SUSPENSION section
Steering system components See STEERING section
worn
Improper standing height See WHEEL ALIGNMENT
Uneven or sagging springs See SUSPENSION section
Bent wheel See WHEEL ALIGNMENT
Improper torsion bar See SUSPENSION section
adjustment
Loose or worn wheel See WHEEL BEARING ADJ.
bearings in SUSPENSION section
Worn or defective shock Replace shock absorbers
Tires out of balance Check tire balance
\
\
\
\
\
\
\

Pulls to One Improper tire inflation Check tire pressure
Side
Brake dragging See BRAKE section

Page 1431 of 1501

the types of injector circuits that your noid lights are designed for.
There are three. They are:
* Systems with a voltage controlled injector driver. Another
way to say it: The noid light is designed for a circuit with
a "high" resistance injector (generally 12 ohms or above).
* Systems with a current controlled injector driver. Another
way to say it: The noid light is designed for a circuit with
a low resistance injector (generally less than 12 ohms)
without an external injector resistor.
* Systems with a voltage controlled injector driver and an
external injector resistor. Another way of saying it: The
noid light is designed for a circuit with a low resistance
injector (generally less than 12 ohms) and an external
injector resistor.
NOTE: Some noid lights can meet both the second and third
categories simultaneously.
If you are not sure which type of circuit your noid light is
designed for, plug it into a known good car and check out the results.
If it flashes normally during cranking, determine the circuit type by
finding out injector resistance and if an external injector resistor
is used. You now know enough to identify the type of injector circuit.
Label the noid light appropriately.
Next time you need to use a noid light for diagnosis,
determine what type of injector circuit you are dealing with and
select the appropriate noid light.
Of course, if you suspect a no-pulse condition you could plug
in any one whose connector fit without fear of misdiagnosis. This is
because it is unimportant if the flashing light is dim or bright. It
is only important that it flashes.
In any cases of doubt regarding the use of a noid light, a
lab scope will overcome all inherent weaknesses.
OVERVIEW OF DVOM
A DVOM is typically used to check injector resistance and
available voltage at the injector. Some techs also use it check
injector on-time either with a built-in feature or by using the
dwell/duty function.
There are situations where the DVOM performs these checks
dependably, and other situations where it can deceive you. It is
important to be aware of these strengths and weaknesses. We will cover
the topics above in the following text.
Checking Injector Resistance
If a short in an injector coil winding is constant, an
ohmmeter will accurately identify the lower resistance. The same is
true with an open winding. Unfortunately, an intermittent short is an
exception. A faulty injector with an intermittent short will show
"good" if the ohmmeter cannot force the short to occur during testing.
Alcohol in fuel typically causes an intermittent short,
happening only when the injector coil is hot and loaded by a current
high enough to jump the air gap between two bare windings or to break
down any oxides that may have formed between them.
When you measure resistance with an ohmmeter, you are only
applying a small current of a few milliamps. This is nowhere near
enough to load the coil sufficiently to detect most problems. As a
result, most resistance checks identify intermittently shorted
injectors as being normal.
There are two methods to get around this limitation. The
first is to purchase an tool that checks injector coil windings under

Page 1438 of 1501

will need to shift your Lab Scope to five volts per division.
You will find that some systems have slight voltage
fluctuations here. This can occur if the injector feed wire is also
used to power up other cycling components, like the ignition coil(s).
Slight voltage fluctuations are normal and are no reason for concern.
Major voltage fluctuations are a different story, however. Major
voltage shifts on the injector feed line will create injector
performance problems. Look for excessive resistance problems in the
feed circuit if you see big shifts and repair as necessary.
Note that circuits with external injector resistors will not
be any different because the resistor does not affect open circuit
voltage.
Point "B" is where the driver completes the circuit to
ground. This point of the waveform should be a clean square point
straight down with no rounded edges. It is during this period that
current saturation of the injector windings is taking place and the
driver is heavily stressed. Weak drivers will distort this vertical
line.
Point "C" represents the voltage drop across the injector
windings. Point "C" should come very close to the ground reference
point, but not quite touch. This is because the driver has a small
amount of inherent resistance. Any significant offset from ground is
an indication of a resistance problem on the ground circuit that needs
repaired. You might miss this fault if you do not use the negative
battery post for your Lab Scope hook-up, so it is HIGHLY recommended
that you use the battery as your hook-up.
The points between "B" and "D" represent the time in
milliseconds that the injector is being energized or held open. This
line at Point "C" should remain flat. Any distortion or upward bend
indicates a ground problem, short problem, or a weak driver. Alert
readers will catch that this is exactly opposite of the current
controlled type drivers (explained in the next section), because they
bend upwards at this point.
How come the difference? Because of the total circuit
resistance. Voltage controlled driver circuits have a high resistance
of 12+ ohms that slows the building of the magnetic field in the
injector. Hence, no counter voltage is built up and the line remains
flat.
On the other hand, the current controlled driver circuit has
low resistance which allows for a rapid magnetic field build-up. This
causes a slight inductive rise (created by the effects of counter
voltage) and hence, the upward bend. You should not see that here with
voltage controlled circuits.
Point "D" represents the electrical condition of the injector
windings. The height of this voltage spike (inductive kick) is
proportional to the number of windings and the current flow through
them. The more current flow and greater number of windings, the more
potential for a greater inductive kick. The opposite is also true. The
less current flow or fewer windings means less inductive kick.
Typically you should see a minimum 35 volts at the top of Point "D".
If you do see approximately 35 volts, it is because a zener
diode is used with the driver to clamp the voltage. Make sure the
beginning top of the spike is squared off, indicating the zener dumped
the remainder of the spike. If it is not squared, that indicates the
spike is not strong enough to make the zener fully dump, meaning the
injector has a weak winding.
If a zener diode is not used in the computer, the spike from
a good injector will be 60 or more volts.
Point "E" brings us to a very interesting section. As you
can see, the voltage dissipates back to supply value after the peak of
the inductive kick. Notice the slight hump? This is actually the
mechanical injector pintle closing. Recall that moving an iron core
through a magnetic field will create a voltage surge. The pintle is

Page 1440 of 1501

drivers. They typically require injector circuits
with a total leg resistance with less than 12 ohm.
NOTE: This example is based on a constant power/switched ground
circuit.
* See Fig. 3 for pattern that the following text describes.
Point "A" is where system voltage is supplied to the
injector. A good hot run voltage is usually 13.5 or more volts. This
point, commonly known as open circuit voltage, is critical because the
injector will not get sufficient current saturation if there is a
voltage shortfall. To obtain a good look at this precise point, you
will need to shift your Lab Scope to five volts per division.
You will find that some systems have slight voltage
fluctuations here. This could occur if the injector feed wire is also
used to power up other cycling components, like the ignition coil(s).
Slight voltage fluctuations are normal and are no reason for concern.
Major voltage fluctuations are a different story, however. Major
voltage shifts on the injector feed line will create injector
performance problems. Look for excessive resistance problems in the
feed circuit if you see big shifts and repair as necessary.
Point "B" is where the driver completes the circuit to
ground. This point of the waveform should be a clean square point
straight down with no rounded edges. It is during this period that
current saturation of the injector windings is taking place and the
driver is heavily stressed. Weak drivers will distort this vertical
line.
Point "C" represents the voltage drop across the injector
windings. Point "C" should come very close to the ground reference
point, but not quite touch. This is because the driver has a small
amount of inherent resistance. Any significant offset from ground is
an indication of a resistance problem on the ground circuit that needs
repaired. You might miss this fault if you do not use the negative
battery post for your Lab Scope hook-up, so it is HIGHLY recommended
that you use the battery as your hook-up.
Right after Point "C", something interesting happens. Notice
the trace starts a normal upward bend. This slight inductive rise is
created by the effects of counter voltage and is normal. This is
because the low circuit resistance allowed a fast build-up of the
magnetic field, which in turn created the counter voltage.
Point "D" is the start of the current limiting, also known as
the "Hold" time. Before this point, the driver had allowed the current
to free-flow ("Peak") just to get the injector pintle open. By the
time point "D" occurs, the injector pintle has already opened and the
computer has just significantly throttled the current back. It does
this by only allowing a few volts through to maintain the minimum
current required to keep the pintle open.
The height of the voltage spike seen at the top of Point "D"
represents the electrical condition of the injector windings. The
height of this voltage spike (inductive kick) is proportional to the
number of windings and the current flow through them. The more current
flow and greater number of windings, the more potential for a greater
inductive kick. The opposite is also true. The less current flow or
fewer windings means less inductive kick. Typically you should see a
minimum 35 volts.
If you see approximately 35 volts, it is because a zener
diode is used with the driver to clamp the voltage. Make sure the
beginning top of the spike is squared off, indicating the zener dumped
the remainder of the spike. If it is not squared, that indicates the
spike is not strong enough to make the zener fully dump, meaning there
is a problem with a weak injector winding.
If a zener diode is not used in the computer, the spike from

Page:   < prev 1-10 ... 381-390 391-400 401-410 411-420 421-430