Intake manifold g13 SUZUKI SWIFT 2000 1.G SF310 Service User Guide
Page 208 of 557
6-1-52 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
Throttle
position
sensorTo other sensors
To other sensors
DTC P0121 THROTTLE POSITION CIRCUIT RANGE / PERFORMANCE
PROBLEM
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
After engine warmed up.
While vehicle running at specified engine speed.
No change in intake manifold pressure (constant throttle opening)
Difference between actual throttle opening (detected from TP sensor)
and opening calculated by ECM (PCM) (Obtained on the basis of
engine speed and intake manifold pressure) in larger than specified
value.
2 driving cycle detection logic, continuous monitoringTP sensor malfunction
High resistance in the circuit
ECM (PCM) malfunction
DTC CONFIRMATION PROCEDURE
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester, on a level road.
1) Turn ignition switch OFF. Clear DTC with ignition switch ON, check vehicle and environmental condition for:
–Indication of fuel level meter in combination meter: 1 / 4 or more
–Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
–Intake air temp.: between –10C and 80C (14F and 176F)
–Engine coolant temp.: 70C, 158F or higher
2) Warm up engine to normal operating temperature.
3) Increase vehicle speed to 30 – 40 mph, 50 – 60 km / h in 3rd gear or “D” range and hold throttle valve at that
opening position for 1 min.
4) Stop vehicle.
5) Check DTC in “DTC” mode and pending DTC in “ON BOARD TEST” or “PENDING DTC” mode.
Page 223 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-67
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE
DIAG. FLOW
TABLE”.
2Is there DTC(s) other than fuel system
(DTC P0171 / P0172)?Go to applicable
DTC Diag. Flow
Table.Go to Step 3.
3Check HO2S-1 Output Voltage.
1) Connect scan tool to DLC with ignition switch OFF.
2) Warm up engine to normal operating temperature and keep
it at 2000 r / min. for 60 sec.
3) Repeat racing engine (Repeat depressing accelerator pedal
5 to 6 times continuously and take foot off from pedal to
enrich and enlean A / F mixture). See Fig. 1.
Does HO2S-1 output voltage deflect between below 0.3 V and
over 0.6 V repeatedly?Go to Step 4.Go to DTC
P0130 Diag.
Flow Table
(HO2S-1 circuit
check).
4Check Fuel Pressure (Refer to section 6E2 for details).
1) Release fuel pressure from fuel feed line.
2) Install fuel pressure gauge.
3) Check fuel pressure. See Fig. 2.
With fuel pump operating
and engine at stop : 270 – 310 kPa, 2.7 – 3.1 kg / cm
2,
38.4 – 44.0 psi.
At specified idle speed : 200 – 240 kPa, 2.0 – 2.4 kg / cm
2,
28.4 – 34.1 psi.
Is measured value as specified?
Go to Step 5.Go to Diag. Flow
Table B-3 Fuel
Pressure Check.
5Check Fuel Injectors and Circuit.
1) Using sound scope (1) or such, check operating sound of
each injector (2) when engine is running. Cycle of operating
sound should vary according to engine speed. See Fig. 3.
If no sound or an unusual sound is heard, check injector
circuit (wire or coupler) or injector.
2) Turn ignition switch OFF and disconnect a fuel injector
connector.
3) Check for proper connection to fuel injector at each terminal.
See Fig. 4.Go to Step 6.Check injector
circuit or replace
fuel injector(s).
4) If OK, then check injector resistance.
Injector Resistance: 12 – 13 ohm at 20C (68F)
5) Carry out steps 1) and 3) on each injector.
6) Check each injector for injected fuel volume referring to
Section 6E2. See Fig. 5.
Injected Fuel Volume: 38 – 48 cc / 15 sec 1.28 /
1.34 – 1.62 / 1.69 US / Imp.oz / 15 sec)
7) Check each injector for fuel leakage after injector closed.
Fuel Leakage: Less than 1 drop / min.
Is check result in step 1) and 3) to 7) satisfactory?
6Check EVAP Canister Purge Valve.
1) Disconnect purge hose (1) from EVAP canister.
2) Place finger against the end of disconnected hose.
3) Check that vacuum is not felt there when engine is cool and
running at idle. See Fig. 6.
Is vacuum felt?Check EVAP
control system
(See Section
6E2).Go to Step 7.
7Check intake manifold absolute pressure sensor for
performance (See DTC P0105 Diag. Flow Table).
Is it in good condition?Go to Step 8.Repair or
replace.
Page 226 of 557
Below
specified value
6-1-70 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
1. CKP sensor signal
2. No.1 fuel injector signal
3. No.3 fuel injector signal
4. Fuel injection time
Display of fuel injection signal using oscilloscope
Waveforms at specified idle speed5ms/Div
DTC DETECTING CONDITIONPOSSIBLE CAUSE
Engine under other than high revolution condition
Not on rough road
Engine speed changing rate
Manifold absolute
pressure changing rate
Throttle opening changing rate
Misfire rate per 200 or 1000 engine revolutions (how
much and how often crankshaft revolution speed
changes) is higher than specified valueEngine overheating
Vacuum leaks (air inhaling) from air intake system
Ignition system malfunction (spark plug(s), high-
tension cord(s), ignition coil assembly)
Fuel pressure out of specification
Fuel injector malfunction (clogged or leakage)
Engine compression out of specification
Valve lash (clearance) out of specification
Manifold absolute pressure sensor malfunction
Engine coolant temp. sensor malfunction
PCV valve malfunction
EVAP control system malfunction
EGR system malfunction
DTC CONFIRMATION PROCEDURE
NOTE:
Among different types of random misfire, if misfire occurs at cylinders 1 and 4 or cylinders 3 and 2 simulta-
neously, it may not possible to reconfirm DTC by using the following DTC confirmation procedure. When
diagnosing the trouble of DTC P0300 (Random misfire detected) of the engine which is apparently misfir-
ing, even if DTC P0300 cannot be reconfirmed by using the following DTC confirmation procedure, pro-
ceed to the following Diag. Flow Table.
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester.
1) Turn ignition switch OFF.
2) Clear DTC with ignition switch ON.
3) Check vehicle and environmental condition for:
–Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
–Intake air temp.: between –10C and 80C (14F and 176F)
–Engine coolant temp.: –10C, 14F or higher
4) Start engine and keep it at idle for 2 min. or more.
5) Check DTC in “DTC” mode and pending DTC in “ON BOARD TEST” or “PENDING DTC” mode.
6) If DTC is not detected at idle, consult usual driving based on information obtained in “Customer complaint analy-
sis” and “Freeze frame data check”.
Reference
Page 228 of 557
6-1-72 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
Disconnect connectors when checking plugs
for spark1. Fuel delivery pipe
2. Fuel feed hose
3. FUel pressure
gauge & 3 way joint
STEPACTIONYESNO
6Check PCV valve for clogging (See Section 6E2).
Is it in good condition?Go to Step 7.Replace PCV valve.
7Check EVAP Canister Purge Valve for Closing.
1) Disconnect purge hose (1) from EVAP canister.
2) Place finger against the end of disconnected hose.
3) Check that vacuum is not felt there, when engine is
cool and running at idle. See Fig. 7.
Is vacuum felt?Check EVAP
control system
(See Section 6E2).Go to Step 8.
8Check intake manifold pressure sensor for performance
(See DTC P0105 Diag. Flow Table).
Is it in good condition?Go to Step 9.Repair or replace.
9Check engine coolant temp. sensor for performance
(See Section 6E2).
Is it in good condition?Go to Step 10.Replace engine
coolant temp.
sensor.
10Check parts or system which can cause engine rough
idle or poor performance.
–Engine compression (See Section 6A1).
–Valve lash (See Section 6A1).
–Valve timing (Timing belt installation. See Section 6A1).
Are they in good condition?Check wire harness
and connection of
ECM (PCM) ground,
ignition system and
fuel injector for
intermittent open
and short.Repair or replace.
Fig. 1 for Step 3 Fig. 2 for Step 3 Fig. 3 for Step 4
Fig. 4 for Step 5 Fig. 5 for Step 4 Fig. 6 for Step 5
Fig. 7 for Step 7
Page 234 of 557
6-1-78 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
Ignition
switch
Main fuseRelay
boxMain
relay
EGR valve
2 C13
DTC P0400 EXHAUST GAS RECIRCULATION FLOW MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
While running at specified vehicle speed after
engine warm-up
During deceleration (engine speed high with closed
throttle position ON) in which fuel cut is involved,
difference in intake manifold absolute pressure
between when EGR valve is opened at specified
value and when it is closed is larger or smaller than
specified value.
2 driving cycle detection logic, monitoring once / 1
drivingEGR valve or its circuit
EGR passage
ECM (PCM)
Page 240 of 557
6-1-84 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
1. EVAP canister purge valve
2. To main relay
3. ECM (PCM)
4. Sensed information
5. Intake manifold
6. EVAP canister
7. Tank pressure control valve
8. Fuel vapor line
9. Fuel tank
Fig. 1 for Step 1
DTC P0443 EVAP PURGE CONTROL VALVE CIRCUIT MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
Canister Purge control valve circuit is opened
or shorted.“V/R” circuit open or short
“R/B” circuit open
Canister purge valve malfunction
DTC CONFIRMATION PROCEDURE
1) Clear DTC with ignition switch ON.
2) Select “DTC” mode on scan tool and check DTC.
INSPECTION
STEPACTIONYESNO
1Check EVAP canister purge valve operation
1) With ignition switch OFF, disconnect coupler
from canister purge valve.
2) Check resistance of EVAP canister purge
valve.
Resistance between
two terminals : 30 – 34 Ω at 20C (68F)
Resistance between
terminal and body : 1M Ω or higher
Is it as specified?“V/R” circuit open or
short.Replace EVAP canister
purge valve.
Page 250 of 557
6-1-94 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
Fig. 1 for Step 1
When using SUZUKI scan tool:
DTC P1450 BAROMETRIC PRESSURE SENSOR LOW / HIGH INPUT
DTC P1451 BAROMETRIC PRESSURE SENSOR PERFORMANCE PROBLEM
WIRING DIAGRAM / CIRCUIT DESCRIPTION
Barometric pressure sensor is installed in ECM (PCM).
DTC DETECTING CONDITION
POSSIBLE CAUSE
DTC P1450:
Barometric pressure: 136 kPa 1025 mmHg or higher, or
33 kPa 250 mmHg or lowerECM (PCM) (barometric pressure sensor)
malfunction
DTC P1451:
Vehicle stopped
Engine cranking
Difference between barometric pressure and intake
manifold absolute pressure is 26 kPa, 200 mmHg or more
2 driving cycle detection logic, monitoring once / 1 driving.Manifold absolute pressure sensor and its
circuit malfunction
ECM (PCM) (barometric pressure sensor)
malfunction
DTC CONFIRMATION PROCEDURE
1) Turn ignition switch OFF.
2) Clear DTC with ignition switch ON.
3) Turn ignition switch ON for 2 sec., crank engine for 2 sec. and run it at idle for 1 min.
4) Check pending DTC in “ON BOARD TEST” or “PENDING DTC” mode and DTC in “DTC” mode.
INSPECTION
DTC P1450:
Substitute a known-good ECM (PCM) and recheck.
DTC P1451:
NOTE:
Note that atmospheric pressure varies depending on weather conditions as well as altitude.
Take that into consideration when performing these check.
STEP
ACTIONYESNO
11) Connect scan tool to DLC with ignition switch OFF.
2) Turn ignition switch ON and select “DATA
LIST” mode on scan tool.
3) Check manifold absolute pressure. See Fig. 1.
Is it barometric pressure (approx. 100 kPa,
760 mmHg) at sea level?Substitute a known-
good ECM (PCM) and
recheck.Go to Step 2.
Page 251 of 557
Applying Vacuum Displayed Value on Scan Tool
0Barometric pressure
(Approx. 100 kPa, 760 mmHg)
27 kPa
200 mmHgBarometric pressure –27 kPa
(Approx. 73 kPa, 560 mmHg
67 kPa
500 mmHgBarometric pressure –67 kPa
(Approx. 33 kPa, 260 mmHg)
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-95
Fig. 2 for Step 2
STEPACTIONYESNO
2Check MAP Sensor
1) Remove MAP sensor from intake manifold and connect
vacuum pump gauge to MAP sensor. See Fig. 2.
2) Connect scan tool to DLC and turn ignition switch ON.
3) Check intake manifold absolute pressure displayed on
scan tool under following conditions.
Is check result satisfactory?Check air intake
system for air
being drawn in
and engine
compression.
If OK, then
substitute a
known-good ECM
(PCM) and
recheck.Replace MAP
sensor.
Page 296 of 557
6A1
ENGINE MECHANICAL (G13B, 1-CAM 16-VALVES ENGINE) 6A1-1
SECTION 6A1
ENGINE MECHANICAL
(G13B, 1-CAM 16-VALVES ENGINE)
WARNING:
For vehicles equipped with Supplement Restraint (Air Bag) System:
Service on and around the air bag system components or wiring must be performed only by an autho-
rized SUZUKI dealer. Refer to “Air Bag System Components and Wiring Location View” under “Gener-
al Description” in air bag system section in order to confirm whether you are performing service on
or near the air bag system components or wiring. Please observe all WARNINGS and “Service Precau-
tions” under “On-Vehicle Service” in air bag system section before performing service on or around
the air bag system components or wiring. Failure to follow WARNINGS could result in unintentional
activation of the system or could render the system inoperative. Either or these two conditions may
result in severe injury.
Technical service work must be started at least 90 seconds after the ignition switch is turned to the
“LOCK” position and the negative cable is disconnected from the battery. Otherwise, the system may
be activated by reserve energy in the Sensing and Diagnostic Module (SDM).
CONTENTS
GENERAL DESCRIPTION6A1- 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Engine6A1- 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Engine Lubrication6A1- 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cylinder Block6A1- 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Crankshaft and Main Bearings 6A1- 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pistons, Rings, Piston Pins and Connecting Rods 6A1- 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cylinder Head and Value Train 6A1- 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ON VEHICLE SERVICE6A1- 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Compression Check6A1- 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Engine Vacuum Check6A1- 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oil Pressure Check6A1- 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Valve Lash (Clearance)6A1- 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Air Cleaner Element6A1-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Air Cleaner Outlet Hose6A1-12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cylinder Head Cover6A1-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Throttle Body and Intake Manifold 6A1-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exhaust Manifold6A1-17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timing Belt and Belt Tensioner 6A1-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oil Pan and Oil Pump Strainer 6A1-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oil Pump6A1-28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rocker Arms, Rocker Arm Shaft and Camshaft 6A1-33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Valves and Cylinder Head6A1-41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Piston, Piston Rings, Connecting Rods and Cylinders 6A1-54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UNIT REPAIR OVERHAUL6A1-64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Engine Assembly6A1-64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Main Bearings, Crankshaft and Cylinder Block 6A1-68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPECIAL TOOLS6A1-80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REQUIRED SERVICE MATERIALS6A1-81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TIGHTENING TORQUE SPECIFICATIONS6A1-82 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NOTE:
For what each abbreviation stands for (i.e., full term), refer to SECTION 0A.
Page 301 of 557
6A1-6 ENGINE MECHANICAL (G13B, 1-CAM 16-VALVES ENGINE)
ENGINE VACUUM CHECK
The engine vacuum that develops in the intake line is a good indica-
tor of the condition of the engine. The vacuum checking procedure
is as follows:
1) Warm up engine to normal operating temperature.
NOTE:
After warming up engine, place transmission gear shift le-
ver in “Neutral” (shift selector lever to “P” range for A / T
model), and set parking brake and block drive wheels.
2) With engine stopped, disconnect EVAP canister purge valve
hose from intake manifold and connect 3-way joint, hoses and
special tools (vacuum gauge and joint) between intake manifold
and vacuum hose disconnected.
Special Tool
(A): 09915-67311
(B): 09918-08210
SUZUKI GENUINE PARTS
(C): Hose 09343-03087
(D): 3-way joint 09367-04002
3) Run engine at specified idle speed, and read vacuum gauge.
Vacuum should be within the following specification.
Vacuum specification (at sea level):
52.6 – 65.8 kPa (40 – 50 cmHg, 15.7 – 19.7 in.Hg) at specified
idling speed
4) After checking, connect vacuum hose to intake surge tank.