VACUUM SUZUKI SWIFT 2000 1.G SF310 Service User Guide
Page 122 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-71
1. Throttle body
2. Fuel feed hose
GoodNo good1. Injector connector
STEPACTIONYESNO
6Check PCV valve for clogging (See Section 6E1).
Is it in good condition?Go to Step 7.Replace PCV valve.
7Check EVAP Canister Purge Valve for Closing.
1) Disconnect purge hose (1) from EVAP canister.
2) Place finger against the end of disconnected hose.
3) Check that vacuum is not felt there, when engine is
cool and running at idle. See Fig. 5.
Is vacuum felt?Check EVAP
control system
(See Section 6E1).Go to Step 8.
8Check intake manifold pressure sensor for performance
(See Section 6E1).
Is it in good condition?Go to Step 9.Repair or replace.
9Check engine coolant temp. sensor for performance
(See Section 6E1).
Is it in good condition?Go to Step 10.Replace engine
coolant temp.
sensor.
10Check parts or system which can cause engine rough
idle or poor performance.
–Engine compression (See Section 6A).
–Valve lash (See Section 6A).
–Valve timing (Timing belt installation. See Section 6A).
Are they in good condition?Check wire harness
and connection of
ECM (PCM) ground,
ignition system and
fuel injector for
intermittent open
and short.Repair or replace.
Fig. 1 for Step 3 Fig. 2 for Step 3 Fig. 3 for Step 4
Fig. 4 for Step 5 Fig. 5 for Step 7
Page 151 of 557
1. Fuel pump
2. Fuel filter
3. Throttle body
4. Fuel injector
5. Fuel pressure regulator6. Special tool
(Fuel pressure gauge &
3-way joint)
7. Fuel feed line
8. Fuel return line
6-100 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
TABLE B-3 FUEL PRESSURE CHECK
INSPECTION
STEPACTIONYESNO
1Check Fuel Pressure (Refer to Section 6E1 for details).
1) Release fuel pressure from fuel feed line.
2) Install fuel pressure gauge.
3) Check fuel pressure by repeating ignition switch
ON and OFF. See Fig. 1.
Is fuel pressure then 160 – 210 kPa (1.6 – 2.1 kg / cm
2,
22.7 – 29.9 psi)?
Go to Step 2.Go to Step 4.
2Is 90 kPa (0.9 kg / cm2, 12.8 psi) or higher fuel
pressure retained for 1 minute after fuel pump is
stopped at Step 1?Normal fuel pressure.Go to Step 3.
31) Start engine and warm it up to normal operating
temperature.
2) Keep it running at specified idle speed.
Is fuel pressure then within 90 – 140 kPa
(0.9 – 1.4 kg / cm
2, 12.8 – 20.0 psi)?
Normal fuel pressure.Clogged vacuum
passage for fuel
pressure regulator
or
Faulty fuel pressure
regulator.
4Is there fuel leakage from fuel feed line hose, pipe or
their joint?Fuel leakage from
hose, pipe or joint.Go to Step 10.
5Was fuel pressure higher than specification in Step 1?Go to Step 6.Go to Step 7.
61) Disconnect fuel return hose from throttle body and
connect new return hose to it.
2) Insert the other end of new return hose into
approved gasoline container.
3) Operate fuel pump.
Is specified fuel pressure obtained then?Restricted fuel return
hose or pipe.Faulty fuel pressure
regulator.
7Was no fuel pressure supplied in Step 1?Go to Step 8.Go to Step 9.
Page 171 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-15
DIAGNOSTIC TROUBLE CODE (DTC) TABLE
NOTE:
1 driving cycle: MIL lights up when DTC is detected in the first driving cycle.
2 driving cycles: MIL lights up when the same DTC is detected also in the next driving cycle after DTC is
detected and stored temporarily in the first driving cycle.
DTC
NO.
DETECTING ITEMDETECTING CONDITION
(DTC will set when detecting:)MIL
P0105Manifold absolute pressure
circuit malfunction
Low pressure-high vacuum-low voltage (or MAP
sensor circuit shorted to ground)
High pressure-low vacuum-high voltage (or MAP
sensor circuit open)
1 driving
cycle
P0110Intake air temp. circuit
malfunctionIntake air temp. circuit low input
Intake air temp. circuit high input1 driving
cycle
P0115Engine coolant temp. circuit
malfunctionEngine coolant temp. circuit low input
Engine coolant temp. circuit high input1 driving
cycle
P0120Throttle position circuit
malfunctionThrottle position circuit low input
Throttle position circuit high input1 driving
cycle
P0121Throttle position circuit
performance problemPoor performance of TP sensor2 driving
cycles
P0130HO2S circuit malfunction
(Sensor-1)
Min. output voltage of HO2S-higher than
specification
Max. output voltage of HO2S-lower than
specification
2 driving
cycles
P0133HO2S circuit slow response
(Sensor-1)Response time of HO2S-1 output voltage between
rich and lean is longer than specification.2 driving
cycles
P0134HO2S circuit no activity detected
(Sensor-1)Output voltage of HO2S-1 fails to go specification.
(or HO2S-1 circuit open or short)2 driving
cycles
P0135HO2S heater circuit malfunction
(Sensor-1)Terminal voltage is lower than specification at heater
OFF or it is higher at heater ON.2 driving
cycles
P0136HO2S circuit malfunction
(Sensor-2)Max. voltage of HO2S-2 is lower than specification
or its min. voltage is higher than specification2 driving
cycles
P0141HO2S heater circuit malfunction
(Sensor-2)Terminal voltage is lower than specification at heater
OFF or it is higher at heater ON. (or heater circuit or
short)2 driving
cycles
P0171Fuel system too lean
Short term fuel trim or total fuel trim (short and long
terms added) is larger than specification for specified
time or longer. (fuel trim toward rich side is large.)2 driving
cycles
P0172Fuel system too rich
Short term fuel trim or total fuel trim (short and long
term added) is smaller than specification for
specified time or longer. (fuel trim toward lean side is
large.)
2 driving
cycles
P0300
P0301
P0302
P0303Random misfire detected
Cylinder 1 misfire detected
Cylinder 2 misfire detected
Cylinder 3 misfire detectedMisfire of such level as to cause damage to three
way catalyst
MIL
flashing
during
misfire
detection
P0304
y
Cylinder 4 misfire detectedMisfire of such level as to deteriorate emission but
not to cause damage to three way catalyst2 driving
cycles
Page 175 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-19
Operation
VISUAL INSPECTION
Visually check following parts and systems.
INSPECTION ITEM
REFERRING SECTION
Engine oil ––––– level, leakage
Engine coolant ––––– level, leakage
Fuel ––––– level, leakage
A / T fluid ––––– level, leakage
Air cleaner element ––––– dirt, clogging
Battery ––––– fluid level, corrosion of terminal
Water pump belt ––––– tension, damage
Throttle cable ––––– play, installation
Vacuum hoses of air intake system ––––– disconnection,
looseness, deterioration, bend
Connectors of electric wire harness ––––– disconnection, friction
Fuses ––––– burning
Parts ––––– installation, bolt ––––– looseness
Parts ––––– deformation
Other parts that can be checked visually
Also check following items at engine start, if possible
Malfunction indicator lamp
Charge warning lamp
Engine oil pressure warning lamp
Engine coolant temp. meter
Fuel level meter
Tachometer, if equipped
Abnormal air being inhaled from air intake system
Exhaust system ––––– leakage of exhaust gas, noise
Other parts that can be checked visuallySection 0B
Section 0B
Section 0B
Section 0B
Section 0B
Section 0B
Section 6E2
Section 8
Section 6
Section 6H
Section 8 (Section 6 for pressure check)
Section 8
Section 8
Page 183 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-27
ConditionPossible CauseReferring Item
Improper engine
idling or engine
fails to idleIgnition system out of order
Faulty spark plug
Leaky or disconnected high-tension cord
Faulty ignition coil with ignitor
Fuel system out of order
Fuel pressure out of specification
Leaky manifold, throttle body, or cylinder head
gasket
Engine and emission control system out of
order
Malfunctioning EGR valve
Faulty idle air control system
Faulty evaporative emission control system
Faulty EGR system
Faulty fuel injector(s)
Poor performance of ECT sensor, TP sensor or
MAP sensor
Faulty ECM (PCM)
Engine overheating
Low compression
Others
Loose connection or disconnection of vacuum
hoses
Malfunctioning PCV valve
Spark plugs in Section 6F
High-tension cords in Section 6F
Ignition coil in Section 6F
Diagnostic Flow Table B-3
EGR system in Section 6E2
Diagnostic Flow Table B-4
EVAP control system in Section
6E2
EGR system in Section 6E2
Diagnostic Flow Table B-1
ECT sensor, TP sensor or MAP
sensor in Section 6E2
Refer to “Overheating” section
Previously outlined
PCV system in Section 6E2
Page 184 of 557
6-1-28 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
ConditionPossible CauseReferring Item
Excessive
hydrocarbon (HC)
emission or carbon
monoxide (CO)Ignition system out of order
Faulty spark plug
Leaky or disconnected high-tension cord
Faulty ignition coil with ignitor
Low compression
Engine and emission control system out of
order
Lead contamination of three way catalytic
converter
Faulty evaporative emission control system
Fuel pressure out of specification
Closed loop system (A / F feed back
compensation) fails
–Faulty TP sensor
–Poor performance of ECT sensor or MAP
sensor
Faulty injector(s)
Faulty ECM (PCM)
Others
Engine not at normal operating temperature
Clogged air cleaner
Vacuum leaks
Spark plugs in Section 6F1
High-tension cords in Section 6F1
Ignition coil assembly in Section
6F1
Refer to “Low compression”
section
Check for absence of filler neck
restrictor
EVAP control system in Section
6E2
Diagnostic Flow Table B-3
TP sensor in Section 6E2
ECT sensor or MAP sensor in
Section 6E2
Diagnostic Flow Table B-1
Excessive nitrogen
oxides (NOx)
emissionIgnition system out of order
Improper ignition timing
Engine and emission control system out of
order
Lead contamination of catalytic converter
Faulty EGR system
Fuel pressure out of specification
Closed loop system (A / F feed back
compensation) fails
–Faulty TP sensor
–Poor performance of ECT sensor or MAP
sensor
Faulty injector(s)
Faulty ECM (PCM)
See section 6F1
Check for absence of filler neck
restrictor.
EGR system in Section 6E2
Diagnostic Flow Table B-3
TP sensor in Section 6E2
ECT sensor or MAP sensor in
Section 6E2
Diagnostic Flow Table B-1
Page 199 of 557
MAP
sensor
To other sensorsTo TP sensor
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-43
DTC P0105 MANIFOLD ABSOLUTE PRESSURE (MAP) CIRCUIT
MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
MAP: 4.9 kpa, 37 mmHg or less
(Low pressure – High vacuums – Low voltage)
MAP: 114.7 kpa, 860 mmHg or more
(High pressure – Low vacuums – High voltage)“G” circuit open
“P” circuit open or shorted to ground
“G” circuit open or shorted to ground
MAP sensor malfunction
ECM (PCM) malfunction
NOTE:
When DTC P0120 is indicated together, it is possible that “P” circuit is open.
DTC CONFIRMATION PROCEDURE
1) Clear DTC, start engine and keep it at idle for 1 min.
2) Select “DTC” mode on scan tool and check DTC.
Page 200 of 557
6-1-44 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
MAP Sensor Individual Check
1) Disconnect coupler from MAP sensor (1).
2) Remove MAP sensor (1).
3) Arrange 3 new 1.5 V batteries (2) in series (check that total volt-
age is 4.5 – 5.0 V) and connect its positive terminal to “Vin” termi-
nal of sensor and negative terminal to “Ground” terminal. Then
check voltage between “Vout” and “Ground”.
Also, check if voltage reduces when vacuum is applied up to 400
mmHg by using vacuum pump (3).
Output voltage (Vin voltage 4.5 – 5.5 V, ambient temp. 20 –
30C, 68 – 86F)
ALTITUDE
BAROMETRICOUTPUT
(Reference)PRESSUREVOLTAGE
(ft)(m)(mmHg)(kPa)(V)
0
0
760
100
3343
2 000
610
707
94
3.3 – 4.3
2 001
611
Under 70794
3041
5 000
1 524over 634
85
3.0 – 4.1
5 001
1 525
Under 63485
2737
8 000
2 438over 567
76
2.7 – 3.7
8 001
2 439
Under 56776
25–33
10 000
3 048over 526
70
2.5 – 3.3
If check result is not satisfactory, replace MAP sensor (1).
4) Install MAP sensor (1) securely.
5) Connect MAP sensor (1) coupler securely.
Page 221 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-65
Ignition
switch
Main
fuseMain relay
To ignition
switchTo other sensor Relay boxNo.1 injector
No.2 injector
No.3 injector
No.4 injector Fuse box
Signal to decrease amount of fuel injection
Signal to increase amount of fuel injection
High voltage
Low voltage
A / F mixture
becomes
richerOxygen
concentration
decreases
A / F mixture Oxygen
Fuel injectorSensed
information
A / F mixture
Exhaust gas
becomes
leanerconcentration
increases
DTC P0171 FUEL SYSTEM TOO LEAN
DTC P0172 FUEL SYSTEM TOO RICH
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
When following condition occurs while engine running under
closed loop condition.
–Air / fuel ratio too lean
Total fuel trim (short and long terms added) is
more than 30%
or
–Air / fuel ratio too rich
(Total fuel trim is less than –30%)
2 driving cycle detection logic, continuous monitoring.Vacuum leaks (air drawn in).
Exhaust gas leakage.
Heated oxygen sensor-1 circuit
malfunction.
Fuel pressure out of specification.
Fuel injector malfunction (clogged or
leakage).
MAP sensor poor performance.
ECT sensor poor performance.
IAT sensor poor performance.
TP sensor poor performance.
EVAP control system malfunction.
PCV valve malfunction.
Page 223 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-67
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE
DIAG. FLOW
TABLE”.
2Is there DTC(s) other than fuel system
(DTC P0171 / P0172)?Go to applicable
DTC Diag. Flow
Table.Go to Step 3.
3Check HO2S-1 Output Voltage.
1) Connect scan tool to DLC with ignition switch OFF.
2) Warm up engine to normal operating temperature and keep
it at 2000 r / min. for 60 sec.
3) Repeat racing engine (Repeat depressing accelerator pedal
5 to 6 times continuously and take foot off from pedal to
enrich and enlean A / F mixture). See Fig. 1.
Does HO2S-1 output voltage deflect between below 0.3 V and
over 0.6 V repeatedly?Go to Step 4.Go to DTC
P0130 Diag.
Flow Table
(HO2S-1 circuit
check).
4Check Fuel Pressure (Refer to section 6E2 for details).
1) Release fuel pressure from fuel feed line.
2) Install fuel pressure gauge.
3) Check fuel pressure. See Fig. 2.
With fuel pump operating
and engine at stop : 270 – 310 kPa, 2.7 – 3.1 kg / cm
2,
38.4 – 44.0 psi.
At specified idle speed : 200 – 240 kPa, 2.0 – 2.4 kg / cm
2,
28.4 – 34.1 psi.
Is measured value as specified?
Go to Step 5.Go to Diag. Flow
Table B-3 Fuel
Pressure Check.
5Check Fuel Injectors and Circuit.
1) Using sound scope (1) or such, check operating sound of
each injector (2) when engine is running. Cycle of operating
sound should vary according to engine speed. See Fig. 3.
If no sound or an unusual sound is heard, check injector
circuit (wire or coupler) or injector.
2) Turn ignition switch OFF and disconnect a fuel injector
connector.
3) Check for proper connection to fuel injector at each terminal.
See Fig. 4.Go to Step 6.Check injector
circuit or replace
fuel injector(s).
4) If OK, then check injector resistance.
Injector Resistance: 12 – 13 ohm at 20C (68F)
5) Carry out steps 1) and 3) on each injector.
6) Check each injector for injected fuel volume referring to
Section 6E2. See Fig. 5.
Injected Fuel Volume: 38 – 48 cc / 15 sec 1.28 /
1.34 – 1.62 / 1.69 US / Imp.oz / 15 sec)
7) Check each injector for fuel leakage after injector closed.
Fuel Leakage: Less than 1 drop / min.
Is check result in step 1) and 3) to 7) satisfactory?
6Check EVAP Canister Purge Valve.
1) Disconnect purge hose (1) from EVAP canister.
2) Place finger against the end of disconnected hose.
3) Check that vacuum is not felt there when engine is cool and
running at idle. See Fig. 6.
Is vacuum felt?Check EVAP
control system
(See Section
6E2).Go to Step 7.
7Check intake manifold absolute pressure sensor for
performance (See DTC P0105 Diag. Flow Table).
Is it in good condition?Go to Step 8.Repair or
replace.