fuel injector SUZUKI SWIFT 2000 1.G SF310 Service Owner's Manual
Page 122 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-71
1. Throttle body
2. Fuel feed hose
GoodNo good1. Injector connector
STEPACTIONYESNO
6Check PCV valve for clogging (See Section 6E1).
Is it in good condition?Go to Step 7.Replace PCV valve.
7Check EVAP Canister Purge Valve for Closing.
1) Disconnect purge hose (1) from EVAP canister.
2) Place finger against the end of disconnected hose.
3) Check that vacuum is not felt there, when engine is
cool and running at idle. See Fig. 5.
Is vacuum felt?Check EVAP
control system
(See Section 6E1).Go to Step 8.
8Check intake manifold pressure sensor for performance
(See Section 6E1).
Is it in good condition?Go to Step 9.Repair or replace.
9Check engine coolant temp. sensor for performance
(See Section 6E1).
Is it in good condition?Go to Step 10.Replace engine
coolant temp.
sensor.
10Check parts or system which can cause engine rough
idle or poor performance.
–Engine compression (See Section 6A).
–Valve lash (See Section 6A).
–Valve timing (Timing belt installation. See Section 6A).
Are they in good condition?Check wire harness
and connection of
ECM (PCM) ground,
ignition system and
fuel injector for
intermittent open
and short.Repair or replace.
Fig. 1 for Step 3 Fig. 2 for Step 3 Fig. 3 for Step 4
Fig. 4 for Step 5 Fig. 5 for Step 7
Page 125 of 557
Display of fuel injection signal using oscilloscope
1. CMP sensor signal
2. Fuel injector signal
3. Fuel injection time
2V/Div.
20V/Div.1
2
10ms/Div
Waveforms at specified idle speed 3 Sensor rotor
in distributorCamshaft
position sensor
6-74 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
DTC P0340 CAMSHAFT POSITION (CMP) SENSOR CIRCUIT MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
No CMP sensor signal for 2 seconds at engine
cranking (CKP sensor signal is inputted).CMP sensor circuit open or short.
Signal rotor teeth damaged.
CMP sensor malfunction, foreign material being
attached or improper installation.
ECM (PCM) malfunction.
Reference
Connect oscilloscope between terminals C01-2 and C01-10 of ECM (PCM) connector connected to ECM (PCM)
and check CMP sensor signal.
DTC CONFIRMATION PROCEDURE
1) Clear DTC.
2) Start engine and keep it at idle for 1 min.
3) Select “DTC” mode on scan tool and check DTC.
Page 147 of 557
“IG
COIL
METER”
Main
fuseIgnition
switch
Main
relayTo other circuits
Injector resistor Fuel injector
6-96 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
TABLE B-1 FUEL INJECTOR CIRCUIT CHECK
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Injector Circuit Check
1) Check injector circuit for short.
Is fuel injected from injector at ignition switch ON?“Y/B” wire shorted to
ground or faulty
injector.
If wire and injector is
as specified
respectively and then
substitute known-
good ECM (PCM) and
recheck.Go to Step 3.
3Injector Check
1) Check injector for fuel Injection referring to FUEL
INJECTOR ON-VEHICLE INSPECTION in
Section 6E1.
Is fuel injected from injector at engine cranking?Go to Step 4.Go to Step 5.
4Injector Leakage Check
1) Check injector for leaks referring to FUEL
INJECTOR ON-VEHICLE INSPECTION in
Section 6E1.
Is it in good condition?Injector and its circuit
are in good condition.Faulty fuel injector.
5Check Injector for Operating Sound.
1) Using sound scope, check injector for operating
sound at engine cranking.
Is it detected?Proceed to DIAG.
FLOW TABLE B-2 and
B-3.Go to Step 6.
Page 151 of 557
1. Fuel pump
2. Fuel filter
3. Throttle body
4. Fuel injector
5. Fuel pressure regulator6. Special tool
(Fuel pressure gauge &
3-way joint)
7. Fuel feed line
8. Fuel return line
6-100 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
TABLE B-3 FUEL PRESSURE CHECK
INSPECTION
STEPACTIONYESNO
1Check Fuel Pressure (Refer to Section 6E1 for details).
1) Release fuel pressure from fuel feed line.
2) Install fuel pressure gauge.
3) Check fuel pressure by repeating ignition switch
ON and OFF. See Fig. 1.
Is fuel pressure then 160 – 210 kPa (1.6 – 2.1 kg / cm
2,
22.7 – 29.9 psi)?
Go to Step 2.Go to Step 4.
2Is 90 kPa (0.9 kg / cm2, 12.8 psi) or higher fuel
pressure retained for 1 minute after fuel pump is
stopped at Step 1?Normal fuel pressure.Go to Step 3.
31) Start engine and warm it up to normal operating
temperature.
2) Keep it running at specified idle speed.
Is fuel pressure then within 90 – 140 kPa
(0.9 – 1.4 kg / cm
2, 12.8 – 20.0 psi)?
Normal fuel pressure.Clogged vacuum
passage for fuel
pressure regulator
or
Faulty fuel pressure
regulator.
4Is there fuel leakage from fuel feed line hose, pipe or
their joint?Fuel leakage from
hose, pipe or joint.Go to Step 10.
5Was fuel pressure higher than specification in Step 1?Go to Step 6.Go to Step 7.
61) Disconnect fuel return hose from throttle body and
connect new return hose to it.
2) Insert the other end of new return hose into
approved gasoline container.
3) Operate fuel pump.
Is specified fuel pressure obtained then?Restricted fuel return
hose or pipe.Faulty fuel pressure
regulator.
7Was no fuel pressure supplied in Step 1?Go to Step 8.Go to Step 9.
Page 152 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-101
Fig. 1 for Step 1
1. Fuel pressure gauge & 3way joint
STEPACTIONYESNO
8With fuel pump operated and fuel return hose
blocked by pinching it, is fuel pressure applied?Faulty fuel pressure
regulator.Shortage of fuel or fuel
pump or its circuit
defective (refer to B-2
FUEL PUMP ANDITS
CIRCUIT CHECK).
91) Operate fuel pump.
2) With fuel return hose blocked by pinching it, check
fuel pressure.
Is it 450 kPa (4.5 kg / cm
2, 63.9 psi) or more?
Faulty fuel pressure
regulator.Clogged fuel filter,
Restricted fuel feed
hose or pipe,
Faulty fuel pump or
Fuel leakage from
hose connection in
fuel tank.
101) Disconnect fuel return hose from throttle body and
connect new return hose to it.
2) Insert the other end of new return hose into
approved gasoline container.
3) Check again if specified pressure is retained.
While doing so, does fuel come out of return hose?Faulty fuel pressure
regulator.Fuel leakage from
injector,
Fuel leakage from
between injector
and throttle body,
Faulty fuel pump
(faulty check valve
in fuel pump) or
Fuel leakage from
fuel pressure
regulator
diaphragm.
Page 158 of 557
6-1-2 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
DTC P0300 Random Misfire
Detected 6-1- 69. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0301 Cylinder 1 Misfire
Detected 6-1- 69. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0302 Cylinder 2 Misfire
Detected 6-1- 69. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0303 Cylinder 3 Misfire
Detected 6-1- 69. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0304 Cylinder 4 Misfire
Detected 6-1- 69. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0335 CKP Sensor Circuit
Malfunction 6-1- 73. . . . . . . . . . . . . . . . . . . . . . . .
DTC P0340 CMP Sensor Circuit
Malfunction 6-1- 75. . . . . . . . . . . . . . . . . . . . . . . .
DTC P0400 EGR Flow Malfunction 6-1- 78. . . .
DTC P0420 Catalyst System
Efficiency Below Threshold 6-1- 81. . . . . . . . . .
DTC P0443 Purge Control Valve Circuit
Malfunction 6-1- 84. . . . . . . . . . . . . . . . . . . . . . . .
DTC P0480 Radiator Fan Control
System Malfunction 6-1- 85. . . . . . . . . . . . . . . . .
DTC P0500 Vehicle Speed Sensor
Malfunction 6-1- 87. . . . . . . . . . . . . . . . . . . . . . . .
DTC P0505 Idle Control System
Malfunction 6-1- 91. . . . . . . . . . . . . . . . . . . . . . . . DTC P0601 Internal Control Module
Memory Check Sum Error 6-1- 93. . . . . . . . . . .
DTC P1450 Barometric Pressure
Sensor Low / High Input 6-1- 94. . . . . . . . . . . . .
DTC P1451 Barometric Pressure Sensor
Performance Problem 6-1- 94. . . . . . . . . . . . . . .
DTC P1500 Engine Starter Signal
Circuit Malfunction 6-1- 96. . . . . . . . . . . . . . . . . .
DTC P1510 ECM (PCM) Back-up
Power Supply Malfunction 6-1- 97. . . . . . . . . . .
Table B-1 Fuel Injector Circuit Check 6-1- 98. . .
Table B-2 Fuel Pump and Its Circuit
Check 6-1- 99. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table B-3 Fuel Pressure Check 6-1-101. . . . . . . .
Table B-4 A / C Signal Circuits Check 6-1-103. . .
Table B-5 PSP Switch Signal Circuit
Check 6-1-104. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table B-6 Electric Load Signal Circuit
Check 6-1-105. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table B-7 Radiator Cooling Fan Control
System Check 6-1-106. . . . . . . . . . . . . . . . . . . . .
SPECIAL TOOLS6-1-108 . . . . . . . . . . . . . . . . . . . . .
Page 160 of 557
HOSE CONNECTION
Clamp securely at a position 3 to
7mm (0.12–0.27 in.) from hose end. With short pipe, fit hose as far as it reaches pipe joint as
shown.
Hose
Pipe
ClampClamps securely at a position
3 to 7 mm (0.12–0.27 in.)
from hose end.
With following type pipe, fit hose as far as its peripheral
projection as shown.
Clamp securely at a position
3 to 7 mm (0.12–0.27 in.)
from hose end.
With bent pipe, fit hose as its bent part as shown or till pipe
is about 20 to 30 mm (0.79–1.18 in.) into the hose.
Clamp securely at a
position 3 to 7 mm
(0.12–0.27 in.) from hose
end.
With straight pipe, fit hose till pipe is, about 20 to 30 mm
(0.79–1.18 in.) into the hose.
Hose
20 to 30 mm
(0.79–1.18 in.)
Clamp
6-1-4 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
PRECAUTION ON FUEL SYSTEM SERVICE
Work must be done with no smoking, in a well-ventilated area and
away from any open flames.
As fuel feed line (between fuel pump and fuel delivery pipe) is still
under high fuel pressure even after engine was stopped, loosen-
ing or disconnecting fuel feed line directly may cause dangerous
spout of fuel to occur where loosened or disconnected.
Before loosening or disconnecting fuel feed line, make sure to re-
lease fuel pressure according to “FUEL PRESSURE RELIEF
PROCEDURE”. A small amount of fuel may be released after the
fuel line is disconnected. In order to reduce the chance of person-
al injury, cover the fitting to be disconnected with a shop cloth. Put
that cloth in an approved container when disconnection is com-
pleted.
Never run engine with fuel pump relay disconnected when engine
and exhaust system are hot.
Fuel or fuel vapor hose connection varies with each type of pipe.
When reconnecting fuel or fuel vapor hose, be sure to connect
and clamp each hose correctly referring to left figure Hose Con-
nection.
After connecting, make sure that it has no twist or kink.
When installing injector or fuel delivery pipe, lubricate its O-ring
with spindle oil or gasoline.
When connecting fuel pipe flare nut, first tighten flare nut by hand
and then tighten it to specified torque.
Page 176 of 557
6-1-20 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
ENGINE BASIC INSPECTION
This check is very important for troubleshooting when ECM (PCM) has detected no DTC and no abnormality has
been found in visual inspection.
Follow the flow table carefully.
STEP
ACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check battery voltage.
Is it 11 V or more?Go to Step 3.Charge or replace
battery.
3Is engine cranked?Go to Step 4.Go to “DIAGNOSIS”
in Section 6G.
4Does engine start?Go to Step 5.Go to Step 7.
5Check idle speed as follows:
1) Warm up engine to normal operating temp.
2) Shift transmission to neutral position for M / T
(“P” position for A / T).
3) All of electrical loads are switched off.
4) Check engine idle speed with scan tool.
See Fig. 1.
Is it 700 – 800 r / min?Go to Step 6.“ENGINE DIAGNO-
SIS TABLE” in this
section.
6Check ignition timing as follows:
1) Using SUZUKI scan tool, select “MISC” mode on
SUZUKI scan tool and fix ignition timing to initial
one. See Fig. 2.
2) Remove air cleaner bolt and shift air cleaner
position to observe ignition timing.
3) Using timing light (1), check initial ignition timing.
See Fig. 3.
Is it 5 ± 3 BTDC at specified idle speed?“ENGINE DIAGNO-
SIS TABLE” in this
section.Check ignition control
related parts referring
to Section 6F1.
7Check fuel supply as follows:
1) Check to make sure that enough fuel is filled in fuel
tank.
2) Turn ON ignition switch for 2 seconds and then
OFF. See Fig. 4.
Is fuel return pressure (returning sounds) felt from fuel
feed hose (1) when ignition switch is turned ON?Go to Step 9.Go to Step 8.
8Check fuel pump for operating.
1) Was fuel pump operating sound heard from fuel
filler for about 2 seconds after ignition switch ON
and stop?Go to “DIAG. FLOW
TABLE B-3”.Go to “DIAG. FLOW
TABLE B-2”.
9Check ignition spark as follows:
1) Disconnect injector couplers.
2) Remove spark plugs and connect them to high
tension cords.
3) Ground spark plugs.
4) Crank engine and check if each spark plug sparks.
Is it in good condition?Go to Step 10.Go to “DIAGNOSIS”
in Section 6F1.
10Check fuel injector for operation as follows:
1) Install spark plugs and connect injector
connectors.
2) Using sound scope (1), check operating sound of
each injector (2) when cranking engine. See Fig. 5.
Was injector operating sound heard from all
injectors?“ENGINE DIAGNO-
SIS TABLE” in this
section.Go to “DIAG. FLOW
TABLE B-1”.
Page 180 of 557
6-1-24 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
ConditionPossible CauseReferring Item
OverheatingInoperative thermostat
Poor water pump performance
Clogged or leaky radiator
Improper engine oil grade
Clogged oil filter or oil strainer
Poor oil pump performance
Faulty radiator fan control system
Dragging brakes
Slipping clutch
Blown cylinder head gasketThermostat in Section 6B
Water pump in Section 6B
Radiator in Section 6B
Engine oil and oil filter change in
Section 0B
Oil pressure check in Section 6A1
Oil pressure check in Section 6A1
Radiator fan control system in
Section 6E2
Trouble diagnosis in Section 5
Trouble diagnosis in Section 7C
Cylinder head in Section 6A1
Poor gasoline
mileageIgnition system out of order
Leaks or loose connection of high-tension cord
Faulty spark plug (improper gap, heavy deposits
and burned electrodes, etc.)
Engine and emission control system out of
order
Malfunctioning EGR valve
High idle speed
Poor performance of TP sensor, ECT sensor or
MAP sensor
Faulty EGR valve
Faulty fuel injector(s)
Faulty ECM (PCM)
Low compression
Others
Poor valve seating
Dragging brakes
Slipping clutch
Thermostat out of order
Improper tire pressure
High-tension cords in Section 6F1
Spark plugs in Section 6F1
EGR system in Section 6E2
Refer to item “Improper engine
idle speed” previously outlined
TP sensor, ECT sensor or MAP
sensor in Section 6E2
EGR system in Section 6E2
Diagnostic Flow Table B-1
Previously outlined
Valves inspection in Section 6A1
Trouble diagnosis in Section 5
Trouble diagnosis in Section 7C
Thermostat in Section 6B
Refer to Section 3F
Excessive engine
oil consumptionOil leakage
Blown cylinder head gasket
Leaky camshaft oil seals
Oil entering combustion chamber
Sticky piston ring
Worn piston and cylinder
Worn piston ring groove and ring
Improper location of piston ring gap
Worn or damaged valve stem seal
Worn valve stem
Cylinder head in Section 6A1
Camshaft in Section 6A1
Piston cleaning in Section 6A1
Pistons and cylinders inspection
in Section 6A1
Pistons inspection in Section 6A1
Pistons assembly in Section 6A1
Valves removal and installation in
Section 6A1
Valves inspection in Section 6A1
Page 181 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-25
ConditionPossible CauseReferring Item
Engine hesitates
(Momentary lack of
response as
accelerator is
depressed.
Can occur at all
vehicle speeds.
Usually most severe
when first trying to
make vehicle move,
as from a stop sign.)Ignition system out of order
Spark plug faulty or plug gap out of adjustment
Leaky high-tension cord
Fuel system out of order
Fuel pressure out of specification
Engine and emission control system out of
order
Malfunctioning EGR valve
Poor performance of TP sensor, ECT sensor or
MAP sensor
Faulty fuel injector
Faulty ECM (PCM)
Engine overheating
Low compression
Spark plugs in Section 6F1
High-tension cords in Section 6F1
Diagnostic Flow Table B-3
EGR system in section 6E2
TP sensor, ECT sensor or MAP
sensor in Section 6E2
Diagnostic Flow Table B-1
Refer to “Overheating” section
Previously outlined
Surge
(Engine power
variation under
steady throttle or
cruise.
Feels like vehicle
speeds up and down
with no change in
accelerator pedal.)Ignition system out of order
Leaky or loosely connected high-tension cord
Faulty spark plug (excess carbon deposits,
improper gap, and burned electrodes, etc.)
Fuel system out of order
Variable fuel pressure
–Kinky or damaged fuel hose and lines
–Faulty fuel pump (clogged fuel filter)
Engine and emission control system out of
order
Malfunctioning EGR valve
Poor performance of MAP sensor
Faulty fuel injector
Faulty ECM (PCM)
High-tension cords in Section 6F1
Spark plugs in Section 6F1
Diagnostic Flow Table B-3
EGR system in Section 6E2
MAP sensor in Section 6E2
Diagnostic Flow Table B-1
Excessive
detonation
(Engine makes
continuously
sharp metallic
knocks that change
with throttle opening.
Sounds like pop corn
popping.)Engine overheating
Ignition system out of order
Faulty spark plug
Loose connection of high-tension cord
Fuel system out of order
Clogged fuel filter (faulty fuel pump) or fuel lines
Air inhaling from intake manifold or throttle body
gasket
Engine and emission control system out of
order
Malfunctioning EGR valve
Poor performance of ECT sensor or MAP sensor
Faulty fuel injector(s).
Faulty ECM (PCM)
Excessive combustion chamber depositsRefer to “Overheating” section
Spark plugs in Section 6F1
High-tension cords in Section 6F1
Diagnostic Flow Table B-1 or B-2
EGR system in Section 6E2
ECT sensor or MAP sensor in
Section 6E2
Diagnostic Flow Table B-1
Piston and cylinder head cleaning
in Section 6A1