air condition SUZUKI SWIFT 2000 1.G SF310 Service Repair Manual
Page 184 of 557
6-1-28 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
ConditionPossible CauseReferring Item
Excessive
hydrocarbon (HC)
emission or carbon
monoxide (CO)Ignition system out of order
Faulty spark plug
Leaky or disconnected high-tension cord
Faulty ignition coil with ignitor
Low compression
Engine and emission control system out of
order
Lead contamination of three way catalytic
converter
Faulty evaporative emission control system
Fuel pressure out of specification
Closed loop system (A / F feed back
compensation) fails
–Faulty TP sensor
–Poor performance of ECT sensor or MAP
sensor
Faulty injector(s)
Faulty ECM (PCM)
Others
Engine not at normal operating temperature
Clogged air cleaner
Vacuum leaks
Spark plugs in Section 6F1
High-tension cords in Section 6F1
Ignition coil assembly in Section
6F1
Refer to “Low compression”
section
Check for absence of filler neck
restrictor
EVAP control system in Section
6E2
Diagnostic Flow Table B-3
TP sensor in Section 6E2
ECT sensor or MAP sensor in
Section 6E2
Diagnostic Flow Table B-1
Excessive nitrogen
oxides (NOx)
emissionIgnition system out of order
Improper ignition timing
Engine and emission control system out of
order
Lead contamination of catalytic converter
Faulty EGR system
Fuel pressure out of specification
Closed loop system (A / F feed back
compensation) fails
–Faulty TP sensor
–Poor performance of ECT sensor or MAP
sensor
Faulty injector(s)
Faulty ECM (PCM)
See section 6F1
Check for absence of filler neck
restrictor.
EGR system in Section 6E2
Diagnostic Flow Table B-3
TP sensor in Section 6E2
ECT sensor or MAP sensor in
Section 6E2
Diagnostic Flow Table B-1
Page 185 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-29
SCAN TOOL DATA
As the data values given below are standard values estimated on the basis of values obtained from the normally
operating vehicles by using a scan tool, use them as reference values. Even when the vehicle is in good condition,
there may be cases where the checked value does not fall within each specified data range. Therefore, judgment
as abnormal should not be made by checking with these data alone.
Also, conditions in the below table that can be checked by the scan tool are those detected by ECM (PCM) and
output from ECM (PCM) as commands and there may be cases where the engine or actuator is not operating (in
the condition) as indicated by the scan tool. Be sure to use the timing light to check the ignition timing.
NOTE:
With the generic scan tool, only star () marked data in the table below can be read.
When checking the data with the engine running at idle or racing, be sure to shift M / T gear to the neutral
gear position and A / T gear to the “Park” position and pull the parking brake fully. Also, if nothing or “no
load” is indicated, turn OFF A / C, all electric loads, P / S and all the other necessary switches.
SCAN TOOL DATAVEHICLE CONDITIONNORMAL CONDITION /
REFERENCE VALUES
FUEL SYSTEM B1 (FUEL
SYSTEM STATUS)At specified idle speed after warming upCLOSED
(closed loop)
CALC LOAD
(CALCULATED LOADAt specified idle speed with no load after
warming up3 – 9%(
VALUE)At 2500 r / min with no load after warming up12 – 17%
COOLANT TEMP.
(ENGINE COOLANT
TEMP.)
At specified idle speed after warming up85 – 100C,
185 – 212F
SHORT FT BI (SHORT
TERM FUEL TRIM)At specified idle speed after warming up–20 – +20%
LONG FT BI (LONG
TERM FUEL TRIM)At specified idle speed after warming up–15 – +15%
MAP (INTAKE
MANIFOLD ABSOLUTE
PRESSURE)At specified idle speed with no load after
warming up24 – 37 kPa,
180 – 280 mmHg
ENGINE SPEEDAt idling with no load after warming up
Desired
idle speed
± 50 r / min
VEHICLE SPEEDAt stop0 km / h, 0 MPH
IGNITION ADVANCE
(IGNITION TIMING
ADVANCE FOR NO.1
CYLINDER)
At specified idle speed with no load after
warming up9 – 15 BTDC
INTAKE AIR TEMP.At specified idle speed after warming upAmbient +35C (95F)
temp.–5C (23F)
MAF (MASS AIR FLOW
RATE)
At specified idle speed with no load after
warming up0 – 4 gm / sec
RATE)At 2500 r / min with no load after warming up4 – 9 gm / sec
THROTTLE POS
(ABSOLUTE
Ignition switch
ON / engineThrottle valve fully closed7 – 18%
(ABSOLUTE
THROTTLE POSITION)
ON / engine
stoppedThrottle valve fully open70 – 100%
O2S B1 S1 (HEATED
OXYGEN SENSOR-1)At specified idle speed after warming up0.05 – 0.95 V
O2S B1 S2 (HEATED
OXYGEN SENSOR-2)When engine is running at 2000 r / min. for
3 min or longer after warming up.0 – 0.95 V
O2S FT B1 S1At specified idle speed after warning up–20 – +20%
DIS. WITH MIL ON————
Page 186 of 557
6-1-30 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
SCAN TOOL DATACONDITIONNORMAL CONDITION /
REFERENCE VALUES
DESIRED IDLE
(DESIRED IDLE SPEED)At idling with no load after warming up, M / T
at neutral, A / T at “P” range750 r / min
TP SENSOR VOLT
(THROTTLE POSITIONIgnition switch
ON / engine
Throttle valve fully closedMore than 0.2 V(
SENSOR OUTPUT
VOLTAGE)ON / engine
stoppedThrottle valve fully openLess than 4.8 V
INJ PULSE WIDTH
(FUEL INJECTION
At specified idle speed with no load after
warming up2.0 – 3.6 msec.(
PULSE WIDTH)At 2500 r / min with no load after warming up2.0 – 3.6 msec.
IAC FLOW DUTY (IDLE
AIR CONTROL FLOW
DUTY)
At idling with no load after warming up5 – 25%
TOTAL FUEL TRIMAt specified idle speed after warming up–35 – +35%
BATTERY VOLTAGEIgnition switch ON / engine stop10 – 14 V
CANIST PRG DUTY
(EVAP CANISTER
PURGE FLOW DUTY)
––––––––––––0 – 100%
CLOSED THROT POS
(CLOSED THROTTLEThrottle valve at idle positionON(CLOSED THROTTLE
POSITION)Throttle valve opens larger than idle positionOFF
FUEL CUTWhen engine is at fuel cut conditionONFUEL CUTOther than fuel cut conditionOFF
RADIATOR FAN
(RADIATOR FANIgnition switch
ON
Engine coolant temp.:
Lower than 92.5C
Lower than (199F)
OFF
(
CONTROL RELAY)ONEngine coolant temp.:
97.5C (208F) or higherON
ELECTRIC LOAD
Ignition switch ON / Headlight, small light,
heater fan and rear window defogger all
turned OFF
OFF
ELECTRIC LOADIgnition switch ON / Headlight, small light,
heater fan or rear window defogger turned
ON
ON
A / C SWITCH
Engine running after warming up, A / C not
operatingOFF
A/C SWITCHEngine running after warming up, A / C
operatingON
PNP SIGNAL (PARK /
NEUTRAL POSITIONIgnition switch
Selector lever in “P” or “N”
positionP / N Range
NEUTRAL POSITION
SIGNAL) A / T only
g
ONSelector lever in “R”, “D”, “2”
or “L” positionD Range
EGR VALVEAt specified idle speed after warming up0%
FUEL TANK LEVEL––––––––––––0 – 100%
BAROMETRIC PRESS––––––––––––Display the barometric pressure
FUEL PUMP
Within 3 seconds after ignition switch ON or
engine runningON
Engine stop at ignition switch ON.OFF
BRAKE SWIgnition switchBrake pedal is depressingONBRAKE SWg
ONBrake pedal is releasingOFF
BLOWER FANIgnition switchBlower fan switch ONONBLOWER FA Ng
ONBlower fan switch OFFOFF
A / C MAG CLUTCHIgnition switchA / C switch ONONA/C MAG CLUTCHg
ONA / C switch OFFOFF
Page 190 of 557
6-1-34 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
CONNECTOR “C01”
TERMINAL
NO.CIRCUITNORMAL
VOLTAGECONDITION
1Ground——
2Ground——
3Ground——
4EVAP canister purge valve10 – 14 VIgnition switch ON
Indication
deflection
5Power steering switch
deflection
repeated
0 V and
Ignition switch ON
0 V and
10 – 14 V
6Idle air control valve0 – 13 VAt specified idle speed after engine warmed
up
7Heater of HO2S-110 – 14 VIgnition switch ON
8Fuel injector NO.410 – 14 VIgnition switch ON
9Fuel injector NO.110 – 14 VIgnition switch ON
10Sensor ground——
11Camshaft position sensor0 – 0.8 V
and 4 – 6 VIgnition switch ON
12Blank——
13Heater oxygen sensor-1Refer to DTC P0130 diag. flow table
14Engine coolant temp. sensor0.55 – 0.95 VIgnition switch ON
Engine coolant temp.: 80C (176F)
15Intake air temp. sensor2.0 – 2.7 VIgnition switch ON
Intake air temp.: 20C (68F)
16Blank——
17Electric load signal (+)
0 – 1 VIgnition switch ON
Small light and rear defogger OFF
17Electric load signal (+)
10 – 14 VIgnition switch ON
Small light and rear defogger ON
18Blank——
19Ignition coil #2——
20Ignition coil #1——
21Fuel injector NO.210 – 14 VIgnition switch ON
22Power source for sensor4.75 – 5.25 VIgnition switch ON
23Crankshaft position sensor (+)——
24Crankshaft position sensor (–)——
25Blank——
26Manifold absolute pressure
sensor3.3 – 4.0 VIgnition switch ON
Barometric pressure: 100 kPa (760 mmHg)
27Blank——
28Immobilizer indicator lamp0 – 2 VIgnition switch ON28Immobilizer indicator lamp10 – 14 VWhen engine running
29Blank——
30Blank——
31Fuel injector NO.310 – 14 VIgnition switch ON
Page 202 of 557
6-1-46 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
IAT sensor
To other sensors
DTC P0110 INTAKE AIR TEMP. (IAT) CIRCUIT MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
Low intake air temperature (High voltage-High resistance)
High intake air temperature (Low voltage-Low resistance)“Gr / R” circuit open or shorted to power
“G” circuit open
IAT sensor malfunction
ECM (PCM) malfunction
NOTE:
When DTC P0115 and P0120 are indicated together, it is possible that “G” circuit is open.
Before inspecting, be sure to check that ambient temperature is higher than –40C (–40F).
DTC CONFIRMATION PROCEDURE
1) Clear DTC, start engine and keep it at idle for 1 min.
2) Select “DTC” mode no scan tool and check DTC.
Page 208 of 557
6-1-52 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
Throttle
position
sensorTo other sensors
To other sensors
DTC P0121 THROTTLE POSITION CIRCUIT RANGE / PERFORMANCE
PROBLEM
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
After engine warmed up.
While vehicle running at specified engine speed.
No change in intake manifold pressure (constant throttle opening)
Difference between actual throttle opening (detected from TP sensor)
and opening calculated by ECM (PCM) (Obtained on the basis of
engine speed and intake manifold pressure) in larger than specified
value.
2 driving cycle detection logic, continuous monitoringTP sensor malfunction
High resistance in the circuit
ECM (PCM) malfunction
DTC CONFIRMATION PROCEDURE
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester, on a level road.
1) Turn ignition switch OFF. Clear DTC with ignition switch ON, check vehicle and environmental condition for:
–Indication of fuel level meter in combination meter: 1 / 4 or more
–Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
–Intake air temp.: between –10C and 80C (14F and 176F)
–Engine coolant temp.: 70C, 158F or higher
2) Warm up engine to normal operating temperature.
3) Increase vehicle speed to 30 – 40 mph, 50 – 60 km / h in 3rd gear or “D” range and hold throttle valve at that
opening position for 1 min.
4) Stop vehicle.
5) Check DTC in “DTC” mode and pending DTC in “ON BOARD TEST” or “PENDING DTC” mode.
Page 210 of 557
6-1-54 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
Ignition
switch
Main
fuse
To HO2S-2 heaterTo other sensor
Heater Fuse box
DTC P0130 HEATED OXYGEN SENSOR (HO2S) CIRCUIT MALFUNCTION
(SENSOR-1)
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
When running at idle speed after engine warmed up
and running at specified vehicle speed, HO2S-1
output voltage does not go 0.3 V below or over
0.6 V.
2 driving cycle detection logic, Monitoring once / 1
driving.Heated oxygen sensor-1 malfunction
“G” or “R” circuit open (poor connection) or short
DTC CONFIRMATION PROCEDURE
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester.
1) Turn ignition switch OFF. Clear DTC with ignition switch ON, check vehicle and environmental condition for:
–Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
–Intake air temp.: between –10C and 80C (14F and 176F)
2) Warm up engine to normal operating temperature.
3) Drive vehicle at 38 – 50 mph, 60 – 80 km / h for 2 min.
4) Stop vehicle and run engine at idle for 2 min.
5) Check DTC in “DTC” mode and pending DTC in “ON BOARD TEST” or “PENDING DTC” mode.
Page 217 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-61
Usual driving: Driving at 30 – 40 mph, 50 – 60 km/h including short stop according to traffic signal. (under driving condition other than high-load,
high-engine speed, rapid accelerating and decelerating)1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)and 50 mph
(80 km / h)
Above 20 mph
(32 km / h) Usual driving
DTC CONFIRMATION PROCEDURE
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester, on a level road.
1) Turn ignition switch OFF.
Clear DTC with ignition switch ON, check vehicle and environmental condition for:
–Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
–Intake air temp.: –10C, 14F or higher
–No exhaust gas leakage and loose connection
2) Warm up engine to normal operating temperature.
3) Drive vehicle under usual driving condition for 5 min. and check HO2S-2 output voltage and “short term fuel
trim” with “Data List” mode on scan tool, and write it down.
4) Stop vehicle (don’t turn ignition switch OFF).
5) Increase vehicle speed to higher than 20 mph, 32 km / h and then stop vehicle.
6) Repeat above steps 5) 4 times.
7) Increase vehicle speed to about 50 mph (80 km / h) in 3rd gear or 2 range.
8) Release accelerator pedal and with engine brake applied, keep vehicle coasting (fuel cut condition) for 10sec.
or more.
9) Stop vehicle (don’t turn ignition switch OFF) and run engine at idle for 2 min.
After this step 9), if “Oxygen Sensor Monitoring TEST COMPLETED” is displayed in “READINESS TESTS”
mode and DTC is not displayed in “DTC” mode, confirmation test is completed.
If “TEST NOT COMPLTD” is still being displayed, proceed to next step 10).
10) Drive vehicle under usual driving condition for 10 min. (or vehicle is at a stop and run engine at idle for 10 min.
or longer)
11) Stop vehicle (don’t turn ignition switch OFF). Confirm test results according to “Test Result Confirmation Flow
Table” in “DTC CONFIRMATION PROCEDURE” of DTC P0420.
Page 218 of 557
6-1-62 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check exhaust system for leakage, loose
connection and damage.
Is it good condition?Go to Step 3.Repair or replace.
3Check HO2S-2 and Its Circuit.
Was HO2S-2 output voltage indicated on scan
tool in step 3) of DTC confirmation test less
than 1.275 V?Go to Step 4.“G” or “R” circuit open or
HO2S-2 malfunction.
4Check Short Term Fuel Trim.
Did short term fuel trim very within –20 – + 20%
range in step 3) of DTC confirmation test?Check “R” and “G” wire
for open and short, and
connection for poor
connection. If wire and
connection are OK,
replace HO2S-2.Check fuel system. Go
to DTC P0171 / P0172
Diag. Flow Table.
Page 221 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-65
Ignition
switch
Main
fuseMain relay
To ignition
switchTo other sensor Relay boxNo.1 injector
No.2 injector
No.3 injector
No.4 injector Fuse box
Signal to decrease amount of fuel injection
Signal to increase amount of fuel injection
High voltage
Low voltage
A / F mixture
becomes
richerOxygen
concentration
decreases
A / F mixture Oxygen
Fuel injectorSensed
information
A / F mixture
Exhaust gas
becomes
leanerconcentration
increases
DTC P0171 FUEL SYSTEM TOO LEAN
DTC P0172 FUEL SYSTEM TOO RICH
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
When following condition occurs while engine running under
closed loop condition.
–Air / fuel ratio too lean
Total fuel trim (short and long terms added) is
more than 30%
or
–Air / fuel ratio too rich
(Total fuel trim is less than –30%)
2 driving cycle detection logic, continuous monitoring.Vacuum leaks (air drawn in).
Exhaust gas leakage.
Heated oxygen sensor-1 circuit
malfunction.
Fuel pressure out of specification.
Fuel injector malfunction (clogged or
leakage).
MAP sensor poor performance.
ECT sensor poor performance.
IAT sensor poor performance.
TP sensor poor performance.
EVAP control system malfunction.
PCV valve malfunction.