VACUUM SUZUKI SWIFT 2000 1.G SF310 Service Workshop Manual
Page 12 of 557
0A-8 GENERAL INFORMATION
When disconnecting vacuum hoses, attach a tag describing
the correct installation positions so that the hoses can be re-
installed correctly.
After servicing fuel, oil, coolant, vacuum, exhaust or brake
systems, check all lines related to the system for leaks.
For vehicles equipped with fuel injection systems, never dis-
connect the fuel line between the fuel pump and injector
without first releasing the fuel pressure, or fuel can be
sprayed out under pressure.
When performing a work that produces a heat exceeding
80C in the vicinity of the electrical parts, remove the heat
sensitive electrical part(s) beforehand.
Use care not to expose connectors and electrical parts to wa-
ter which will be a cause of a trouble.
Page 27 of 557
GENERAL INFORMATION 0A-23
L
LH : Left Hand
LSPV : Load Sensing Proportioning
Valve
M
MAF Sensor : Mass Air Flow Sensor (Air Flow
Sensor, AFS, Air Flow Meter,
AFM)
MAP Sensor : Manifold Absolute Pressure
Sensor (Pressure Sensor, PS)
Max : Maximum
MFI : Multiport Fuel Injection
(Multipoint Fuel Injection)
Min : Minimum
MIL : Malfunction Indicator Lamp
M / T : Manual Transmission
N
NOx : Nitrogen Oxides
O
OBD : On-Board Diagnostic System
(Self-Diagnosis Function)
O / D : Overdrive
OHC : Over Head Camshaft
P
PNP : Park / Neutral Position
P / S : Power Steering
PSP Switch : Power Steering Pressure Switch
(P / S Pressure Switch)
PCM : Powertrain Control Module
PCV : Positive Crankcase Ventilation
R
RH : Right Hand
S
SAE : Society of Automotive
Engineers
SDM : Sensing and Diagnostic Module
(Air Bag Controller, Air Bag
Control Module)
SFI : Sequential Multiport Fuel
Injection
SOHC : Single Over Head Camshaft
T
TBI : Throttle Body Fuel Injection
(Single-Point Fuel Injection,
SPI)
TCC : Torque Converter Clutch
TCM : Transmission Control Module
(A / T Controller, A / T Control
Module)
TP Sensor : Throttle Position Sensor
TVV : Thermal Vacuum Valve
(Thermal Vacuum Switching
Valve, TVSV, Bimetal Vacuum
Switching Valve, BVSV)
TWC : Three-Way Catalytic Converter
(Three-Way Catalyst)
2WD : 2 Wheel Drive
V
VIN : Vehicle Identification Number
VSS : Vehicle Speed Sensor
W
WU-OC : Warm Up Oxidation Catalytic
Converter
WU-TWC : Warm Up Three-Way Catalytic
Converter
Page 66 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-15
DIAGNOSTIC TROUBLE CODE (DTC) TABLE
DTC
NO.DETECTING ITEMDETECTING CONDITION
(DTC will set when detecting:)MIL
P0105Manifold absolute pressure
circuit malfunction
Low pressure-high vacuum-low voltage
(or MAP sensor circuit shorted to ground)
High pressure-low vacuum-high voltage
(or MAP sensor circuit open)
1 driving cycle
P0110Intake air temp. circuit
malfunctionIntake air temp. circuit low input
Intake air temp. circuit high input1 driving cycle
P0115Engine coolant temp. circuit
malfunctionEngine coolant temp. circuit low input
Engine coolant temp. circuit high input1 driving cycle
P0120Throttle position circuit
malfunctionThrottle position circuit low input
Throttle position circuit high input1 driving cycle
P0121Throttle position circuit
performance problemPoor performance of TP sensor2 driving cycles
P0130HO2S circuit malfunction
(Sensor-1)
Min. output voltage of HO2S-higher than
specification
Max. output voltage of HO2S-lower than
specification
2 driving cycles
P0133HO2S circuit slow response
(Sensor-1)Response time of HO2S-1 output voltage
between rich and lean is longer than
specification.
2 driving cycles
P0135HO2S heater circuit
malfunction (Sensor-1)Terminal voltage is lower than specification
at heater OFF or it is higher at heater ON.2 driving cycles
P0136HO2S circuit malfunction
(Sensor-2)Max. voltage of HO2S-2 is lower than
specification or its min. voltage is higher than
specification
2 driving cycles
P0141HO2S heater circuit
malfunction (Sensor-2)Terminal voltage is lower than specification
at heater OFF or it is higher at heater ON.
(or heater circuit or short)
2 driving cycles
P0171Fuel system too lean
Short term fuel trim or total fuel trim (short
and long terms added) is larger than
specification for specified time or longer.
(fuel trim toward rich side is large.)
2 driving cycles
P0172Fuel system too rich
Short term fuel trim or total fuel trim (short
and long term added) is smaller than
specification for specified time or longer.
(fuel trim toward lean side is large.)
2 driving cycles
P0300
P0301
P0302
Random misfire detected
Cylinder 1 misfire detected
Cylinder 2 misfire detected
Misfire of such level as to cause damage to
three way catalystMIL flashing
during misfire
detection
P0302
P0303
Cylinder 2 misfire detected
Cylinder 3 misfire detectedMisfire of such level as to deteriorate emission
but not to cause damage to three way catalyst2 driving cycles
Page 70 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-19
Operation
VISUAL INSPECTION
Visually check following parts and systems.
INSPECTION ITEM
REFERRING SECTION
Engine oil ––––– level, leakage
Engine coolant ––––– level, leakage
Fuel ––––– level, leakage
A / T fluid ––––– level, leakage
Air cleaner element ––––– dirt, clogging
Battery ––––– fluid level, corrosion of terminal
Water pump belt ––––– tension, damage
Throttle cable ––––– play, installation
Vacuum hoses of air intake system ––––– disconnection,
looseness, deterioration, bend
Connectors of electric wire harness ––––– disconnection, friction
Fuses ––––– burning
Parts ––––– installation, bolt ––––– looseness
Parts ––––– deformation
Other parts that can be checked visually
Also check following items at engine start, if possible
Malfunction indicator lamp
Charge warning lamp
Engine oil pressure warning lamp
Engine coolant temp. meter
Fuel level meter
Tachometer, if equipped
Abnormal air being inhaled from air intake system
Exhaust system ––––– leakage of exhaust gas, noise
Other parts that can be checked visuallySection 0B
Section 0B
Section 0B
Section 0B
Section 0B
Section 0B
Section 6E1
Section 8
Section 6
Section 6H
Section 8 (section 6 for pressure check)
Section 8
Section 8
Page 78 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-27
ConditionPossible CauseReferring Item
Improper engine
idling or engine
fails to idleIgnition system out of order
Faulty spark plug
Leaky or disconnected high-tension cord
Faulty ignition coil with ignitor
Fuel system out of order
Fuel pressure out of specification
Leaky manifold, throttle body, or cylinder head
gasket
Engine and emission control system out of
order
Faulty idle control system
Faulty evaporative emission control system
Faulty fuel injector
Faulty fuel injector resistor
Poor performance of ECT sensor, TP sensor or
MAP sensor
Faulty ECM (PCM)
Engine overheating
Low compression
Others
Loose connection or disconnection of vacuum
hoses
Malfunctioning PCV valve
Spark plugs in Section 6F
High-tension cords in Section 6F
Ignition coil in Section 6F
Diagnostic Flow Table B-3 in
Section 6
Diagnostic Flow Table P0505
EVAP control system in Section
6E
Diagnostic Flow Table B-1
Fuel injector resistor in Section 6E1
ECT sensor, TP sensor or MAP
sensor in Section 6E1
Refer to “Overheating” section
Previously outlined
PCV system in Section 6E1
Page 79 of 557
6-28 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
ConditionPossible CauseReferring Item
Excessive
hydrocarbon (HC)
emission or carbon
monoxide (CO)Ignition system out of order
Faulty spark plug
Leaky or disconnected high-tension cord
Faulty ignition coil with ignitor
Low compression
Engine and emission control system out of
order
Lead contamination of three way catalytic
converter
Faulty evaporative emission control system
Fuel pressure out of specification
Closed loop system (A / F feed back
compensation) fails
–Faulty TP sensor
–Poor performance of ECT sensor or MAP
sensor
Faulty injector
Faulty fuel injector resistor
Faulty ECM (PCM)
Others
Engine not at normal operating temperature
Clogged air cleaner
Vacuum leaks
Spark plugs in Section 6F
High-tension cords in Section 6F
Ignition coil assembly in Section
6F
Refer to “Low compression”
section
Check for absence of filler neck
restrictor
EVAP control system in Section
6E1
Diagnostic Flow Table B-3
TP sensor in Section 6E1
ECT sensor or MAP sensor in
Section 6E1
Diagnostic Flow Table B-1
Fuel injector resistor in Section 6E1
Excessive nitrogen
oxides (NOx)
emissionIgnition system out of order
Improper ignition timing
Engine and emission control system out of
order
Lead contamination of catalytic converter
Fuel pressure out of specification
Closed loop system (A / F feed back
compensation) fails
–Faulty TP sensor
–Poor performance of ECT sensor or MAP
sensor
Faulty injector
Faulty fuel injector resistor
Faulty ECM (PCM)
See section 6F1
Check for absence of filler neck
restrictor.
Diagnostic Flow Table B-3
TP sensor in Section 6E1
ECT sensor or MAP sensor in
Section 6E1
Diagnostic Flow Table B-1
Fuel injector resistor in Section 6E1
Page 95 of 557
MAP sensorTo TP sensor
To other sensors
6-44 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
DTC P0105 MANIFOLD ABSOLUTE PRESSURE (MAP) CIRCUIT
MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
MAP: 5 kPa, 37.5 mmHg or less
(Low pressure – High vacuums – Low voltage)
or
MAP: 130 kPa, 975 mmHg or more
(High pressure – Low vacuums – High voltage)“G” circuit open
“Lg” circuit open or shorted to ground
“Lg / R” circuit open or shorted to ground
MAP sensor malfunction
ECM (PCM) malfunction
NOTE:
When DTC P0105, and / or P0120, P0510 are indicated together, it is possible that “Lg” circuit is open.
When DTC P0105, P0110, P0115 and / or P0120 are indicated together, it is possible that “G” circuit is
open.
DTC CONFIRMATION PROCEDURE
1) Clear DTC, start engine and keep it at idle for 1 min.
2) Select “DTC” mode on scan tool and check DTC.
Page 115 of 557
6-64 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
Sensed
information
Exhaust
gasFuel
injector
A/F
mixtureSignal to decrease amount of fuel injection
Signal to increase amount of fuel injection
High voltage
Low voltage
INJECTORHEATED
OXYGEN
SENSOR-1
A / F mixture
becomes
richerOxygen
concentration
decreases
A / F mixture
becomes
leanerOxygen
concentration
increases ECM
(PCM)
ECM
(PCM)
Main
fuseIgnition switch“IG COIL METER”
Main relayTo other circuits
Injector resistor
To other
sensorFuel
injector
Heated oxygen sensor-1
HO2S-1
DTC P0171 FUEL SYSTEM TOO LEAN
DTC P0172 FUEL SYSTEM TOO RICH
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
When following condition occurs while engine running under
closed loop condition.
–Air / fuel ratio too lean
Total fuel trim (short and long terms added) is
more than 30%
or
–Air / fuel ratio too rich
(Total fuel trim is less than –30%)
2 driving cycle detection logic, continuous monitoring.Vacuum leaks (air drawn in).
Exhaust gas leakage.
Heated oxygen sensor-1 circuit
malfunction.
Fuel pressure out of specification.
Fuel injector malfunction (clogged or
leakage).
MAP sensor poor performance.
ECT sensor poor performance.
IAT sensor poor performance.
TP sensor poor performance.
EVAP control system malfunction.
PCV valve malfunction.
Page 117 of 557
6-66 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE
DIAG. FLOW
TABLE”.
2Is there DTC(s) other than fuel system
(DTC P0171 / P0172)?Go to applicable
DTC Diag. Flow
Table.Go to Step 3.
3Check HO2S-1 Output Voltage.
1) Connect scan tool to DLC with ignition switch OFF.
2) Warm up engine to normal operating temperature and keep
it at 2000 r / min. for 60 sec.
3) Repeat racing engine (Repeat depressing accelerator pedal
5 to 6 times continuously and take foot off from pedal to
enrich and enlean A / F mixture). See Fig. 1.
Does HO2S-1 output voltage deflect between below 0.3 V and
over 0.6 V repeatedly?Go to Step 4.Go to DTC
P0130 Diag.
Flow Table
(HO2S-1 circuit
check).
4Check Fuel Pressure (Refer to section 6E1 for details).
1) Release fuel pressure from fuel feed line.
2) Install fuel pressure gauge.
3) Check fuel pressure. See Fig. 2.
With fuel pump operating
and engine at stop : 160 – 210 kPa, 1.6 – 2.1 kg / cm
2,
22.7 – 29.9 psi.
At specified idle speed : 90 – 140 kPa, 0.9 – 1.4 kg / cm
2,
12.8 – 20.0 psi.
Is measured value as specified?
Go to Step 5.Go to Diag. Flow
Table B-3 Fuel
Pressure Check.
5Check Fuel Injectors and Circuit.
1) Turn ignition switch OFF and disconnect fuel injector
connector.
2) Check for proper connection to fuel injector at each terminals.
3) If OK, then check injector resistance. See Fig. 3.
Injector resistance: 0.5 – 1.5 Ω at 20C (68F)Go to Step 6.Check injector
circuit or replace
fuel injector.
4) Connect injector, connector.
5) Check that fuel is injected out in conical shape from fuel
injector when running engine.
6) Check injector for fuel leakage after engine stop.
Fuel leakage: Less than 1 drop / min.
Is check result satisfactory?
6Check EVAP Canister Purge Valve.
1) Disconnect purge hose (1) from EVAP canister.
2) Place finger against the end of disconnected hose.
3) Check that vacuum is not felt there when engine is cool and
running at idle. See Fig. 4.
Is vacuum felt?Check EVAP
control system
(See Section
6E1).Go to Step 7.
7Check intake manifold absolute pressure sensor for
performance (See DTC P0105 Diag. Flow Table).
Is it in good condition?Go to Step 8.Repair or
replace.
Page 120 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-69
Below
specified value DTC DETECTING CONDITION
POSSIBLE CAUSE
Engine under other than high revolution condition
Not on rough road
Engine speed changing rate
Manifold absolute
pressure changing rate
Throttle opening changing rate
Misfire rate per 200 or 1000 engine revolutions (how
much and how often crankshaft revolution speed
changes) is higher than specified valueEngine overheating
Vacuum leaks (air inhaling) from air intake system
Ignition system malfunction (spark plug(s), high-
tension cord(s), ignition coil assembly)
Fuel pressure out of specification
Fuel injector malfunction (clogged or leakage)
Engine compression out of specification
Valve lash (clearance) out of specification
Manifold absolute pressure sensor malfunction
Engine coolant temp. sensor malfunction
PCV valve malfunction
EVAP control system malfunction
DTC CONFIRMATION PROCEDURE
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester.
1) Turn ignition switch OFF.
2) Clear DTC with ignition switch ON.
3) Check vehicle and environmental condition for:
–Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
–Ambient temp.: –10C, 14F or higher
–Intake air temp.: 70C, 158F or lower
–Engine coolant temp.: –10 – 11 0C, 14 – 230F
4) Start engine and keep it at idle for 2 min. or more.
5) Check DTC in “DTC” mode and pending DTC in “ON BOARD TEST” or “PENDING DTC” mode.
6) If DTC is not detected at idle, consult usual driving based on information obtained in “Customer complaint analy-
sis” and “Freeze frame data check”.