throttle position sensor TOYOTA CAMRY 1994 XV10 / 4.G Wiring Diagrams User Guide
Page 201 of 307
201
PREVIOUS AUTOMATIC TRANSMISSIONS HAVE SELECTED EACH GEAR SHIFT USING MECHANICALLY CONTROLLED THROTTLE
HYDRAULIC PRESSURE, GOVERNOR HYDRAULIC PRESSURE AND LOCK±UP HYDRAULIC PRESSURE. THE ELECTRONIC
CONTROLLED TRANSMISSION, HOWEVER, ELECTRICALLY CONTROLS THE LINE PRESSURE AND LOCK±UP PRESSURE ETC.,
THROUGH THE SOLENOID VALVE. ENGINE CONTROL MODULE (ENGINE AND ELECTRONIC CONTROLLED TRANSMISSION ECU)
CONTROL OF THE SOLENOID VALVE BASED ON THE INPUT SIGNALS FROM EACH SENSOR MAKES SMOOTH DRIVING POSSIBLE BY
SHIFT SELECTION FOR EACH GEAR WHICH IS MOST APPROPRIATE TO THE DRIVING CONDITIONS AT THAT TIME.
1. GEAR SHIFT OPERATION
DURING DRIVING, THE ENGINE CONTROL MODULE (ECU) SELECTS THE SHIFT FOR EACH GEAR WHICH IS MOST APPROPRIATE TO
THE DRIVING CONDITIONS, BASED ON INPUT SIGNALS FROM THE ENGINE COOLANT TEMP. SENSOR (EFI WATER TEMP. SENSOR)
TO TERMINAL THW OF THE ENGINE CONTROL MODULE (ECU), AND ALSO THE INPUT SIGNALS TO TERMINAL NC2+ OF THE ENGINE
CONTROL MODULE (ECU) FROM THE VEHICLE SPEED SENSOR (SPEED SENSOR) DEVOTED TO THE ELECTRONIC CONTROLLED
TRANSMISSION. CURRENT IS THEN OUTPUT TO THE ELECTRONIC CONTROLLED TRANSMISSION SOLENOIDS. WHEN SHIFTING TO
1ST SPEED, CURRENT FLOWS FROM TERMINAL S1 OF THE ENGINE CONTROL MODULE (ECU) " TERMINAL 3 OF THE ELECTRONIC
CONTROLLED TRANSMISSION SOLENOIDS " GROUND, AND CONTINUITY TO THE NO. 1 SOLENOID CAUSES THE SHIFT.
FOR 2ND SPEED, CURRENT FLOWS FROM TERMINAL S1 OF THE ENGINE CONTROL MODULE (ECU) " TERMINAL 3 OF THE
ELECTRONIC CONTROLLED TRANSMISSION SOLENOIDS " GROUND, AND FROM TERMINAL S2 OF THE ENGINE CONTROL
MODULE (ECU) " TERMINAL 1 OF THE ELECTRONIC CONTROLLED TRANSMISSION SOLENOIDS " GROUND, AND CONTINUITY TO
SOLENOIDS NO. 1 AND NO. 2 CAUSES THE SHIFT.
FOR 3RD SPEED, THERE IS NO CONTINUITY TO NO. 1 SOLENOID, ONLY TO NO. 2, CAUSING THE SHIFT.
SHIFTING INTO 4TH SPEED (OVERDRIVE) TAKES PLACE WHEN THERE IS NO CONTINUITY TO EITHER NO. 1 OR NO. 2 SOLENOID.
2. LOCK±UP OPERATION
WHEN THE ENGINE CONTROL MODULE (ECU) JUDGES FROM EACH SIGNAL THAT LOCK±UP OPERATION CONDITIONS HAVE BEEN
MET, CURRENT FLOWS FROM TERMINAL SL OF THE ENGINE CONTROL MODULE (ECU) " TERMINAL 2 OF THE ELECTRONIC
CONTROLLED TRANSMISSION SOLENOID " GROUND, CAUSING CONTINUITY TO THE LOCK±UP SOLENOID AND CAUSING
LOCK±UP OPERATION.
3. STOP LIGHT SW CIRCUIT
IF THE BRAKE PEDAL IS DEPRESSED (STOP LIGHT SW ON) WHEN DRIVING IN LOCK±UP CONDITION, A SIGNAL IS INPUT TO
TERMINAL STP OF THE ENGINE CONTROL MODULE (ECU), THE ENGINE CONTROL MODULE (ECU) OPERATES AND CONTINUITY TO
THE LOCK±UP SOLENOID IS CUT.
4. OVERDRIVE CIRCUIT
*O/D MAIN SW ON
WHEN THE O/D MAIN SW IS TURNED ON (O/D OFF INDICATOR LIGHT TURNS OFF), A SIGNAL IS INPUT TO TERMINAL OD2 OF THE
ENGINE CONTROL MODULE (ECU) AND ENGINE CONTROL MODULE (ECU) OPERATION CAUSES GEAR SHIFT WHEN THE
CONDITIONS FOR OVERDRIVE ARE MET.
*O/D MAIN SW OFF
WHEN THE O/D MAIN SW IS TURNED TO OFF, THE CURRENT FLOWING THROUGH THE O/D OFF INDICATOR LIGHT FLOWS
THROUGH THE O/D MAIN SW TO GROUND. CAUSING THE INDICATOR LIGHT TO LIGHT UP. AT THE SAME TIME, A SIGNAL IS INPUT
TO TERMINAL OD2 OF THE ENGINE CONTROL MODULE (ECU) AND ENGINE CONTROL MODULE (ECU) OPERATION PREVENTS
SHIFT INTO OVERDIRVE.
5. ELECTRONIC CONTROLLED TRANSMISSION PATTERN SELECT SW CIRCUIT
IF THE ELECTRONIC CONTROLLED TRANSMISSION PATTERN SELECT SW IS CHANGED FROM NORMAL TO POWER, THE CURRENT
FLOWING THROUGH THE POWER INDICATOR FLOWS TO GROUND, CURRENT FLOWS TO TERMINAL P OF THE ENGINE CONTROL
MODULE (ECU), THE ENGINE CONTROL MODULE (ECU) OPERATES, AND SHIFT UP AND SHIFT DOWN OCCUR AT HIGHER VEHICLE
SPEEDS THAN WHEN THE SW IS IN NORMAL POSITION.
SYSTEM OUTLINE
Page 204 of 307
204
ELECTRONIC CONTROLLED TRANSMISSION AND A/T INDICATOR (5S±FE)
A
C,B
A2D 2
2B 22C32D4
IP 1 11 IP312 IP 1 18
I23
A 1A3B1 A 12
BA 13
B1A 1
BATTA 4
B/KA 22
NSWB 12
IDLB 1
VCB 11
VTAB 9
E2
C 15S2
C 2S1
C 1SL
C 14E1
C 13E01
C 26E02
EBEC EDE21 2431
I18
E18 I18BRBR
BR
B±O B±O
G±W
R
BR
R
BR BRR B±W G±W G±WW±B
B±O
W±G B±O B±O
B±O
W±L
V
L±Y P±L
W±B
W±BBR W±B
L
B
FROM POWER SOURCE SYSTEM(
SEE PAGE 64)
15A
EFI
EFI MAIN
RE LA YTHROTTLE POSITION SENSOR
ELECTRONIC CONTROLLED
TRANSMISSION SOLENOID
FROM IGNITION
SW º ST1º
IP 316
BR
E2 ,E3
E7 E8 ,E10T1
A
B
WB
B 16E17
25 13
A 9
SPEED
IP3 11 IP314 5124
G±B
G
23
1 VEHICLE SPEED
SENSOR
(
SPEED SENSOR)
LGP
R±L SP1
COMBINATION
METER
V5C8V±Y V±Y
BR BR FROM MANIFOLD ABSOLUTE
PRESSURE SENSOR
(
V ACUUM S ENS OR) TO MANIFOLD ABSOLUTE
PRESSURE SENSOR
(
V ACUUM S ENS OR)
BR
BR
STOP LIGHT SW
G±R
G±W
2 1
S10
B
1 A 2
B 2B1
NOISE FILTER
(
FOR S TOP L IGHT) N2 ,N3
A
G± W
G±R NO. 3
(
LOCK±UP) NO. 1 NO. 2
E NGINE CONTROL MODULE(
ENGINE AND ELECTRONIC CONTROLLED TRANSMISSION ECU)
(
*3)
1A 15
3B 43C 191M 6
1D 97. 5A
IGN1M 315A
STOP
3D22
3D10
Page 206 of 307
206
ELECTRONIC CONTROLLED TRANSMISSION AND A/T INDICATOR (5S±FE)
PREVIOUS AUTOMATIC TRANSMISSIONS HAVE SELECTED EACH GEAR SHIFT USING MECHANICALLY CONTROLLED THROTTLE
HYDRAULIC PRESSURE, GOVERNOR HYDRAULIC PRESSURE AND LOCK±UP HYDRAULIC PRESSURE. THE ELECTRONIC
CONTROLLED TRANSMISSION, HOWEVER, ELECTRICALLY CONTROLS THE LINE PRESSURE AND LOCK±UP PRESSURE ETC.,
THROUGH THE SOLENOID VALVE. ENGINE CONTROL MODULE (ENGINE AND ELECTRONIC CONTROLLED TRANSMISSION ECU)
CONTROL OF THE SOLENOID VALVE BASED ON THE INPUT SIGNALS FROM EACH SENSOR MAKES SMOOTH DRIVING POSSIBLE BY
SHIFT SELECTION FOR EACH GEAR WHICH IS MOST APPROPRIATE TO THE DRIVING CONDITIONS AT THAT TIME.
1. GEAR SHIFT OPERATION
DURING DRIVING, THE ENGINE CONTROL MODULE (ECU) SELECTS THE SHIFT FOR EACH GEAR WHICH IS MOST APPROPRIATE TO
THE DRIVING CONDITIONS, BASED ON INPUT SIGNALS FROM THE ENGINE COOLANT TEMP. SENSOR (EFI WATER TEMP. SENSOR)
TO TERMINAL THW OF THE ENGINE CONTROL MODULE (ECU), AND ALSO THE INPUT SIGNALS TO TERMINAL SP1 OF THE ENGINE
CONTROL MODULE (ECU) FROM THE VEHICLE SPEED SENSOR (SPEED SENSOR) DEVOTED TO THE ELECTRONIC CONTROLLED
TRANSMISSION. CURRENT IS THEN OUTPUT TO THE ELECTRONIC CONTROLLED TRANSMISSION SOLENOIDS. WHEN SHIFTING TO
1ST SPEED, CURRENT FLOWS FROM TERMINAL S1 OF THE ENGINE CONTROL MODULE (ECU) " TERMINAL (A)3 OF THE
ELECTRONIC CONTROLLED TRANSMISSION SOLENOIDS " GROUND, AND CONTINUITY TO THE NO. 1 SOLENOID CAUSES THE
SHIFT.
FOR 2ND SPEED, CURRENT FLOWS FROM TERMINAL S1 OF THE ENGINE CONTROL MODULE (ECU) " TERMINAL (A)3 OF THE
ELECTRONIC CONTROLLED TRANSMISSION SOLENOIDS " GROUND, AND FROM TERMINAL S2 OF THE ENGINE CONTROL
MODULE (ECU) " TERMINAL (A)1 OF THE ELECTRONIC CONTROL TRANSMISSION SOLENOIDS " GROUND, AND CONTINUITY TO
SOLENOIDS NO. 1 AND NO. 2 CAUSES THE SHIFT.
FOR 3RD SPEED, THERE IS NO CONTINUITY TO NO. 1 SOLENOID, ONLY TO NO. 2, CAUSING THE SHIFT.
SHIFTING INTO 4TH SPEED (OVERDRIVE) TAKES PLACE WHEN THERE IS NO CONTINUITY TO EITHER NO. 1 OR NO. 2 SOLENOID.
2. LOCK±UP OPERATION
WHEN THE ENGINE CONTROL MODULE (ECU) JUDGES FROM EACH SIGNAL THAT LOCK±UP OPERATION CONDITIONS HAVE BEEN
MET, CURRENT FLOWS FROM TERMINAL SL OF THE ENGINE CONTROL MODULE (ECU) " TERMINAL (B)1 OF THE ELECTRONIC
CONTROLLED TRANSMISSION SOLENOID " GROUND, CAUSING CONTINUITY TO THE LOCK±UP SOLENOID AND CAUSING
LOCK±UP OPERATION.
3. STOP LIGHT SW CIRCUIT
IF THE BRAKE PEDAL IS DEPRESSED (STOP LIGHT SW ON) WHEN DRIVING IN LOCK±UP CONDITION, A SIGNAL IS INPUT TO
TERMINAL B/K OF THE ENGINE CONTROL MODULE (ECU), THE ENGINE CONTROL MODULE (ECU) OPERATES AND CONTINUITY TO
THE LOCK±UP SOLENOID IS CUT.
4. OVERDRIVE CIRCUIT
*O/D MAIN SW ON
WHEN THE O/D MAIN SW IS TURNED ON (O/D OFF INDICATOR LIGHT TURNS OFF), A SIGNAL IS INPUT TO TERMINAL OD2 OF THE
ENGINE CONTROL MODULE (ECU) AND ENGINE CONTROL MODULE (ECU) OPERATION CAUSES GEAR SHIFT WHEN THE
CONDITIONS FOR OVERDRIVE ARE MET.
*O/D MAIN SW OFF
WHEN THE O/D MAIN SW IS TURNED TO OFF, THE CURRENT FLOWING THROUGH THE O/D OFF INDICATOR LIGHT FLOWS
THROUGH THE O/D MAIN SW TO GROUND. CAUSING THE INDICATOR LIGHT TO LIGHT UP. AT THE SAME TIME, A SIGNAL IS INPUT
TO TERMINAL OD2 OF THE ENGINE CONTROL MODULE (ECU) AND ENGINE CONTROL MODULE (ECU) OPERATION PREVENTS
SHIFT INTO OVERDRIVE.
5. ELECTRONIC CONTROLLED TRANSMISSION PATTERN SELECT SW CIRCUIT
IF THE ELECTRONIC CONTROLLED TRANSMISSION PATTERN SELECT SW IS CHANGED FROM NORMAL TO POWER, THE CURRENT
FLOWING THROUGH THE POWER INDICATOR FLOWS TO GROUND, CURRENT FLOWS TO TERMINAL P OF THE ENGINE CONTROL
MODULE (ECU), THE ENGINE CONTROL MODULE (ECU) OPERATES, AND SHIFT UP AND SHIFT DOWN OCCUR AT HIGHER VEHICLE
SPEEDS THAN WHEN THE SW IS IN NORMAL POSITION.
E 7(C), E 8 (B), E10(A)ENGINE CONTROL MODULE (ENGINE AND ELECTRONIC CONTROLLED TRANSMISSION ECU)
(TURN ON THE IGNTION SW)
S1, S2 ±E1 :9.0±14.0 VOLTS WITH SOLENOID ON
0±1.5 VOLTS WITH SOLENOID OFF
P ±E1:7.5±14.0 VOLTS WITH IGNITION SW ON AND PATTERN SELECT SW AT POWER POSITION
L± E1:7.5±14.0 VOLTS WITH SHIFT LEVER AT L POSITION
2± E1:7.5±14.0 VOLTS WITH SHIFT LEVER AT 2 POSITION
R± E1:7.5±14.0 VOLTS WITH SHIFT LEVER AT R POSITION
B/K± E1:9.0±14.0 VOLTS WITH BRAKE PEDAL DEPRESSED
THW± E2:0.2±1.0 VOLTS WITH WITH ENGINE COOLANT TEMP. 60°C (140°F) ±120°C (248°F)
IDL± E2:0±1.5 VOLTS WITH THROTTLE VALVE FULLY CLOSED
9.0±14.0 VOLTS WITH THROTTLE VALVE FULLY OPENED
SYSTEM OUTLINE
SERVICE HINTS
Page 244 of 307
244
ELECTRONICALLY CONTROLLED HYDRAULIC COOLING FAN (1MZ±FE)
1212
2 3EC1 8
ECEB I18
IP2 7
42 310 9 816 5
6 I18
B±R B±R W±R
LLB
L L±W L±W
L±W
L±R L±R W±BL±YY Y±LBR BR
E SOL+ SOL± TH± TH+ HPIGB TAC IDL FROM POWER SOURCE SYSTEM(
SEEPAGE64)
TO COMBINATION
METERFROM THROTTLE
POSITION SENSOR
FROM ENGINE CONTROL MODULE
(
ENGINE AND ELECTRONIC
CONTROLLED TRANSMISSION ECU)
SOLENOID VALVE
(
FOR HYDRAULIC MOTOR)
ENGINE COOLANT
TEMP. SENSOR
(
WATER TEMP. SENSOR)
(
FOR COOLING FAN)DATA LINK
CONNECTOR 1
(
CHECK
CONNECTOR)A/C SINGLE
PRESSURE SW COOLING FAN ECU C14
S1
E5D1 A2 OPT
3A 153C 16
1A 715A
ECU±IG