coolant temperature INFINITI FX35 2005 Repair Manual
[x] Cancel search | Manufacturer: INFINITI, Model Year: 2005, Model line: FX35, Model: INFINITI FX35 2005Pages: 4731, PDF Size: 60.13 MB
Page 1660 of 4731
![INFINITI FX35 2005 Repair Manual DTC P0181 FTT SENSOR EC-267
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2005 July 2005 FX
DTC P0181 FTT SENSORPFP:22630
Component DescriptionABS006P6
The fuel tank temperature sensor is INFINITI FX35 2005 Repair Manual DTC P0181 FTT SENSOR EC-267
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2005 July 2005 FX
DTC P0181 FTT SENSORPFP:22630
Component DescriptionABS006P6
The fuel tank temperature sensor is](/img/42/57020/w960_57020-1659.png)
DTC P0181 FTT SENSOR EC-267
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2005 July 2005 FX
DTC P0181 FTT SENSORPFP:22630
Component DescriptionABS006P6
The fuel tank temperature sensor is used to detect the fuel tempera-
ture inside the fuel tank. The sensor modifies a voltage signal from
the ECM. The modified signal returns to the ECM as the fuel temper-
ature input. The sensor uses a thermistor which is sensitive to the
change in temperature. The electrical resistance of the thermistor
decreases as temperature increases.
*: This data is reference value and is measured between ECM terminal 107 (fuel tank
temperature sensor) and ground.
CAUTION:
Do not use ECM ground terminals when measuring input/output
voltage. Doing so may result in damage to the ECM's transistor.
Use a ground other than ECM terminals, such as the ground.
On Board Diagnosis LogicABS006P7
DTC Confirmation ProcedureABS006P8
NOTE:
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at
least 10 seconds before conducting the next test.
WITH CONSULT-II
1. Turn ignition switch ON.
2. Select “DATA MONITOR” mode with CONSULT-II.
3. Wait at least 10 seconds. If the result is NG, go to EC-270, "
Diagnostic Procedure" .
If the result is OK, go to following step.
4. Check “COOLAN TEMP/S” value. If “COOLAN TEMP/S” is less than 60 °C (140 °F), the result will
be OK.
If “COOLAN TEMP/S” is above 60 °C (140 °F), go to the following
step.
5. Cool engine down until “COOLAN TEMP/S” is less than 60 °C
(140 °F).
6. Wait at least 10 seconds.
7. If 1st trip DTC is detected, go to EC-270, "
Diagnostic Procedure" .
PBIB1572E
Fluid temperature
° C ( °F) Voltage*
V Resistance
k Ω
20 (68) 3.5 2.3 - 2.7
50 (122) 2.2 0.79 - 0.90
SEF012P
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P0181
0181 Fuel tank temperature
sensor circuit range/
performance Rationally incorrect voltage from the sensor is
sent to ECM, compared with the voltage sig-
nals from engine coolant temperature sensor
and intake air temperature sensor.
Harness or connectors
(The sensor circuit is open or shorted)
Fuel tank temperature sensor
Unified meter and A/C amp.
SEF174Y
Page 1679 of 4731
![INFINITI FX35 2005 Repair Manual EC-286
[VQ35DE]
DTC P0300 - P0306 MULTIPLE CYLINDER MISFIRE, NO. 1 - 6 CYLINDER MIS- FIRE
Revision: 2005 July 2005 FX
WITH CONSULT-II
1. Turn ignition switch ON, and select “DATA MONITOR” mode
INFINITI FX35 2005 Repair Manual EC-286
[VQ35DE]
DTC P0300 - P0306 MULTIPLE CYLINDER MISFIRE, NO. 1 - 6 CYLINDER MIS- FIRE
Revision: 2005 July 2005 FX
WITH CONSULT-II
1. Turn ignition switch ON, and select “DATA MONITOR” mode](/img/42/57020/w960_57020-1678.png)
EC-286
[VQ35DE]
DTC P0300 - P0306 MULTIPLE CYLINDER MISFIRE, NO. 1 - 6 CYLINDER MIS- FIRE
Revision: 2005 July 2005 FX
WITH CONSULT-II
1. Turn ignition switch ON, and select “DATA MONITOR” mode
with CONSULT-II.
2. Start engine and warm it up to normal operating temperature.
3. Turn ignition switch OFF and wait at least 10 seconds.
4. Restart engine and let it idle for about 15 minutes.
5. If 1st trip DTC is detected, go to EC-286, "
Diagnostic Procedure"
.
NOTE:
If 1st trip DTC is not detected during above procedure, performing
the following procedure is advised.
1. Turn ignition switch OFF and wait at least 10 seconds.
2. Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for a certain time. Refer to table below.
Hold the accelerator pedal as steady as possible.
The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following condi-
tions should be satisfied at the same time.
The time to driving varies according to the engine speed in the freeze frame data.
Refer to the following table.
WITH GST
Follow the procedure “WITH CONSULT-II” above.
Diagnostic ProcedureABS006PU
1. CHECK FOR INTAKE AIR LEAK AND PCV HOSE
1. Start engine and run it at idle speed.
2. Listen for the sound of the intake air leak.
3. Check PCV hose connection.
OK or NG
OK >> GO TO 2.
NG >> Discover air leak location and repair.
2. CHECK FOR EXHAUST SYSTEM CLOGGING
Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.
OK or NG
OK (With CONSULT-II)>>GO TO 3.
OK (Without CONSULT-II)>>GO TO 4.
NG >> Repair or replace it.
PBIB0164E
Engine speed Engine speed in the freeze frame data ± 400 rpm
Vehicle speed Vehicle speed in the freeze frame data ± 10 km/h (6 MPH)
Engine coolant temperature
(T) condition When the freeze frame data shows lower than 70
°C (158 °F),
T should be lower than 70 °C (158 °F).
When the freeze frame data shows higher than or equal to 70 °C (158 °F),
T should be higher than or equal to 70 °C (158 °F).
Engine speed Time
Around 1,000 rpm Approximately 10 minutes
Around 2,000 rpm Approximately 5 minutes
More than 3,000 rpm Approximately 3.5 minutes
Page 1729 of 4731
![INFINITI FX35 2005 Repair Manual EC-336
[VQ35DE]
DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
Revision: 2005 July 2005 FX
DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID
VA LV E
PFP:14920
Descrip INFINITI FX35 2005 Repair Manual EC-336
[VQ35DE]
DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
Revision: 2005 July 2005 FX
DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID
VA LV E
PFP:14920
Descrip](/img/42/57020/w960_57020-1728.png)
EC-336
[VQ35DE]
DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
Revision: 2005 July 2005 FX
DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID
VA LV E
PFP:14920
DescriptionABS006QT
SYSTEM DESCRIPTION
*1: ECM determines the start signal status by the signals of engine speed and battery voltage.
*2: This signal is sent to the ECM through CAN communication line.
This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass pas-
sage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP
canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the
ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is
determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor
from the EVAP canister is regulated as the air flow changes.
COMPONENT DESCRIPTION
The EVAP canister purge volume control solenoid valve uses a ON/
OFF duty to control the flow rate of fuel vapor from the EVAP canis-
ter. The EVAP canister purge volume control solenoid valve is
moved by ON/OFF pulses from the ECM. The longer the ON pulse,
the greater the amount of fuel vapor that will flow through the valve.
CONSULT-II Reference Value in Data Monitor ModeABS006QU
Specification data are reference values.
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE) Engine speed*
1
EVAP canister
purge flow control EVAP canister purge vol-
ume control solenoid valve
Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Battery Battery voltage*
1
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Air fuel ratio (A/F) sensor 1 Density of oxygen in exhaust gas
(Mixture ratio feedback signal)
Fuel tank temperature sensor Fuel temperature in fuel tank
Wheel sensor*
2Vehicle speed
SEF337U
MONITOR ITEM CONDITION SPECIFICATION
PURG VOL C/V
Engine: After warming up
Selector lever: P or N
Air conditioner switch: OFF
No-load Idle
(Accelerator pedal is not depressed
even slightly, after engine starting) 0%
2,000 rpm —
Page 1860 of 4731
![INFINITI FX35 2005 Repair Manual DTC P1217 ENGINE OVER TEMPERATURE EC-467
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2005 July 2005 FX
DTC P1217 ENGINE OVER TEMPERATUREPFP:00000
DescriptionABS00B4M
SYSTEM DESCRIPTION
INFINITI FX35 2005 Repair Manual DTC P1217 ENGINE OVER TEMPERATURE EC-467
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2005 July 2005 FX
DTC P1217 ENGINE OVER TEMPERATUREPFP:00000
DescriptionABS00B4M
SYSTEM DESCRIPTION](/img/42/57020/w960_57020-1859.png)
DTC P1217 ENGINE OVER TEMPERATURE EC-467
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2005 July 2005 FX
DTC P1217 ENGINE OVER TEMPERATUREPFP:00000
DescriptionABS00B4M
SYSTEM DESCRIPTION
NOTE:
If DTC P1217 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000,
U1001. Refer to EC-171
.
Cooling Fan Control
*1: The ECM determines the start signal status by the signals of engine speed and battery voltage.
*2: This signal is sent to ECM through CAN communication line.
The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, refrigerant
pressure, and air conditioner ON signal. The control system has 4-step control [HIGH/MIDDLE/LOW/OFF].
Cooling Fan Operation
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE) Engine speed*
1
Cooling fan
control IPDM E/R
(Cooling fan relay)
Battery
Battery voltage*
1
Wheel sensor*2Vehicle speed
Engine coolant temperature sensor Engine coolant temperature
Air conditioner switch*
2Air conditioner ON signal
Refrigerant pressure sensor Refrigerant pressure
PBIB2215E
Page 1862 of 4731
![INFINITI FX35 2005 Repair Manual DTC P1217 ENGINE OVER TEMPERATURE EC-469
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2005 July 2005 FX
CONSULT-II Reference Value in Data Monitor ModeABS006V9
Specification data are ref INFINITI FX35 2005 Repair Manual DTC P1217 ENGINE OVER TEMPERATURE EC-469
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2005 July 2005 FX
CONSULT-II Reference Value in Data Monitor ModeABS006V9
Specification data are ref](/img/42/57020/w960_57020-1861.png)
DTC P1217 ENGINE OVER TEMPERATURE EC-469
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2005 July 2005 FX
CONSULT-II Reference Value in Data Monitor ModeABS006V9
Specification data are reference values.
On Board Diagnosis LogicABS006VA
If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will
rise.
When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is
indicated.
This self-diagnosis has the one trip detection logic.
CAUTION:
When a malfunction is indicated, be sure to replace the coolant. Refer to CO-11, "
Changing Engine
Coolant" . Also, replace the engine oil. Refer to LU-9, "Changing Engine Oil" .
1. Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-13, "
Anti-Freeze Coolant Mixture Ratio" .
2. After refilling coolant, run engine to ensure that no water-flow noise is emitted.
Overall Function CheckABS006VB
Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be con-
firmed.
WARNING:
Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pres-
sure fluid escaping from the radiator.
Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up
pressure to escape. Then turn the cap all the way off.
MONITOR ITEM CONDITION SPECIFICATION
AIR COND SIG
Engine: After warming up, idle
the engine Air conditioner switch: OFF OFF
Air conditioner switch: ON
(Compressor operates.) ON
COOLING FAN
Engine: After warming up, idle
the engine
Air conditioner switch: OFF Engine coolant temperature is 94
°C
(201 °F) or less OFF
Engine coolant temperature is
between 95 °C (203 °F) and 99 °C
(210 °F) LOW
Engine coolant temperature is
between 100 °C (212 °F) and 104 °C
(219 °F) MID
Engine coolant temperature is 105 °C
(221 °F) or more HI
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P1217
1217 Engine over tempera-
ture (Overheat)
Cooling fan does not operate properly (Over-
heat).
Cooling fan system does not operate prop-
erly (Overheat).
Engine coolant level was not added to the
system using the proper filling method.
Engine coolant is not within the specified
range.
Harness or connectors
(The cooling fan circuit is open or
shorted.)
IPDM E/R
Cooling fan
Radiator hose
Radiator
Radiator cap
Water pump
Thermostat
For more information, refer to EC-478,
"Main 12 Causes of Overheating" .
Page 1863 of 4731
![INFINITI FX35 2005 Repair Manual EC-470
[VQ35DE]
DTC P1217 ENGINE OVER TEMPERATURE
Revision: 2005 July 2005 FX
WITH CONSULT-II
1. Check the coolant level in the reservoir tank and radiator.
Allow engine to cool before checking cool INFINITI FX35 2005 Repair Manual EC-470
[VQ35DE]
DTC P1217 ENGINE OVER TEMPERATURE
Revision: 2005 July 2005 FX
WITH CONSULT-II
1. Check the coolant level in the reservoir tank and radiator.
Allow engine to cool before checking cool](/img/42/57020/w960_57020-1862.png)
EC-470
[VQ35DE]
DTC P1217 ENGINE OVER TEMPERATURE
Revision: 2005 July 2005 FX
WITH CONSULT-II
1. Check the coolant level in the reservoir tank and radiator.
Allow engine to cool before checking coolant level.
If the coolant level in the reservoir tank and/or radiator is below
the proper range, skip the following steps and go to EC-473,
"PROCEDURE A" .
2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-473,
"PROCEDURE A" .
3. Turn ignition switch ON.
4. Perform “COOLING FAN” in “ACTIVE TEST” mode with CON- SULT-II.
5. If the results are NG, go to EC-473, "
PROCEDURE A" .
WITH GST
1. Check the coolant level in the reservoir tank and radiator.
Allow engine to cool before checking coolant level.
If the coolant level in the reservoir tank and/or radiator is below
the proper range, skip the following steps and go to EC-473,
"PROCEDURE A" .
2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-473,
"PROCEDURE A" .
3. Perform IPDM E/R auto active test and check cooling fan motors operation, refer to PG-24, "
Auto Active Test"
4. If NG, go to EC-473, "PROCEDURE A" .
SEF621W
SEF646X
SEF621W
Page 1867 of 4731
![INFINITI FX35 2005 Repair Manual EC-474
[VQ35DE]
DTC P1217 ENGINE OVER TEMPERATURE
Revision: 2005 July 2005 FX
5. CHECK RADIATOR CAP
Apply pressure to cap with a tester.
OK or NG
OK >> GO TO 6.
NG >> Replace radiator cap.
6. CHECK INFINITI FX35 2005 Repair Manual EC-474
[VQ35DE]
DTC P1217 ENGINE OVER TEMPERATURE
Revision: 2005 July 2005 FX
5. CHECK RADIATOR CAP
Apply pressure to cap with a tester.
OK or NG
OK >> GO TO 6.
NG >> Replace radiator cap.
6. CHECK](/img/42/57020/w960_57020-1866.png)
EC-474
[VQ35DE]
DTC P1217 ENGINE OVER TEMPERATURE
Revision: 2005 July 2005 FX
5. CHECK RADIATOR CAP
Apply pressure to cap with a tester.
OK or NG
OK >> GO TO 6.
NG >> Replace radiator cap.
6. CHECK THERMOSTAT
1. Check valve seating condition at normal room temperatures. It should seat tightly.
2. Check valve opening temperature and valve lift.
3. Check if valve is closed at 5 °C (9 °F) below valve opening tem-
perature.
For details, refer to CO-26, "
WATER INLET AND THERMO-
STAT ASSEMBLY" .
OK or NG
OK >> GO TO 7.
NG >> Replace thermostat
7. CHECK ENGINE COOLANT TEMPERATURE SENSOR
Refer to EC-212, "
Component Inspection" .
OK or NG
OK >> GO TO 8.
NG >> Replace engine coolant temperature sensor.
8. CHECK MAIN 12 CAUSES
If the cause cannot be isolated, go to EC-478, "
Main 12 Causes of Overheating" .
>> INSPECTION END
Radiator cap relief pressure:
59 - 98 kPa (0.6 - 1.0 kg/cm
2
, 9 - 14 psi)
SLC755A
Valve opening temperature: 76.5 °C (170 °F) [standard]
Valve lift: More than 8.6 mm/90 °C
(0.339 in/194 °F)
SLC343
Page 1871 of 4731
![INFINITI FX35 2005 Repair Manual EC-478
[VQ35DE]
DTC P1217 ENGINE OVER TEMPERATURE
Revision: 2005 July 2005 FX
Main 12 Causes of OverheatingABS006VE
*1: Turn the ignition switch ON.
*2: Engine running at 3,000 rpm for 10 minutes.
*3 INFINITI FX35 2005 Repair Manual EC-478
[VQ35DE]
DTC P1217 ENGINE OVER TEMPERATURE
Revision: 2005 July 2005 FX
Main 12 Causes of OverheatingABS006VE
*1: Turn the ignition switch ON.
*2: Engine running at 3,000 rpm for 10 minutes.
*3](/img/42/57020/w960_57020-1870.png)
EC-478
[VQ35DE]
DTC P1217 ENGINE OVER TEMPERATURE
Revision: 2005 July 2005 FX
Main 12 Causes of OverheatingABS006VE
*1: Turn the ignition switch ON.
*2: Engine running at 3,000 rpm for 10 minutes.
*3: Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.
*4: After 60 minutes of cool down time.
For more information, refer to CO-7, "
OVERHEATING CAUSE ANALYSIS" .
Component InspectionABS006VF
COOLING FAN MOTORS-1 AND -2
1. Disconnect cooling fan motor harness connectors.
2. Supply cooling fan motor terminals with battery voltage and check operation.
Cooling fan motor should operate.
If NG, replace cooling fan motor.
Engine Step Inspection item Equipment Standard Reference page
OFF 1
Blocked radiator
Blocked condenser
Blocked radiator grille
Blocked bumper
Visual No blocking —
2
Coolant mixtureCoolant tester 50 - 50% coolant mixture MA-13
3Coolant levelVisual Coolant up to MAX level
in reservoir tank and radi-
ator filler neck CO-11
4Radiator capPressure tester 59 - 98 kPa
(0.6 - 1.0 kg/cm2 , 9 - 14
psi) (Limit) CO-15
ON*25Coolant leaksVisual No leaks
CO-11
ON*26ThermostatTouch the upper and
lower radiator hoses Both hoses should be hot
CO-26
ON*17Cooling fanCONSULT-II Operating See trouble diagnosis for
DTC P1217 ( EC-467
).
OFF 8
Combustion gas leakColor checker chemical
tester 4 Gas analyzer Negative —
ON*
39Coolant temperature
gaugeVisual Gauge less than 3/4 when driving —
Coolant overflow to
reservoir tankVisual No overflow during driving and idling CO-11
OFF*410Coolant return from
reservoir tank to radia-
torVisual Should be initial level in reservoir tank CO-11
OFF 11Cylinder headStraight gauge feeler
gauge 0.1 mm (0.004 in) Maxi-
mum distortion (warping) EM-102
12Cylinder block and pis-
tonsVisual No scuffing on cylinder walls or piston EM-122
Cooling fan speed
Cooling fan motor terminals
(+) ( −)
Middle (MID) 1 3 and 4
2 3 and 4
1 and 2 3
1 and 2 4
High (HI) 1 and 2 3 and 4
SEF734W
Page 1953 of 4731
![INFINITI FX35 2005 Repair Manual EC-560
[VQ35DE]
DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
Revision: 2005 July 2005 FX
DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
PFP:14920
DescriptionABS006VU
SYSTEM INFINITI FX35 2005 Repair Manual EC-560
[VQ35DE]
DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
Revision: 2005 July 2005 FX
DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
PFP:14920
DescriptionABS006VU
SYSTEM](/img/42/57020/w960_57020-1952.png)
EC-560
[VQ35DE]
DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
Revision: 2005 July 2005 FX
DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
PFP:14920
DescriptionABS006VU
SYSTEM DESCRIPTION
*1: ECM determines the start signal status by the signals of engine speed and battery voltage.
*2: This signal is sent to the ECM through CAN communication line.
This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass pas-
sage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP
canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the
ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is
determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor
from the EVAP canister is regulated as the air flow changes.
COMPONENT DESCRIPTION
The EVAP canister purge volume control solenoid valve uses a ON/
OFF duty to control the flow rate of fuel vapor from the EVAP canis-
ter. The EVAP canister purge volume control solenoid valve is
moved by ON/OFF pulses from the ECM. The longer the ON pulse,
the greater the amount of fuel vapor that will flow through the valve.
CONSULT-II Reference Value in Data Monitor ModeABS006VV
Specification data are reference values.
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE) Engine speed*
1
EVAP canister
purge flow control EVAP canister purge vol-
ume control solenoid valve
Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Battery Battery voltage*
1
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Air fuel ratio (A/F) sensor 1 Density of oxygen in exhaust gas
(Mixture ratio feedback signal)
Fuel tank temperature sensor Fuel temperature in fuel tank
Wheel sensor*
2Vehicle speed
SEF337U
MONITOR ITEM CONDITION SPECIFICATION
PURG VOL C/V
Engine: After warming up
Selector lever: P or N
Air conditioner switch: OFF
No-load Idle
(Accelerator pedal is not depressed
even slightly, after engine starting) 0%
2,000 rpm —
Page 2098 of 4731
![INFINITI FX35 2005 Repair Manual SERVICE DATA AND SPECIFICATIONS (SDS) EC-705
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2005 July 2005 FX
SERVICE DATA AND SPECIFICATIONS (SDS)PFP:00030
Fuel PressureABS006ZI
Idle Spee INFINITI FX35 2005 Repair Manual SERVICE DATA AND SPECIFICATIONS (SDS) EC-705
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2005 July 2005 FX
SERVICE DATA AND SPECIFICATIONS (SDS)PFP:00030
Fuel PressureABS006ZI
Idle Spee](/img/42/57020/w960_57020-2097.png)
SERVICE DATA AND SPECIFICATIONS (SDS) EC-705
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2005 July 2005 FX
SERVICE DATA AND SPECIFICATIONS (SDS)PFP:00030
Fuel PressureABS006ZI
Idle Speed and Ignition TimingABS006ZJ
*1: Under the following conditions:
Air conditioner switch: OFF
Electric load: OFF (Lights, heater fan & rear window defogger)
Steering wheel: Kept in straight-ahead position
Calculated Load ValueABS006ZK
Mass Air Flow SensorABS006ZL
*: Engine is warmed up to normal operating temperature and running under no-load.
Intake Air Temperature SensorABS006ZM
Engine Coolant Temperature SensorABS006ZN
Air Fuel Ratio (A/F) Sensor 1 HeaterABS006ZO
Heated Oxygen sensor 2 HeaterABS006ZP
Crankshaft Position Sensor (POS)ABS006ZQ
Refer to EC-306, "Component Inspection" .
Camshaft Position Sensor (PHASE)ABS006ZR
Refer to EC-315, "Component Inspection" .
Throttle Control MotorABS006ZS
Fuel pressure at idling kPa (kg/cm2 , psi) Approximately 350 (3.57, 51)
Target idle speed
No-load*1 (in P or N position) 650
±50 rpm
Air conditioner: ON In P or N position 700 rpm or more
Ignition timing In P or N position 15 ° ± 5 ° BTDC
Calculated load value% (Using CONSULT-II or GST)
At idle 5 - 35
At 2,500 rpm 5 - 35
Supply voltageBattery voltage (11 - 14V)
Output voltage at idle 1.0 - 1.2*V
Mass air flow (Using CONSULT-II or GST) 2.0 - 6.0 g·m/sec at idle*
7.0 - 20.0 g·m/sec at 2,500 rpm*
Temperature °C ( °F) Resistance k Ω
25 (77) 1.94 - 2.06
80 (176) 0.295 - 0.349
Temperature °C ( °F) Resistance k Ω
20 (68) 2.1 - 2.9
50 (122) 0.68 - 1.00
90 (194) 0.236 - 0.260
Resistance [at 25°C (77 °F)] 2.3 - 4.3 Ω
Resistance [at 25°C (77 °F)] 5.0 - 7.0 Ω
Resistance [at 25°C (77 °F)] Approximately 1 - 15 Ω