front panel JEEP LIBERTY 2002 KJ / 1.G Workshop Manual
[x] Cancel search | Manufacturer: JEEP, Model Year: 2002, Model line: LIBERTY, Model: JEEP LIBERTY 2002 KJ / 1.GPages: 1803, PDF Size: 62.3 MB
Page 684 of 1803

²Combination Flasher- An electronic combina-
tion flasher is integral to the hazard switch located
in the center of the instrument panel above the
radio. (Refer to 8 - ELECTRICAL/LAMPS/LIGHT-
ING - EXTERIOR/COMBINATION FLASHER -
DESCRIPTION).
²Door Ajar Switch- A door ajar switch is inte-
gral to the latch of each door in the vehicle. (Refer to
8 - ELECTRICAL/LAMPS/LIGHTING - INTERIOR/
DOOR AJAR SWITCH - DESCRIPTION).
²Door Cylinder Lock Switch- For North
American vehicles only, a door cylinder lock switch is
located on the back of the lock cylinder of each front
door. (Refer to 8 - ELECTRICAL/VEHICLE THEFT
SECURITY/DOOR CYLINDER LOCK SWITCH -
DESCRIPTION).
²Flip-Up Glass Ajar Switch- A flip-up glass
ajar switch is integral to the rear flip-up glass latch,
located on the top of the tailgate near the center.
(Refer to 8 - ELECTRICAL/LAMPS/LIGHTING -
INTERIOR/FLIP-UP GLASS AJAR SWITCH -
DESCRIPTION).
²Hood Ajar Switch- A hood ajar switch is
located beneath the hood panel on the right inner
fender side shield of vehicles built for sale in certain
markets where it is required equipment. (Refer to 8 -
ELECTRICAL/VEHICLE THEFT SECURITY/HOOD
AJAR SWITCH - DESCRIPTION).
²Horn Relay- A horn relay is located on the
Junction Block (JB) under the driver side outboard
end of the instrument panel. (Refer to 8 - ELECTRI-
CAL/HORN/HORN RELAY - DESCRIPTION).
²Intrusion Transceiver Module- An Intrusion
Transceiver Module (ITM) is located near the center
of the headliner in the passenger compartment of
vehicles built for sale in certain markets where it is
required equipment. (Refer to 8 - ELECTRICAL/VE-
HICLE THEFT SECURITY/UK SECURITY SYSTEM
MODULE - DESCRIPTION).
²Security Indicator- A security indicator is
located in the ElectroMechanical Instrument Cluster
(EMIC) on the instrument panel in front of the driver
side front seat. (Refer to 8 - ELECTRICAL/INSTRU-
MENT CLUSTER/SECURITY INDICATOR -
DESCRIPTION).
²Siren- An alarm siren is located on the front
extension of the right front wheel house panel in the
engine compartment of vehicles built for sale in cer-
tain markets where it is required equipment. (Refer
to 8 - ELECTRICAL/VEHICLE THEFT SECURITY/
SIREN - DESCRIPTION).
²Tailgate Ajar Switch- A tailgate ajar switch is
integral to the latch for the tailgate in the vehicle.
(Refer to 8 - ELECTRICAL/LAMPS/LIGHTING -
INTERIOR/TAILGATE AJAR SWITCH - DESCRIP-
TION).SENTRY KEY IMMOBILIZER SYSTEM The Sen-
try Key Immobilizer System (SKIS) is available as a
factory-installed option on this model. Vehicles
equipped with the Vehicle Theft Alarm (VTA) are also
equipped with SKIS. The SKIS provides passive vehi-
cle protection by preventing the engine from operat-
ing unless a valid electronically encoded key is
detected in the ignition lock cylinder. The SKIS
includes the following major components, which are
described in further detail elsewhere in this service
information:
²Powertrain Control Module- The Powertrain
Control Module (PCM) is located on the left inner
fender shield in the engine compartment near the
dash panel. (Refer to 8 - ELECTRICAL/ELEC-
TRONIC CONTROL MODULES/POWERTRAIN
CONTROL MODULE - DESCRIPTION).
²Sentry Key Immobilizer Module- The Sentry
Key Immobilizer Module (SKIM) is located beneath
the steering column shrouds on the right side of the
steering column near the ignition lock cylinder hous-
ing. (Refer to 8 - ELECTRICAL/ELECTRONIC CON-
TROL MODULES/SENTRY KEY IMMOBILIZER
MODULE - DESCRIPTION).
²Sentry Key Transponder- The Sentry Key
transponder is molded into the head of the ignition
key, and concealed by a gray molded rubber cap.
(Refer to 8 - ELECTRICAL/VEHICLE THEFT SECU-
RITY/TRANSPONDER KEY - DESCRIPTION).
²SKIS Indicator- The SKIS indicator is located
in the ElectroMechanical Instrument Cluster (EMIC)
on the instrument panel in front of the driver side
front seat. (Refer to 8 - ELECTRICAL/INSTRU-
MENT CLUSTER/SPEED CONTROL INDICATOR -
DESCRIPTION).
OPERATION
The Vehicle Theft Security System (VTSS) is
divided into two basic subsystems: Vehicle Theft
Alarm (VTA) and Sentry Key Immobilizer System
(SKIS). Following are paragraphs that briefly
describe the operation of each of these two sub-
systems.
VEHICLE THEFT ALARM The Body Control Mod-
ule (BCM) is used on this model to control and inte-
grate many of the electronic functions and features
included in the Vehicle Theft Alarm (VTA). The BCM
receives hard wired inputs indicating the status of
the door ajar switches, the door cylinder lock
switches, the ignition switch, the tailgate ajar switch,
the tailgate cylinder lock switch, the flip-up glass
ajar switch, the power lock switches and, in vehicles
built for certain markets where it is required, the
hood ajar switch. The programming in the BCM
allows it to process the information from all of these
inputs and send control outputs to energize or de-en-
KJVEHICLE THEFT SECURITY 8Q - 3
VEHICLE THEFT SECURITY (Continued)
Page 687 of 1803

DIAGNOSIS AND TESTING - VEHICLE THEFT
SECURITY SYSTEM
The Vehicle Theft Security System (VTSS) is
divided into two basic subsystems: Vehicle Theft
Alarm (VTA) and Sentry Key Immobilizer System
(SKIS). Following are the recommended procedures
for diagnosis and testing of each of these two sub-
systems.
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
FRONT IMPACT SENSORS, SIDE CURTAIN AIRBAG,
OR INSTRUMENT PANEL COMPONENT DIAGNOSIS
OR SERVICE. DISCONNECT AND ISOLATE THE
BATTERY NEGATIVE (GROUND) CABLE, THEN
WAIT TWO MINUTES FOR THE SYSTEM CAPACI-
TOR TO DISCHARGE BEFORE PERFORMING FUR-
THER DIAGNOSIS OR SERVICE. THIS IS THE ONLY
SURE WAY TO DISABLE THE SUPPLEMENTAL
RESTRAINT SYSTEM. FAILURE TO TAKE THE
PROPER PRECAUTIONS COULD RESULT IN ACCI-
DENTAL AIRBAG DEPLOYMENT AND POSSIBLE
PERSONAL INJURY.
VEHICLE THEFT ALARM
Models equipped with the Rest-Of-World (ROW)
premium version of the Vehicle Theft Alarm (VTA)
provide some preliminary diagnostic feedback by illu-minating the security indicator located in the Elec-
troMechanical Instrument Cluster (EMIC). If the
security indicator illuminates with the ignition
switch in the On position, it indicates that there is a
communication problem between the Intrusion
Transceiver Module (ITM) and the Body Control
Module (BCM), or between the ITM and the siren
module. The BCM will also turn on the security indi-
cator if it receives a message from the ITM indicating
that the ITM has stored a Diagnostic Trouble Code
(DTC) for a siren module fault.
The hard wired circuits and components of the
VTA may be diagnosed and tested using conventional
diagnostic tools and procedures. However, conven-
tional diagnostic methods may not prove conclusive
in the diagnosis of the Body Control Module (BCM),
the ElectroMechanical Instrument Cluster (EMIC),
the Intrusion Transceiver Module (ITM), or the Pro-
grammable Communications Interface (PCI) data bus
network. The most reliable, efficient, and accurate
means to diagnose the BCM, the EMIC, the ITM,
and the PCI data bus network inputs and outputs
related to the VTA requires the use of a DRBIIIt
scan tool. Refer to the appropriate diagnostic infor-
mation.
Refer to the appropriate wiring information. The
wiring information includes wiring diagrams, proper
wire and connector repair procedures, further details
on wire harness routing and retention, as well as
pin-out and location views for the various wire har-
ness connectors, splices and grounds.
8Q - 6 VEHICLE THEFT SECURITYKJ
VEHICLE THEFT SECURITY (Continued)
Page 691 of 1803

Theft Security System (VTSS) have a door cylinder
lock switch secured to the back of the key lock cylin-
der inside each front door (Fig. 2). The door cylinder
lock switch is a resistor multiplexed momentary
switch that is hard wired in series between the door
lock switch ground and right or left cylinder lock
switch mux circuits of the Body Control Module
(BCM) through the front door wire harness. The door
cylinder lock switches are driven by the key lock cyl-
inders and contain two internal resistors. One resis-
tor value is used for the Lock position, and one for
the Unlock position.
The door cylinder lock switches cannot be adjusted
or repaired and, if faulty or damaged, they must be
replaced.
OPERATION
The door cylinder lock switches are actuated by the
key lock cylinder when the key is inserted in the lock
cylinder and turned to the lock or unlock positions.
The door cylinder lock switch close a circuit between
the door lock switch ground circuit and the left or
right cylinder lock switch mux circuits through one of
two internal resistors for the Body Control Module
(BCM) when either front door key lock cylinder is in
the Lock, or Unlock positions. The BCM reads the
switch status through an internal pull-up, then uses
this information as an input for the Vehicle Theft
Security System (VTSS) operation.
The door cylinder lock switches and circuits can be
diagnosed using conventional diagnostic tools and
methods.
DIAGNOSIS AND TESTING - DOOR CYLINDER
LOCK SWITCH
Refer to the appropriate wiring information. The
wiring information includes wiring diagrams, proper
wire and connector repair procedures, further details
on wire harness routing and retention, as well as
pin-out and location views for the various wire har-
ness connectors, splices and grounds.
(1) Disconnect the door cylinder lock switch pigtail
wire connector from the door wire harness connector.
(2) Using a ohmmeter, check the switch resistance
checks between the two terminals in the door cylin-
der lock switch pigtail wire connector. Actuate the
switch by rotating the key in the door lock cylinder
to test for the proper resistance values in each of the
two switch positions, as shown in the Door Cylinder
Lock Switch Test table.
DOOR CYLINDER LOCK SWITCH TEST
Switch Position Resistance
( 10%)
Left Side Right Side
Lock (Clockwise) Unlock
(Counterclockwise)473 Ohms
Unlock
(Counterclockwise)Lock (Clockwise) 1.994 Kilohms
(3) If a door cylinder lock switch fails either of the
resistance tests, replace the faulty switch.
REMOVAL
(1) Disconnect and isolate the battery negative
cable.
(2) Remove the outside door handle unit from the
outer door panel. (Refer to 23 - BODY/DOOR -
FRONT/EXTERIOR HANDLE - REMOVAL).
(3) Remove the retainer clip from the pin on the
back of the door lock cylinder (Fig. 3).
(4) Remove the lock lever from the pin on the back
of the door lock cylinder.
(5) Remove the door cylinder lock switch from the
back of the lock cylinder.
INSTALLATION
(1) Position the door cylinder lock switch onto the
back of the lock cylinder with its pigtail wire harness
oriented toward the bottom (Fig. 3).
Fig. 3 Lock Cylinder Lever Retainer Remove/Install
1 - LEVER
2 - RETAINER
3 - LOCK CYLINDER
4 - SWITCH
5 - PLIERS
6 - OUTSIDE DOOR HANDLE
8Q - 10 VEHICLE THEFT SECURITYKJ
DOOR CYLINDER LOCK SWITCH (Continued)
Page 692 of 1803

(2) Position the lock lever onto the pin on the back
of the door lock cylinder with the lever oriented
toward the rear.
(3) Install the retainer clip onto the pin on the
back of the door lock cylinder. Be certain that the
center tab of the retainer is engaged in the retention
hole on the lock lever.
(4) Reinstall the outside door handle unit onto the
outer door panel. (Refer to 23 - BODY/DOOR -
FRONT/EXTERIOR HANDLE - INSTALLATION).
(5) Reconnect the battery negative cable.
HOOD AJAR SWITCH
DESCRIPTION
The hood ajar switch is a normally closed, single
pole momentary switch that is used only on vehicles
equipped with the Vehicle Theft Security System
(VTSS) for sale in certain markets where it is
required equipment (Fig. 4). This switch consists of a
molded plastic body with a molded plastic mounting
bezel. The switch body has an integral molded con-nector receptacle on the lower end, while the spring-
loaded switch plunger extends from the upper end.
Two external latches integral to the mounting bezel
lock the switch into a keyed mounting hole in the
stamped steel switch mounting bracket. The mount-
ing bracket is fastened with two screws to the right
inner fender shield near the fender ledge in the
engine compartment. A molded plastic striker with
an integral retainer and mounting tab is secured to
the underside of the hood panel inner reinforcement
to actuate the switch plunger as the hood panel is
closed (Fig. 5). A single take out of the headlamp and
dash wire harness connects the switch to the vehicle
electrical system. The switch receives a path to
ground at all times through another take out of the
headlamp and dash wire harness with an eyelet ter-
minal connector that is secured by a ground screw to
the left inner fender shield in the engine compart-
ment.
The hood ajar switch cannot be adjusted or
repaired and, if faulty or damaged, it must be
replaced. The hood ajar switch striker is not intended
for reuse. If the striker is removed from the hood
inner reinforcement for any reason, it must be
replaced with a new unit.
Fig. 4 Hood Ajar Switch
1 - INNER FENDER
2 - SCREW (2)
3 - BRACKET
4 - HOOD AJAR SWITCH
5 - WIRE HARNESS CONNECTOR
Fig. 5 Hood Ajar Switch Striker
1 - STRIKER
2-TAB
3 - INNER HOOD REINFORCEMENT
4 - RETAINER
KJVEHICLE THEFT SECURITY 8Q - 11
DOOR CYLINDER LOCK SWITCH (Continued)
Page 695 of 1803

INSTALLATION
The hood ajar switch striker is not intended for
reuse. If the striker is removed from the hood inner
reinforcement for any reason, it must be replaced
with a new unit.
(1) Position the new hood ajar switch striker to the
inner hood panel reinforcement (Fig. 8).
(2) Insert the integral mounting tab on the front of
the hood ajar switch striker into the forward mount-
ing hole in the inner hood panel reinforcement.
(3) Align the integral retainer on the rear of the
hood ajar switch striker with the rearward mounting
hole in the inner hood panel reinforcement.
(4) Using hand pressure, firmly press the hood
ajar switch striker rearward and upward against the
inner hood panel reinforcement until the hood ajar
switch striker retainer is fully engaged in the rear-
ward mounting hole in the inner hood panel rein-
forcement.
(5) Close and latch the hood.
INTRUSION TRANSCEIVER
MODULE
DESCRIPTION
An Intrusion Transceiver Module (ITM) is part of
the Rest-Of-World (ROW) premium version of the
Vehicle Theft Alarm (VTA) in the Vehicle Theft Secu-
rity System (VTSS) (Fig. 9). The ROW premium ver-
sion of the VTA is only available in vehicles built for
certain markets, where the additional features
offered by this system are required. The ITM is
located in the passenger compartment, on the lower
surface of the headliner near the center of the vehi-cle. This unit is designed to provide interior motion
detection, and serve as an interface between the
Body Control Module (BCM) and the alarm siren
module.
The ITM is concealed beneath a dedicated molded
plastic trim cover that approximates the size and
shape of a typical dome lamp housing. However,
rather than a lens, the ITM features three sets of
louvered openings in a molded lateral center rib for-
mation. One set of louvered openings is located at
each outboard end of the center rib, while the third
set is centered. Each of the louvered openings is cov-
ered on the inside by a single molded black plastic
sight shield that extends the length of the center rib
for appearance. The module is secured to a molded
plastic mounting bracket above the headliner by four
latch features that are integral to the underside of
the module housing. Besides the ITM, the trim cover
also conceals two plastic pins integral to the mount-
ing bracket that are used to secure the bracket to the
headliner with two stamped nuts that are installed
from below. An adhesive-backed foam pad is installed
above the ITM bracket between the headliner and
the roof panel to provide additional headliner stabili-
zation and support for the ITM mounting. Two small
notch-like service holes on the rear edge of the trim
cover afford access to the two integral rear latches of
the ITM for service removal (Fig. 10).
The ITM circuitry is contained within a black
molded plastic housing with four integral mounting
tabs that are secured to the back of the trim cover
with four screws. Concealed within the housing is the
Fig. 9 Intrusion Transceiver Module
1 - ITM
2 - HEADLINERFig. 10 Intrusion Transceiver Module
1 - TRIM COVER
2 - CONNECTOR RECEPTACLE
3 - HOUSING
4 - SCREW (4)
5 - SERVICE HOLE (2)
6 - LATCH FEATURE (4)
8Q - 14 VEHICLE THEFT SECURITYKJ
HOOD AJAR SWITCH STRIKER (Continued)
Page 696 of 1803

electronic circuitry of the ITM which includes a
microprocessor, and an ultrasonic receive transducer.
A molded plastic connector receptacle containing six
terminal pins that is soldered to a small circuit board
and extends through a clearance hole in the left front
corner of the ITM housing, and an ultrasonic trans-
mit transducer housing extends from the center of
the right side of the ITM housing. Both the transmit
transducer on the right side of the module and the
receive transducer on the ITM circuit board are
aimed through two small round holes in the sight
shield of the trim cover. The ITM is connected to the
vehicle electrical system by a dedicated take out and
connector of the overhead wire harness that is inte-
gral to the headliner.
The ITM unit cannot be adjusted or repaired and,
if faulty or damaged, it must be replaced. The ITM is
serviced as a unit with the trim cover.
OPERATION
The microprocessor in the Intrusion Transceiver
Module (ITM) contains the motion sensor logic cir-
cuits and controls all of the features of the premium
version of the Vehicle Theft Alarm (VTA). The ITM
uses On-Board Diagnostics (OBD) and can communi-
cate with other electronic modules in the vehicle as
well as with the DRBIIItscan tool using the Pro-
grammable Communications Interface (PCI) data bus
network. This method of communication is used by
the ITM to communicate with the Body Control Mod-
ule (BCM) and for diagnosis and testing through the
16-way data link connector located on the driver side
lower edge of the instrument panel. The ITM also
communicates with the alarm siren over a dedicated
serial bus circuit.
The ITM microprocessor continuously monitors
inputs from its on-board motion sensor circuitry as
well as inputs from the BCM and the alarm siren
module. The on-board ITM motion sensor circuitry
transmits ultrasonic signals into the vehicle cabin
through a transmit transducer, then listens to the
returning signals as the bounce off of objects in the
vehicle interior. If an object is moving in the interior,
a detection circuit in the ITM senses this movement
through the modulation of the returning ultrasonic
signals that occurs due to the Doppler effect. The
motion detect function of the ITM can be disabled by
depressing the ªLockº button on the Remote Keyless
Entry (RKE) transmitter three times within fifteen
seconds, while the security indicator is still flashing
rapidly. The ITM will signal the alarm siren module
to provide a single siren ªchirpº as an audible confir-
mation that the motion sensor function has been dis-
abled.
If movement is detected, the ITM sends an elec-
tronic message to the BCM over the PCI data bus toflash the exterior lighting and sends an electronic
message to the alarm siren module over a dedicated
serial bus line to sound the siren. When the BCM
detects a breach in the perimeter protection through
a door, tailgate, flip-up glass, or hood ajar switch
input, it sends an electronic message to the ITM and
the ITM sends an electronic message to the BCM
over the PCI data bus to flash the exterior lighting
and sends an electronic message to the alarm siren
module over a dedicated serial bus line to sound the
siren. The ITM also monitors inputs from the alarm
siren module for siren battery or siren input/output
circuit tamper alerts, and siren battery condition
alerts, then sets active and stored Diagnostic Trouble
Codes (DTC) for any monitored system faults it
detects. An active fault only remains for the current
ignition switch cycle, while a stored fault causes a
DTC to be stored in memory by the ITM. If a fault
does not recur for fifty ignition cycles, the ITM will
automatically erase the stored DTC.
The ITM is connected to the vehicle electrical sys-
tem through a dedicated take out and connector of
the overhead wire harness. The ITM receives battery
current on a fused B(+) circuit through a fuse in the
Junction Block (JB), and receives ground through a
ground circuit and take out of the body wire harness.
This ground take out has a single eyelet terminal
connector that is secured by a ground screw to the
base of the left D-pillar behind the quarter trim
panel. These connections allow the ITM to remain
operational, regardless of the ignition switch position.
The hard wired inputs and outputs for the ITM may
be diagnosed and tested using conventional diagnos-
tic tools and procedures. However, conventional diag-
nostic methods will not prove conclusive in the
diagnosis of the ITM, the PCI data bus network, or
the electronic message inputs to and outputs from
the ITM. The most reliable, efficient, and accurate
means to diagnose the ITM, the PCI data bus net-
work, and the electronic message inputs to and out-
puts from the ITM requires the use of a DRBIIIt
scan tool. Refer to the appropriate diagnostic infor-
mation.
REMOVAL
(1) Disconnect and isolate the battery negative
cable.
(2) While pulling downward lightly on either rear
corner of the Intrusion Transceiver Module (ITM)
trim cover, insert a small thin-bladed screwdriver
through each of the service holes on the rear edge of
the trim cover to depress and release the two inte-
gral rear latch features of the module from the
mounting bracket above the headliner (Fig. 11).
(3) Pull the ITM trim cover rearward far enough
to disengage the two integral front latch features of
KJVEHICLE THEFT SECURITY 8Q - 15
INTRUSION TRANSCEIVER MODULE (Continued)
Page 698 of 1803

the engine compartment, on the front extension of
the right front wheel house panel below and behind
the right headlamp. This unit is designed to provide
the audible alert requirements for the ROW premium
VTA.
The alarm siren module consists of microprocessor-
based electronic control circuitry, the siren, and a
nickel metal hydride backup battery. All of the alarm
module components are protected and sealed within
a black molded plastic housing. A stamped steel
mounting bracket is secured to the module with
three stud plates and nuts that fit into slotted holes
at the top and each side of the bracket. The front
surface of the bracket features a tightly grouped
series of small holes that serves as an outlet for the
audible output of the alarm siren. The bottom of the
mounting bracket is bent at a right angle and has an
integral locating tab feature. Two mounting holes in
the horizontal surface of the bracket are used to
secure the alarm siren module to the wheel house
extension with two screws. An integral connector
receptacle extends forward from the upper left corner
of the alarm siren housing, and connects the unit to
the vehicle electrical system through a dedicated
take out and connector of the headlamp and dash
wire harness.
The alarm siren module cannot be repaired or
adjusted and, if faulty or damaged, it must be
replaced.
OPERATION
The microprocessor within the alarm siren module
performs the tasks required to provide the siren unit
features and functions based upon internal program-
ming and electronic arm and disarm message inputs
received from the Intrusion Transceiver Module
(ITM) over a dedicated serial bus communication cir-
cuit. The alarm siren module will self-detect prob-
lems with its internal and external power supply and
communication circuits, then send electronic mes-
sages indicating the problem to the ITM upon receiv-
ing a request from the ITM. The ITM will store a
Diagnostic Trouble Code (DTC) for a detected alarm
siren module fault that can be retrieved with the
DRBIIItscan tool over the Programmable Communi-
cations Interface (PCI) data bus network through the
16-way data link connector located on the driver side
lower edge of the instrument panel.
When the Rest-Of-World (ROW) premium version
of the Vehicle Theft Alarm (VTA) is armed, the alarm
siren module microprocessor continuously monitors
inputs from the ITM for messages to sound its inter-
nal siren and enters its auto-detect mode. While in
the auto-detect mode, if the alarm siren module
detects that its power supply or communication cir-
cuits are being tampered with or have been sabo-taged, it will sound an alarm and continue to operate
through its on-board backup battery. If the arm siren
module is in its disarmed mode when its power sup-
ply or communication circuits are interrupted, the
siren will not sound. The alarm module will also
notify the ITM when the backup battery requires
charging, and the ITM will send a message that will
allow the backup battery to be charged through the
battery current and ground circuits to the alarm
module only when the ignition switch is in the On
position and the engine is running. This will prevent
the charging of the alarm backup battery from
depleting the charge in the main vehicle battery
while the vehicle is not being operated.
The alarm siren module receives battery current
on a fused B(+) circuit through a fuse in the Power
Distribution Center (PDC), and receives ground
through a ground circuit and take out of the head-
lamp and dash wire harness. This ground take out
has a single eyelet terminal connector that is secured
by a ground screw to the left inner fender shield in
the engine compartment. These connections allow the
alarm siren module to remain operational, regardless
of the ignition switch position. The hard wired inputs
and outputs for the alarm siren module may be diag-
nosed and tested using conventional diagnostic tools
and procedures. However, conventional diagnostic
methods will not prove conclusive in the diagnosis of
the internal circuitry or the backup battery of the
alarm siren module, the ITM, the serial bus commu-
nication line, or the electronic message inputs to and
outputs from the alarm siren module. The most reli-
able, efficient, and accurate means to diagnose the
alarm siren module, the ITM, the serial bus commu-
nication line, and the electronic message inputs to
and outputs from the alarm siren module requires
the use of a DRBIIItscan tool. Refer to the appro-
priate diagnostic information.
REMOVAL
(1) Disconnect and isolate the battery negative
cable.
(2) Disconnect the headlamp and dash wire har-
ness connector for the alarm siren module from the
module connector receptacle (Fig. 14).
(3) Remove the two screws that secure the alarm
siren module to the front extension of the right front
wheel house panel.
(4) Remove the alarm siren module from the front
extension of the right front wheel house panel.
INSTALLATION
(1) Position the alarm siren module onto the front
extension of the right front wheel house panel (Fig.
14).
KJVEHICLE THEFT SECURITY 8Q - 17
SIREN (Continued)
Page 699 of 1803

(2) Install and tighten the two screws that secure
the alarm siren module to the front extension of the
right front wheel house panel. Tighten the screws to
6 N´m (50 in. lbs.).
(3) Reconnect the headlamp and dash wire harness
connector for the alarm siren module to the module
connector receptacle.
(4) Reconnect the battery negative cable.
NOTE: If the alarm siren module has been replaced
with a new unit, the new unit MUST be configured
in the Intrusion Transceiver Module (ITM) before the
Vehicle Theft Security System can operate as
designed. The use of a DRBIIITscan tool is required
to configure the alarm siren module settings in the
ITM. Refer to the appropriate diagnostic informa-
tion.
TRANSPONDER KEY
DESCRIPTION
Each ignition key used in the Sentry Key Immobi-
lizer System (SKIS) has an integral transponder chip
(Fig. 15). Ignition keys with this feature can be
readily identified by a gray rubber cap molded onto
the head of the key, while conventional ignition keys
have a black molded rubber cap. The transponderchip is concealed beneath the molded rubber cap,
where it is molded within a plastic mount into the
head of the metal key. In addition to being cut to
match the mechanical coding of the ignition lock cyl-
inder, each new Sentry Key has a unique transpon-
der identification code permanently programmed into
it by the manufacturer. The Sentry Key transponder
cannot be adjusted or repaired. If faulty or damaged,
the entire key must be replaced.
OPERATION
When the ignition switch is turned to the On posi-
tion, the Sentry Key Immobilizer Module (SKIM)
communicates through its antenna with the Sentry
Key transponder using a Radio Frequency (RF) sig-
nal. The SKIM then listens for a RF response from
the transponder through the same antenna. The Sen-
try Key transponder chip is within the range of the
SKIM transceiver antenna ring when it is inserted
into the ignition lock cylinder. The SKIM determines
whether a valid key is present in the ignition lock
cylinder based upon the response from the transpon-
der. If a valid key is detected, that fact is communi-
cated by the SKIM to the Powertrain Control Module
(PCM) over the Programmable Communications
Interface (PCI) data bus, and the PCM allows the
engine to continue running. If the PCM receives an
invalid key message, or receives no message from the
SKIM over the PCI data bus, the engine will be dis-
abled after about two seconds of operation. The Elec-
troMechanical Instrument Cluster (EMIC) will also
respond to the invalid key message on the PCI data
bus by flashing the SKIS indicator on and off.
Fig. 14 Siren Remove/Install
1 - SCREW (2)
2 - WIRE HARNESS CONNECTOR
3 - SIREN
Fig. 15 Sentry Key Immobilizer Transponder
1 - MOLDED CAP
2 - TRANSPONDER CHIP
3 - MOLDED CAP REMOVED
4 - TRANSPONDER KEY
8Q - 18 VEHICLE THEFT SECURITYKJ
SIREN (Continued)
Page 704 of 1803

An electrically operated intermittent front wiper
and washer system is standard factory-installed
safety equipment on this model (Fig. 1). The front
wiper and washer system includes the following
major components, which are described in further
detail elsewhere in this service information:
²Body Control Module- The Body Control
Module (BCM) is located on the Junction Block (JB)
under the driver side outboard end of the instrument
panel. (Refer to 8 - ELECTRICAL/ELECTRONIC
CONTROL MODULES/BODY CONTROL MODULE
- DESCRIPTION).
²Front Check Valve- The front washer system
check valve is integral to the wye fitting located in
the washer plumbing between the cowl plenum
washer hose and the front washer nozzles, and is
concealed beneath the cowl plenum cover/grille panel
at the base of the windshield.
²Front Washer Nozzle- Two fluidic front
washer nozzles are secured with integral snap fea-
tures to dedicated openings in the cowl plenum cover/
grille panel located near the base of the windshield.
²Front Washer Plumbing- The plumbing for
the front washer system consists of rubber hoses and
molded plastic fittings. The plumbing is routed along
the right side of the engine compartment from the
washer reservoir, and through the dash panel into
the cowl plenum to the front washer nozzle fittings
beneath the cowl plenum cover/grille panel.
²Front Wiper Arm- The two front wiper arms
are secured with nuts to the threaded studs on the
ends of the two wiper pivot shafts, which extend
through the cowl plenum cover/grille panel located
near the base of the windshield.
²Front Wiper Blade- The two front wiper
blades are secured to the two front wiper arms with
an integral latch, and are parked on the glass near
the bottom of the windshield when the front wiper
system is not in operation.
²Front Wiper Module- The front wiper pivot
shafts are the only visible components of the front
wiper module. The remainder of the module is con-
cealed within the cowl plenum area beneath the cowl
plenum cover/grille panel. The front wiper module
includes the wiper module bracket, four rubber-iso-
lated wiper module mounts, the front wiper motor,
the wiper motor crank arm, the two wiper drive
links, and the two front wiper pivots.
²Multi-Function Switch- The multi-function
switch is located on the top of the steering column,
just below the steering wheel. The multi-function
switch includes a left (lighting) control stalk and a
right (wiper) control stalk. The right control stalk is
dedicated to providing all of the driver controls for
both the front and rear wiper systems. (Refer to 8 -ELECTRICAL/LAMPS/LIGHTING - EXTERIOR/
MULTI-FUNCTION SWITCH - DESCRIPTION).
²Washer Fluid Level Switch- The washer fluid
level switch is located in a dedicated hole near the
center of the rearward facing surface of the washer
reservoir, behind the right front wheel house splash
shield.
²Washer Pump/Motor- The reversible electric
washer pump/motor unit is located in a dedicated
hole on the lower outboard side of the washer reser-
voir, behind the right front wheel house splash
shield. This single reversible washer pump/motor
provides washer fluid to either the front or rear
washer system plumbing, depending upon the direc-
tion of the pump motor rotation.
²Washer Reservoir- The washer reservoir is
concealed behind the right front wheel house splash
shield ahead of the right front wheel. The washer
reservoir filler neck is the only visible portion of the
reservoir, and it is accessed from the right front cor-
ner of the engine compartment.
²Wiper High-Low Relay- The wiper high-low
relay is an International Standards Organization
(ISO) micro relay located in the Power Distribution
Center (PDC) in the engine compartment near the
battery.
²Wiper On-Off Relay- The wiper on-off relay is
an International Standards Organization (ISO) micro
relay located in the Power Distribution Center (PDC)
in the engine compartment near the battery.
Hard wired circuitry connects the front wiper and
washer system components to the electrical system of
the vehicle. These hard wired circuits are integral to
several wire harnesses, which are routed throughout
the vehicle and retained by many different methods.
These circuits may be connected to each other, to the
vehicle electrical system and to the front wiper and
washer system components through the use of a com-
bination of soldered splices, splice block connectors,
and many different types of wire harness terminal
connectors and insulators. Refer to the appropriate
wiring information. The wiring information includes
wiring diagrams, proper wire and connector repair
procedures, further details on wire harness routing
and retention, as well as pin-out and location views
for the various wire harness connectors, splices and
grounds.
OPERATING MODES The components of the front
wiper and washer system are designed to work in
concert to provide the following operating modes:
²Continuous Wipe Mode- The control knob on
the right (wiper) control stalk of the multi-function
switch has two continuous wipe positions, Low and
High. When selected, these switch positions will
cause the two-speed front wiper motor to operate in a
continuous low or high speed cycle.
KJFRONT WIPERS/WASHERS 8R - 3
FRONT WIPERS/WASHERS (Continued)
Page 707 of 1803

cycles that occur after the front Wash switch state
changes to open, and to determine the proper inter-
val at which to de-energize the wiper on/off relay to
complete the wipe-after-wash mode cycle.
DIAGNOSIS AND TESTING - FRONT WIPER &
WASHER SYSTEM
FRONT WIPER SYSTEM
If the front wiper motor operates, but the wipers
do not move on the windshield, replace the faulty
front wiper module. If the wipers operate, but chat-
ter, lift, or do not clear the glass, clean and inspect
the front wiper system components as required.
(Refer to 8 - ELECTRICAL/FRONT WIPERS/WASH-
ERS - INSPECTION) and (Refer to 8 - ELECTRI-
CAL/FRONT WIPERS/WASHERS - CLEANING). For
diagnosis and testing of the multi-function switch
(Refer to 8 - ELECTRICAL/LAMPS/LIGHTING -
EXTERIOR/MULTI-FUNCTION SWITCH - DIAG-
NOSIS AND TESTING). Refer to the appropriate
wiring information. The wiring information includes
wiring diagrams, proper wire and connector repair
procedures, details of wire harness routing and
retention, connector pin-out information and location
views for the various wire harness connectors, splices
and grounds.
The hard wired circuits and components of the
front wiper and washer system may be diagnosed
and tested using conventional diagnostic tools and
procedures. However, conventional diagnostic meth-
ods may not prove conclusive in the diagnosis of the
Body Control Module (BCM), or the inputs to or out-
puts from the BCM that control the various front
wiper and washer system operating modes. The most
reliable, efficient, and accurate means to diagnose
the BCM, or the BCM inputs and outputs related to
the various front wiper and washer system operating
modes requires the use of a DRBIIItscan tool. Refer
to the appropriate diagnostic information.
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
SIDE CURTAIN AIRBAG, OR INSTRUMENT PANEL
COMPONENT DIAGNOSIS OR SERVICE. DISCON-
NECT AND ISOLATE THE BATTERY NEGATIVE
(GROUND) CABLE, THEN WAIT TWO MINUTES FOR
THE SYSTEM CAPACITOR TO DISCHARGE BEFORE
PERFORMING FURTHER DIAGNOSIS OR SERVICE.
THIS IS THE ONLY SURE WAY TO DISABLE THE
SUPPLEMENTAL RESTRAINT SYSTEM. FAILURE TO
TAKE THE PROPER PRECAUTIONS COULDRESULT IN ACCIDENTAL AIRBAG DEPLOYMENT
AND POSSIBLE PERSONAL INJURY.
FRONT WASHER SYSTEM
The diagnosis found here addresses an electrically
inoperative front washer system. If the washer
pump/motor operates, but no washer fluid is emitted
from the front washer nozzles, be certain to check
the fluid level in the reservoir. Also inspect the front
washer system components as required. (Refer to 8 -
ELECTRICAL/FRONT WIPERS/WASHERS -
INSPECTION). Refer to the appropriate wiring infor-
mation. The wiring information includes wiring dia-
grams, proper wire and connector repair procedures,
details of wire harness routing and retention, connec-
tor pin-out information and location views for the
various wire harness connectors, splices and grounds.
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, DISABLE THE SUPPLEMENTAL RESTRAINT
SYSTEM BEFORE ATTEMPTING ANY STEERING
WHEEL, STEERING COLUMN, DRIVER AIRBAG,
PASSENGER AIRBAG, SEAT BELT TENSIONER,
SIDE CURTAIN AIRBAG, OR INSTRUMENT PANEL
COMPONENT DIAGNOSIS OR SERVICE. DISCON-
NECT AND ISOLATE THE BATTERY NEGATIVE
(GROUND) CABLE, THEN WAIT TWO MINUTES FOR
THE SYSTEM CAPACITOR TO DISCHARGE BEFORE
PERFORMING FURTHER DIAGNOSIS OR SERVICE.
THIS IS THE ONLY SURE WAY TO DISABLE THE
SUPPLEMENTAL RESTRAINT SYSTEM. FAILURE TO
TAKE THE PROPER PRECAUTIONS COULD
RESULT IN ACCIDENTAL AIRBAG DEPLOYMENT
AND POSSIBLE PERSONAL INJURY.
(1) Turn the ignition switch to the On position.
Turn the control knob on the right (wiper) control
stalk of the multi-function switch to the On position.
Check whether the front wiper system is operating.
If OK, go to Step 2. If not OK, test and repair the
front wiper system before continuing with these
tests. Refer to FRONT WIPER SYSTEM .
(2) Turn the control ring on the right (wiper) con-
trol stalk of the multi-function switch to the rear
Wash position. Check whether the rear washer sys-
tem is operating. If OK, test the multi-function
switch. (Refer to 8 - ELECTRICAL/LAMPS/LIGHT-
ING - EXTERIOR/MULTI-FUNCTION SWITCH -
DIAGNOSIS AND TESTING). If the multi-function
switch tests OK, go to Step 3. If the multi-function
switch does not test OK, replace the faulty switch.
(3) Turn the ignition switch to the Off position.
Disconnect and isolate the battery negative cable.
Disconnect the headlamp and dash wire harness con-
nector for the washer pump/motor unit from the
pump/motor unit connector receptacle. Check for con-
tinuity between the washer pump driver circuit cav-
8R - 6 FRONT WIPERS/WASHERSKJ
FRONT WIPERS/WASHERS (Continued)