gas type SSANGYONG NEW REXTON 2012 Service Manual
[x] Cancel search | Manufacturer: SSANGYONG, Model Year: 2012, Model line: NEW REXTON, Model: SSANGYONG NEW REXTON 2012Pages: 600, PDF Size: 73.29 MB
Page 163 of 600

0000-00
5. RECOMMENDED FLUIDS AND LUBRICANTS
- Use only Ssangyong recommended fluids and lubricants.
- Keep the specified levels when adding or replacing the fluids.
- Do not mix any different types or brands of oils or fluids. This may cause damages.
D20DTR: Diesel 2.0 (EU5), D20DT: Diesel 2.0, D27DTP: Diesel 2.7 Power-Up,
D27DT: Diesel 2.7, G32D: Gasoline
Page 193 of 600

Oil pan and baffle plate (integrated type) Oil strainer
Heavy-duty PCV oil separator
7. LAYOUT OF LUBRICATION SYSTEM
The first separation will happen when blow-by gas
passes through baffle plates in cylinder head
cover. Then oil and gas will be separated due to
cyclone effect after entering the oil separator inlet
port. Separated oil returns to oil pan via oil drain
port and the gas will be burnt again after entering
the combustion chamber through air duct hose
via PCV valve that opens/closes due to pressure
differences between the intake side and
crankcase.
Cylinder head
cover (oil + gas)Intake air
duct hose
(blow-by gas)
Baffle plate
Oil gauge pipe
Oil dipstick gauge
Page 227 of 600

1533-01
Throttle bodies by engine type
The throttle valve is controlled by electric signals sent from the engine ECU for optimal fuel
injection volume, engine load and effective combustion of EGR gas according to the Euro 4
regulations. It has following functions by the engine type. -
Page 234 of 600

PCV Oil Separator
Oil Pan & Baffle Plate (Integrated type) Oil Strainer
The first separation will happen when blow-by gas
passes through baffle plates in cylinder head cover.
Then oil and gas will be separated due to cyclone
effect after entering the oil separator inlet port.
Separated oil returns to oil pan via oil drain port and
the gas will be burnt again after entering the
combustion chamber through air duct hose via
PCV valve that opens/closes due to pressure
differences between the intake side and crankcase.
Cylinder head cover (oil + gas)
Oil (gauge pipe)
Oil (gauge pipe) Inlet port
Oil dipstick gauge
1. LAYOUT OF LUBRICATION SYSTEM
Page 275 of 600

(2) Cylinder pressure leakage test
If the measured value of the compression pressure test is not within the specifications, perform the
cylinder pressure leakage test.Specified value
Perform this test in the sequence of firing order.
Do not test the cylinder pressure leakage with wet type test procedure. (do not inject the engine oil
into the combustion chamber) -
-
Test condition: normal engine operating Specified value
Whole engine below 25%
at valve and cylinder head gasket below 10%
at piston ring below 20%
Crank the engine for approx. 10 seconds by
using the start motor. 2.
Record the test result and measure the
compression pressure of other cylinders with
same manner. 3.
If the measured value is out of specified
value, perform the cylinder pressure leakage
test. 4.
Page 285 of 600

Brake booster and naster
cylinderVacuum pump
Pump capacity: 210 cc/rev
Camshaft speed: 375 to 3,000 rpm
Lubrication temperature: -40 to
Oil: 5W30
Drive type: Driven by exhaust
Camshaft sprocket
2. VACUUM PUMP
Vacuum pump generates the vacuum pressure and supplies it to EGR cooler bypass solenoid. This
pump is single vane type and displacement is 210 cc/rev. The lubrication oil is supplied through the hole
in hollow shaft.
Components
EGR cooler bypass valve
This valve is controlled by ECU.
When the engine is cooled, the
exhaust gas goes to combustion
chamber without passing through
EGR cooler because the valve is
closed by vacuum pressure.
Page 296 of 600

0000-00
Thickness marking
Ex: 1.3t
4) Cylinder Head Gasket
(1) Features
Sealing the cylinder gas pressure - Peak pressure: 190 bar
Minimizing the distortion of engine structure (cylinder head, block): profile stopper, backland stopper
Material: MLS (Multi Layer Steel), Gasket (3 layers)
Thickness of gasket: 3 types (1.2 /1.3 /1.4 mm) 1.
2.
3.
4.
(2) Thickness of cylinder head gasket
There are three types of gasket to managing the compression ratio.
Piston protrusion
Piston protrusion Thickness
0.475 to 0.540 mm 1.2t
0.541 to 0.649 mm 1.3t
0.650 to 0.745 mm 1.4t
Page 368 of 600

1914-01
1. SYSTEM DESCRIPTION OF E-VGT
(Electric-Variable Geometry Turbine)
The E-VGT turbocharger has one shaft where at each ends are installed with two turbines having
different angles to connect one end of housing to the intake manifold and the other end to the exhaust
manifold. As the turbine, at exhaust end, is rotated by exhaust gas pressure the impeller, at intake end,
gets rotated to send air around center of the impeller, being circumferentially accelerated by the
centrifugal force, into the diffuser. The air, which has been introduced to the diffuser having a passage
with big surface, transforms its speed energy into the pressure energy while being supplied to the
cylinder improving the volume efficiency. Also, the exhaust efficiency improves as the exhaust turbine
rotates. The turbocharger is often referred to as the exhaust turbine turbocharger.
1) Overview
Diffuser: With the meaning of spreading out it is a device that transforms fluid's speed energy into the
pressure energy by enlarging the fluid's passage to slow down the flow.
The E-VGT system installed to the D20DTR engine variably controls the passages of the turbine
housing to regulate the flow rate of the exhaust gas. The actuator of E-VGT is a DC motor actuator (E-
Actuator) which controls more quickly and precisely than the previous vacuum type actuator.
The engine ECU controls the E-Actuator electronically as follows:
At low speed: Narrows the flow passage for the exhaust gas, resulting in increasing the flow
speed of the exhaust gas and running the turbine quickly and powerfully.
At high speed: Expands the flow passage for the exhaust gas, resulting in increasing the mass
flow of the exhaust gas and running the turbine more powerfully. -
-
Page 400 of 600

1413-00
Voltage pattern in actual stepGCU PWM control
4) Operation
Glow plug is installed in the cylinder head. It enhances the cold starting performance and reduces the
exhaust gas during cold starting.
ECU receives the data (engine rpm, coolant temperature, vehicle speed) through CAN lines. Based on the
data, GCU controls the pre-glow, cranking and post-glow. It also checks the glow plugs, and sends the
result to ECU.
Duty control area:
Between 5 and 100%
Frequency: 20 Hz
1.
2.
3.
(1) Temperature/Current Properties of GCU
FETs (similar to transistor) for each cylinder are integrated in GCU. During the pre-glow period, battery
voltage is supplied to the glow plugs directly to heat them rapidly.
After getting the desired temperature by pre-glowing, the temperature is controlled by duty ratio. 1.
2.
3.
Frequency:
20~33Hz
PWM control duty
ratio
- 1st step: 100%
- 2nd step: 35%
- 3rd step: 23%
This describes the voltage supplying types to glow plugs. This shows the supplying voltage and
time by GCU in each step. The 3rd
step is the period to keep the
temperature.
(2) Operation Type of GCU
Page 419 of 600

1793-00
1. SPECIFICATION
Item Specification
E-EGR valveMotorEGR response time 50 ms
Driven by DC motor
Valve EGR gas flow rate 120 kg/h
Cooling capacity 8.3 kW or more
Cooling fin type Wavy fin
Cooler type U-shaped
E-EGR bypass valve Solenoid valve Drivien byVacuum
(Solenoid valve)
E-EGR cooler
Position sensorSensing type Hole sensor
Supplied voltageMaximum signal
range5% ~ 95%
Maximum power
consumption