change time SUZUKI SWIFT 2000 1.G SF310 Service Workshop Manual
[x] Cancel search | Manufacturer: SUZUKI, Model Year: 2000, Model line: SWIFT, Model: SUZUKI SWIFT 2000 1.GPages: 557, PDF Size: 14.35 MB
Page 2 of 557

()x()x()x()x()x()x()x()x()x
()x()x()x()x()x()x()x()x()x
FOREWORD
This SUPPLEMENTARY SERVICE MANUAL is a supplement to SF SERIES SERVICE MANU-
ALS mentioned in next page and has been prepared exclusively for the following applicable mod-
el.
Applicable model: SF310 / SF413 of and after the vehicle identification numbers below.
Vehicle Identification Number (Vehicle Specification)
TSMMAA44S00600001 (SF310 3 door H / B 2WD)
TSMMAB44S00600001 (SF310 5 door H / B 2WD)
TSMMAA35S00600001 (SF413 3 door H / B 2WD)
TSMMAB35S00600001 (SF413 5 door H / B 2WD)
TSMMAB35S10600001 (SF413 5 door H / B 2WD)
TSMMSF35S00600001 (SF413 3 door H / B 4WD)
TSMMSG35S00600001 (SF413 5 door H / B 4WD)
TSMMAH35S00600001 (SF413 4 door N / B 2WD)
TSMMAH35S10600001 (SF413 4 door N / B 2WD)
When servicing the above applicable models, refer to this SUPPLEMENTARY SERVICE MANU-
AL first. If necessary information is not found in this SUPPLEMENTARY SERVICE MANUAL, re-
fer to RELATED MANUALS specified next page.
All information, illustrations and specifications contained in this literature are based on the latest
product information available at the time of publication approval. And used as the main subject
of description is the vehicle of standard specifications among others. Therefore, note that illustra-
tions may differ from the vehicle being actually serviced.
The right is reserved to make changes at any time without notice.
OVERSEAS SERVICE DEPARTMENT
COPYRIGHT SUZUKI MOTOR CORPORATION 2000
Page 67 of 557

6-16 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
DTC
NO.DETECTING ITEMDETECTING CONDITION
(DTC will set when detecting:)MIL
P0335Crankshaft position sensor
circuit malfunctionNo signal during engine running1 driving cycle
P0340Camshaft position sensor
circuit malfunctionNo signal for 2 sec. during engine cranking1 driving cycle
P0420Catalyst system efficiency
below threshold
Output waveforms of HO2S-1 and HO2S-2
are similar.
(Time from output voltage change of HO2S-1
to that of HO2S-2 is shorter than
specification.)
2 driving cycles
P0443EVAP Purge control valve
circuit malfunctionPurge control valve circuit is open or shorted
to ground2 driving cycles
P0480Radiator fan control circuit
malfunctionRadiator cooling fan relay terminal voltage is
low when cooling temp. is lower than
specification
2 driving cycles
P0500Vehicle speed sensor
malfunctionNo signal while running in “D” range or during
fuel cut at decelerating2 driving cycles
P0505Idle control system malfunction
Throttle opening change is small as compared
with electrically live time. Throttle valve opening
is not within its target range with CTP switch ON
or drive voltage exists though ECM (PCM) is not
outputting ISC drive command.
1 driving cycle
P0510Closed throttle position switch
malfunctionSwitch does not change from ON to OFF
(or from OFF to ON) even when vehicle speed
reaches over (or below) specification.
2 driving cycle
P1250Early Fuel Evaporation Heater
Circuit MalfunctionHeater monitor terminal voltage is higher than
specified value when EFE OFF or it is lower
than specified value when EFE ON.
2 driving cycles
P1450Barometric pressure sensor
circuit malfunctionBarometric pressure is lower or higher than
specification. (or sensor malfunction)1 driving cycle
P1451Barometric pressure sensor
performance problem
Difference between manifold absolute
pressure (MAP sensor value) and
barometric pressure (barometric pressure
sensor value) is larger than specification
during cranking.
2 driving cycles
P1500Starter signal circuit
malfunctionStarter signal is not inputted from engine
cranking till its start and after or it is always
inputted
2 driving cycles
P1510ECM (PCM) backup power
source malfunctionNo backup power after starting engine1 driving cycle
Page 84 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-33
CANIST PURGE DUTY (EVAP CANISTER
PURGE FLOW DUTY, %)
This parameter indicates valve ON (valve open) time
rate within a certain set cycle of EVAP purge solenoid
valve which controls the amount of EVAP purge.
0% means that the purge valve is completely closed
while 100% is a fully open valve.
CLOSED THROTTLE POSITION (ON / OFF)
This parameter will read ON when throttle valve is ful-
ly closed, or OFF when the throttle is not fully closed.
FUEL CUT (ON / OFF)
ON : Fuel being cut (output signal to injector is
stopped)
OFF : Fuel not being cut
RAD FAN
(RADIATOR FAN CONTROL RELAY, ON / OFF)
ON : Command for radiator fan control relay opera-
tion being output.
OFF : Command for relay operation not being out-
put.
ELECTRIC LOAD (ON / OFF)
ON : Headlight, small light, heater fan or rear win-
dow defogger ON signal inputted.
OFF : Above electric loads all turned OFF.
A / C SWITCH (ON / OFF)
ON : Command for A / C operation being output
from ECM (PCM) to A / C amplifier.
OFF : Command for A / C operation not being output.
FUEL TANK LEVEL (%)
This parameter indicates approximate fuel level in the
fuel tank. As the detectable range of the fuel level sen-
sor is set as 0 to 100%, however, with some models
whose fuel tank capacity is smaller, the indicated fuel
level may be only 70% even when the fuel tank is full.
PSP SWITCH (ON / OFF)
ON : PSP switch detects P / S operation (high PS
pressure).
OFF : PSP switch not detects P / S operation.
BAROMETRIC PRESS (kPa, inHg)
This parameter represents a measurement of baro-
metric air pressure and is used for altitude correction
of the fuel injection quantity and ISC actuator control.
FUEL PUMP (ON / OFF)
ON is displayed when the ECM (or PCM) activates the
fuel pump via the fuel pump relay switch.
VSS (A / T) (km / h, MPH)
If is computed by using pulse signals from vehicle
(output) speed sensor on automatic transmission.
TRANS RANGE (TRANSMISSION RANGE
SENSOR, P, R, N, D, 2 OR L)
It is indicated transmission range detected by trans-
mission range sensor.
SHIFT SOL 1-CON (SHIFT SOLENOID-1,
ON / OFF)
ON : ON command being output to shift solenoid-1
OFF : ON command not being output.
SHIFT SOL 2-CON (SHIFT SOLENOID-2,
ON / OFF)
ON : ON command being output to shift solenoid-2
OFF : ON command not being output.
SHIFT SOL 1-MON (SHIFT SOLENOID-1,
ON / OFF)
The monitor result of the shift solenoid-1 circuit is dis-
played.
ON : Electricity being passed to shift solenoid-1 or
circuit open.
OFF : Electricity not being passed or circuit short.
SHIFT SOL 2-MON (SHIFT SOLENOID-2,
ON / OFF)
The monitor result of the shift solenoid-2 circuit is dis-
played.
ON : Electricity being passed to shift solenoid-2 or
circuit open.
OFF : Electricity not being passed or circuit short.
THROT POS LEVEL (THROTTLE POSITION
LEVEL FOR A / T, “0”, “1”, “2”, “3”, “4”, “5”, “6”
or “7”)
This parameter indicates which level (zone) the
throttle valve opening is in. The throttle opening is di-
vided into 8 levels (zones) from “0” (about idle posi-
tion) to “7” (about full open) and signals are assigned
to each opening level (zone). ECM (PCM) control the
automatic gear change of the automatic transmission
by using these signals according to the signal from
the TP sensor.
GEAR POSITION
This parameter indicates the A / T gear position which
is computed on signals from the Transmission Range
Switch, VSS, TP Sensor, and so forth.
Page 106 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-55
Fig. 1 for Step 3 Fig. 2 for Step 3
Normal
Fig. 1
HO2S-1
Output
voltage1 cycle time
Response time
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Is there DTC(s) other than HO2S-1
(DTC P0130)?Go to applicable DTC
Diag. Flow Table.Go to Step 3.
31) Connect scan tool to DLC with ignition switch
OFF.
2) Warm up engine to normal operating
temperature and keep it at 2000 r / min. for
60 sec.
3) Repeat racing engine (Repeat depressing
accelerator pedal 5 to 6 times continuously
and take foot off from pedal to enrich and
enlean A / F mixture). See Fig. 1 and 2.
Does HO2S-1 output voltage deflect between
0.3 V and over 0.6 V repeatedly?Intermittent trouble.
Check for intermittent
referring to “Intermittent
and Poor Connection”
in Section 0A.Check “R” and “G”
wires for open and
short, and connections
for poor connection.
If wires and connections
are OK, replace
HO2S-1.
DTC P0133 HEATED OXYGEN SENSOR (HO2S) CIRCUIT SLOW RESPONSE
(SENSOR-1)
WIRING DIAGRAM / CIRCUIT DESCRIPTION – Refer to DTC P0130 section.
DTC DETECTING CONDITION
POSSIBLE CAUSE
When running at specified idle speed after engine
warmed up and running at specified vehicle speed,
response time (time to change from lean to rich or
from rich to lean) of HO2S-1 output voltage is about
1 sec. at minimum or average time of 1 cycle is 5 sec.
at minimum. See. Fig. 1
2 driving cycle detection logic, Monitoring once / 1
driving.Heated oxygen sensor-1 malfunction
Page 119 of 557

Ignition coil
Igniter
Ignition switch
Main
fuse
Injector resistor
Fuel injector
Crankshaft
position sensor
Camshaft
position sensor
Ground
at engine “I / G COIL METER”
Main relay
6-68 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
DTC P0300 RANDOM MISFIRE DETECTED (Misfire detected at 2 or more
cylinders)
DTC P0301 CYLINDER 1 MISFIRE DETECTED
DTC P0302 CYLINDER 2 MISFIRE DETECTED
DTC P0303 CYLINDER 3 MISFIRE DETECTED
CIRCUIT DESCRIPTION
ECM (PCM) monitors crankshaft revolution speed and engine speed via the crankshaft position sensor and cylin-
der No. via the camshaft position sensor. Then it calculates the change in the crankshaft revolution speed and from
how many times such change occurred in every 200 or 1000 engine revolutions, it detects occurrence of misfire.
When ECM (PCM) detects a misfire (misfire rate per 200 revolutions) which can cause overheat and damage to
the three way catalytic converter, it makes the malfunction indicator lamp (MIL) flash as long as misfire occurs at
that rate.
After that, however, when the misfire rate drops, MIL remains ON until it has been judged as normal 3 times under
the same driving conditions.
Also, when ECM (PCM) detects a misfire (misfire rate per 1000 revolutions) which will not cause damage to three
way catalytic converter but can cause exhaust emission to be deteriorated, it makes MIL light according to the 2
driving cycle detection logic.
Page 137 of 557

Main
fuseMain relay
Idle speed
control relay
To TP sensor
Idle speed control actuator
6-86 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
DTC P0505 IDLE CONTROL SYSTEM MALFUNCTION
CIRCUIT DESCRIPTION
DTC DETECTING CONDITIONPOSSIBLE CAUSE
DTC will set when A, B or C condition is met.
A: Throttle opening change is small as compared with
electrically live time.
B: Throttle valve opening is not within its target range
with CTP switch ON.
C: Drive voltage exists though ECM (PCM) is not
outputting ISC drive command.Malajusted accelerater cable
Poor movement of throttle valve
Closed throttle position switch malfunction
Idle speed control actuator malfunction
Idle speed control relay malfunction
“Gr / B”, “Gr / Y”, “Gr”, “Gr / R”, “Gr / G”, “Lg” or “B/Bl”
circuit open or short
Throttle position sensor malfunction
ECM (PCM) malfunction
DTC CONFIRMATION PROCEDURE
1) Turn ignition switch OFF.
2) Clear DTC with ignition switch ON.
3) Start cold engine.
4) Run it idle for 5 min.
5) Select “DTC” mode on scan tool and check DTC.
NOTE:
If engine speed changes up and down when engine speed is increased by opening throttle valve more
than half but not changing its opening, it is possible that closed throttle position switch is malfunction-
ing.
Page 172 of 557

6-1-16 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
DTC
NO.DETECTING ITEMDETECTING CONDITION
(DTC will set when detecting:)MIL
P0335Crankshaft position sensor
circuit malfunctionNo signal for 2 sec. During engine cranking1 driving
cycle
P0340Camshaft position sensor circuit
malfunctionNo signal during engine running1 driving
cycle
P0400Exhaust gas recirculation
flow malfunction detectedExcessive or insufficient EGR flow2 driving
cycles
P0420Catalyst system efficiency below
threshold
Output waveforms of HO2S-1 and HO2S-2 are
similar.
(Time from output voltage change of HO2S-1 to that
of HO2S-2 is shorter than specification.)
2 driving
cycles
P0443Purge control valve circuit
malfunctionPurge control valve circuit is open or shorted to
ground2 driving
cycles
P0480Radiator fan control circuit
malfunctionRadiator cooling fan relay terminal voltage is low
when cooling temp. is lower than specification2 driving
cycles
P0500Vehicle speed sensor
malfunctionNo signal while running in “D” range or during fuel cut
at decelerating2 driving
cycles
P0505Idle control system malfunctionNo closed signal to IAC valve is detected2 driving
cycles
P0601Internal control module memory
check sum errorData write error (or check sum error) when written
into ECM (PCM)1 driving
cycle
P1450Barometric pressure sensor
circuit malfunctionBarometric pressure is lower or higher than
specification. (or sensor malfunction)1 driving
cycle
P1451Barometric pressure sensor
performance problem
Difference between manifold absolute pressure
(MAP sensor value) and barometric pressure
(barometric pressure sensor value) is larger than
specification during cranking.
2 driving
cycles
P1500Starter signal circuit malfunctionStarter signal is not inputted from engine cranking till
its start and after or it is always inputted2 driving
cycles
P1510ECM (PCM) backup power
source malfunctionNo backup power after starting engine1 driving
cycle
Page 212 of 557

6-1-56 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
Fig. 1
HO2S-1
Output
voltage1 cycle time
Response time
DTC P0133 HEATED OXYGEN SENSOR (HO2S) CIRCUIT SLOW RESPONSE
(SENSOR-1)
WIRING DIAGRAM / CIRCUIT DESCRIPTION – Refer to DTC P0130 section.
DTC DETECTING CONDITION
POSSIBLE CAUSE
When running at specified idle speed after engine
warmed up and running at specified vehicle speed,
response time (time to change from lean to rich or
from rich to lean) of HO2S-1 output voltage is about
1 sec. at minimum or average time of 1 cycle is 5 sec.
at minimum. See. Fig. 1
2 driving cycle detection logic, Monitoring once / 1
driving.Heated oxygen sensor-1 malfunction
DTC CONFIRMATION PROCEDURE – Refer to DTC P0130 section.
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Is there DTC(s) other than HO2S-1 (DTC P0133)?Go to applicable DTC
Diag. Flow Table.Replace HO2S-1.
Page 225 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-69
Ignition coil assembly
for No.1 & No.4 spark plugs
Ignition coil assembly
for No.2 & No.3 spark plugs
Ignition switch
Main relay
Main
fuseRelay box
To ignition switch
CKP sensorCMP sensorNo.1 injector
No.2 injector
No.3 injector
No.4 injector Fuse box
DTC P0300 RANDOM MISFIRE DETECTED (Misfire detected at 2 or more
cylinders)
DTC P0301 CYLINDER 1 MISFIRE DETECTED
DTC P0302 CYLINDER 2 MISFIRE DETECTED
DTC P0303 CYLINDER 3 MISFIRE DETECTED
DTC P0304 CYLINDER 4 MISFIRE DETECTED
CIRCUIT DESCRIPTION
ECM (PCM) monitors crankshaft revolution speed and engine speed via the crankshaft position sensor and cylin-
der No. via the camshaft position sensor. Then it calculates the change in the crankshaft revolution speed and from
how many times such change occurred in every 200 or 1000 engine revolutions, it detects occurrence of misfire.
When ECM (PCM) detects a misfire (misfire rate per 200 revolutions) which can cause overheat and damage to
the three way catalytic converter, it makes the malfunction indicator lamp (MIL) flash as long as misfire occurs at
that rate.
After that, however, when the misfire rate drops, MIL remains ON until it has been judged as normal 3 times under
the same driving conditions.
Also, when ECM (PCM) detects a misfire (misfire rate per 1000 revolutions) which will not cause damage to three
way catalytic converter but can cause exhaust emission to be deteriorated, it makes MIL light according to the 2
driving cycle detection logic.
Page 226 of 557

Below
specified value
6-1-70 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
1. CKP sensor signal
2. No.1 fuel injector signal
3. No.3 fuel injector signal
4. Fuel injection time
Display of fuel injection signal using oscilloscope
Waveforms at specified idle speed5ms/Div
DTC DETECTING CONDITIONPOSSIBLE CAUSE
Engine under other than high revolution condition
Not on rough road
Engine speed changing rate
Manifold absolute
pressure changing rate
Throttle opening changing rate
Misfire rate per 200 or 1000 engine revolutions (how
much and how often crankshaft revolution speed
changes) is higher than specified valueEngine overheating
Vacuum leaks (air inhaling) from air intake system
Ignition system malfunction (spark plug(s), high-
tension cord(s), ignition coil assembly)
Fuel pressure out of specification
Fuel injector malfunction (clogged or leakage)
Engine compression out of specification
Valve lash (clearance) out of specification
Manifold absolute pressure sensor malfunction
Engine coolant temp. sensor malfunction
PCV valve malfunction
EVAP control system malfunction
EGR system malfunction
DTC CONFIRMATION PROCEDURE
NOTE:
Among different types of random misfire, if misfire occurs at cylinders 1 and 4 or cylinders 3 and 2 simulta-
neously, it may not possible to reconfirm DTC by using the following DTC confirmation procedure. When
diagnosing the trouble of DTC P0300 (Random misfire detected) of the engine which is apparently misfir-
ing, even if DTC P0300 cannot be reconfirmed by using the following DTC confirmation procedure, pro-
ceed to the following Diag. Flow Table.
WARNING:
When performing a road test, select a place where there is no traffic or possibility of a traffic accident
and be very careful during testing to avoid occurrence of an accident.
Road test should be carried out with 2 persons, a driver and a tester.
1) Turn ignition switch OFF.
2) Clear DTC with ignition switch ON.
3) Check vehicle and environmental condition for:
–Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
–Intake air temp.: between –10C and 80C (14F and 176F)
–Engine coolant temp.: –10C, 14F or higher
4) Start engine and keep it at idle for 2 min. or more.
5) Check DTC in “DTC” mode and pending DTC in “ON BOARD TEST” or “PENDING DTC” mode.
6) If DTC is not detected at idle, consult usual driving based on information obtained in “Customer complaint analy-
sis” and “Freeze frame data check”.
Reference