light SUZUKI SWIFT 2000 1.G SF310 Service Owner's Manual
[x] Cancel search | Manufacturer: SUZUKI, Model Year: 2000, Model line: SWIFT, Model: SUZUKI SWIFT 2000 1.GPages: 557, PDF Size: 14.35 MB
Page 169 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-13
MALFUNCTION INDICATOR LAMP (MIL)
CHECK
1) Turn ON ignition switch (but the engine at stop) and check that
MIL lights.
If MIL does not light up (or MIL dims), go to “Diagnostic Flow
Table A-1” for troubleshooting.
2) Start engine and check that MIL turns OFF.
If MIL remains ON and no DTC is stored in ECM (PCM), go to
“Diagnostic Flow Table A-2” for troubleshooting.
DIAGNOSTIC TROUBLE CODE (DTC) CHECK
1) Prepare SUZUKI scan tool (Tech-1).
2) With ignition switch OFF, connect it to data link connector (DLC)
(1) located on underside of instrument panel at driver’s seat side.
Special Tool:
(A): SUZUKI scan tool
(B): Mass storage cartridge
(C): 16 / 14 pin DLC cable
3) Turn ignition switch ON and confirm that MIL lights.
4) Read DTC, pending DTC and freeze frame data according to
instructions displayed on scan tool and print it or write it down.
Refer to scan tool operator’s manual for further details.
If communication between scan tool and ECM (PCM) is not pos-
sible, check if scan tool is communicable by connecting it to
ECM (PCM) in another vehicle. If communication is possible in
this case, scan tool is in good condition. Then check data link
connector and serial data line (circuit) in the vehicle with which
communication was not possible.
5) After completing the check, turn ignition switch off and discon-
nect scan tool from data link connector.
Page 171 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-15
DIAGNOSTIC TROUBLE CODE (DTC) TABLE
NOTE:
1 driving cycle: MIL lights up when DTC is detected in the first driving cycle.
2 driving cycles: MIL lights up when the same DTC is detected also in the next driving cycle after DTC is
detected and stored temporarily in the first driving cycle.
DTC
NO.
DETECTING ITEMDETECTING CONDITION
(DTC will set when detecting:)MIL
P0105Manifold absolute pressure
circuit malfunction
Low pressure-high vacuum-low voltage (or MAP
sensor circuit shorted to ground)
High pressure-low vacuum-high voltage (or MAP
sensor circuit open)
1 driving
cycle
P0110Intake air temp. circuit
malfunctionIntake air temp. circuit low input
Intake air temp. circuit high input1 driving
cycle
P0115Engine coolant temp. circuit
malfunctionEngine coolant temp. circuit low input
Engine coolant temp. circuit high input1 driving
cycle
P0120Throttle position circuit
malfunctionThrottle position circuit low input
Throttle position circuit high input1 driving
cycle
P0121Throttle position circuit
performance problemPoor performance of TP sensor2 driving
cycles
P0130HO2S circuit malfunction
(Sensor-1)
Min. output voltage of HO2S-higher than
specification
Max. output voltage of HO2S-lower than
specification
2 driving
cycles
P0133HO2S circuit slow response
(Sensor-1)Response time of HO2S-1 output voltage between
rich and lean is longer than specification.2 driving
cycles
P0134HO2S circuit no activity detected
(Sensor-1)Output voltage of HO2S-1 fails to go specification.
(or HO2S-1 circuit open or short)2 driving
cycles
P0135HO2S heater circuit malfunction
(Sensor-1)Terminal voltage is lower than specification at heater
OFF or it is higher at heater ON.2 driving
cycles
P0136HO2S circuit malfunction
(Sensor-2)Max. voltage of HO2S-2 is lower than specification
or its min. voltage is higher than specification2 driving
cycles
P0141HO2S heater circuit malfunction
(Sensor-2)Terminal voltage is lower than specification at heater
OFF or it is higher at heater ON. (or heater circuit or
short)2 driving
cycles
P0171Fuel system too lean
Short term fuel trim or total fuel trim (short and long
terms added) is larger than specification for specified
time or longer. (fuel trim toward rich side is large.)2 driving
cycles
P0172Fuel system too rich
Short term fuel trim or total fuel trim (short and long
term added) is smaller than specification for
specified time or longer. (fuel trim toward lean side is
large.)
2 driving
cycles
P0300
P0301
P0302
P0303Random misfire detected
Cylinder 1 misfire detected
Cylinder 2 misfire detected
Cylinder 3 misfire detectedMisfire of such level as to cause damage to three
way catalyst
MIL
flashing
during
misfire
detection
P0304
y
Cylinder 4 misfire detectedMisfire of such level as to deteriorate emission but
not to cause damage to three way catalyst2 driving
cycles
Page 176 of 557

6-1-20 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
ENGINE BASIC INSPECTION
This check is very important for troubleshooting when ECM (PCM) has detected no DTC and no abnormality has
been found in visual inspection.
Follow the flow table carefully.
STEP
ACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check battery voltage.
Is it 11 V or more?Go to Step 3.Charge or replace
battery.
3Is engine cranked?Go to Step 4.Go to “DIAGNOSIS”
in Section 6G.
4Does engine start?Go to Step 5.Go to Step 7.
5Check idle speed as follows:
1) Warm up engine to normal operating temp.
2) Shift transmission to neutral position for M / T
(“P” position for A / T).
3) All of electrical loads are switched off.
4) Check engine idle speed with scan tool.
See Fig. 1.
Is it 700 – 800 r / min?Go to Step 6.“ENGINE DIAGNO-
SIS TABLE” in this
section.
6Check ignition timing as follows:
1) Using SUZUKI scan tool, select “MISC” mode on
SUZUKI scan tool and fix ignition timing to initial
one. See Fig. 2.
2) Remove air cleaner bolt and shift air cleaner
position to observe ignition timing.
3) Using timing light (1), check initial ignition timing.
See Fig. 3.
Is it 5 ± 3 BTDC at specified idle speed?“ENGINE DIAGNO-
SIS TABLE” in this
section.Check ignition control
related parts referring
to Section 6F1.
7Check fuel supply as follows:
1) Check to make sure that enough fuel is filled in fuel
tank.
2) Turn ON ignition switch for 2 seconds and then
OFF. See Fig. 4.
Is fuel return pressure (returning sounds) felt from fuel
feed hose (1) when ignition switch is turned ON?Go to Step 9.Go to Step 8.
8Check fuel pump for operating.
1) Was fuel pump operating sound heard from fuel
filler for about 2 seconds after ignition switch ON
and stop?Go to “DIAG. FLOW
TABLE B-3”.Go to “DIAG. FLOW
TABLE B-2”.
9Check ignition spark as follows:
1) Disconnect injector couplers.
2) Remove spark plugs and connect them to high
tension cords.
3) Ground spark plugs.
4) Crank engine and check if each spark plug sparks.
Is it in good condition?Go to Step 10.Go to “DIAGNOSIS”
in Section 6F1.
10Check fuel injector for operation as follows:
1) Install spark plugs and connect injector
connectors.
2) Using sound scope (1), check operating sound of
each injector (2) when cranking engine. See Fig. 5.
Was injector operating sound heard from all
injectors?“ENGINE DIAGNO-
SIS TABLE” in this
section.Go to “DIAG. FLOW
TABLE B-1”.
Page 185 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-29
SCAN TOOL DATA
As the data values given below are standard values estimated on the basis of values obtained from the normally
operating vehicles by using a scan tool, use them as reference values. Even when the vehicle is in good condition,
there may be cases where the checked value does not fall within each specified data range. Therefore, judgment
as abnormal should not be made by checking with these data alone.
Also, conditions in the below table that can be checked by the scan tool are those detected by ECM (PCM) and
output from ECM (PCM) as commands and there may be cases where the engine or actuator is not operating (in
the condition) as indicated by the scan tool. Be sure to use the timing light to check the ignition timing.
NOTE:
With the generic scan tool, only star () marked data in the table below can be read.
When checking the data with the engine running at idle or racing, be sure to shift M / T gear to the neutral
gear position and A / T gear to the “Park” position and pull the parking brake fully. Also, if nothing or “no
load” is indicated, turn OFF A / C, all electric loads, P / S and all the other necessary switches.
SCAN TOOL DATAVEHICLE CONDITIONNORMAL CONDITION /
REFERENCE VALUES
FUEL SYSTEM B1 (FUEL
SYSTEM STATUS)At specified idle speed after warming upCLOSED
(closed loop)
CALC LOAD
(CALCULATED LOADAt specified idle speed with no load after
warming up3 – 9%(
VALUE)At 2500 r / min with no load after warming up12 – 17%
COOLANT TEMP.
(ENGINE COOLANT
TEMP.)
At specified idle speed after warming up85 – 100C,
185 – 212F
SHORT FT BI (SHORT
TERM FUEL TRIM)At specified idle speed after warming up–20 – +20%
LONG FT BI (LONG
TERM FUEL TRIM)At specified idle speed after warming up–15 – +15%
MAP (INTAKE
MANIFOLD ABSOLUTE
PRESSURE)At specified idle speed with no load after
warming up24 – 37 kPa,
180 – 280 mmHg
ENGINE SPEEDAt idling with no load after warming up
Desired
idle speed
± 50 r / min
VEHICLE SPEEDAt stop0 km / h, 0 MPH
IGNITION ADVANCE
(IGNITION TIMING
ADVANCE FOR NO.1
CYLINDER)
At specified idle speed with no load after
warming up9 – 15 BTDC
INTAKE AIR TEMP.At specified idle speed after warming upAmbient +35C (95F)
temp.–5C (23F)
MAF (MASS AIR FLOW
RATE)
At specified idle speed with no load after
warming up0 – 4 gm / sec
RATE)At 2500 r / min with no load after warming up4 – 9 gm / sec
THROTTLE POS
(ABSOLUTE
Ignition switch
ON / engineThrottle valve fully closed7 – 18%
(ABSOLUTE
THROTTLE POSITION)
ON / engine
stoppedThrottle valve fully open70 – 100%
O2S B1 S1 (HEATED
OXYGEN SENSOR-1)At specified idle speed after warming up0.05 – 0.95 V
O2S B1 S2 (HEATED
OXYGEN SENSOR-2)When engine is running at 2000 r / min. for
3 min or longer after warming up.0 – 0.95 V
O2S FT B1 S1At specified idle speed after warning up–20 – +20%
DIS. WITH MIL ON————
Page 186 of 557

6-1-30 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
SCAN TOOL DATACONDITIONNORMAL CONDITION /
REFERENCE VALUES
DESIRED IDLE
(DESIRED IDLE SPEED)At idling with no load after warming up, M / T
at neutral, A / T at “P” range750 r / min
TP SENSOR VOLT
(THROTTLE POSITIONIgnition switch
ON / engine
Throttle valve fully closedMore than 0.2 V(
SENSOR OUTPUT
VOLTAGE)ON / engine
stoppedThrottle valve fully openLess than 4.8 V
INJ PULSE WIDTH
(FUEL INJECTION
At specified idle speed with no load after
warming up2.0 – 3.6 msec.(
PULSE WIDTH)At 2500 r / min with no load after warming up2.0 – 3.6 msec.
IAC FLOW DUTY (IDLE
AIR CONTROL FLOW
DUTY)
At idling with no load after warming up5 – 25%
TOTAL FUEL TRIMAt specified idle speed after warming up–35 – +35%
BATTERY VOLTAGEIgnition switch ON / engine stop10 – 14 V
CANIST PRG DUTY
(EVAP CANISTER
PURGE FLOW DUTY)
––––––––––––0 – 100%
CLOSED THROT POS
(CLOSED THROTTLEThrottle valve at idle positionON(CLOSED THROTTLE
POSITION)Throttle valve opens larger than idle positionOFF
FUEL CUTWhen engine is at fuel cut conditionONFUEL CUTOther than fuel cut conditionOFF
RADIATOR FAN
(RADIATOR FANIgnition switch
ON
Engine coolant temp.:
Lower than 92.5C
Lower than (199F)
OFF
(
CONTROL RELAY)ONEngine coolant temp.:
97.5C (208F) or higherON
ELECTRIC LOAD
Ignition switch ON / Headlight, small light,
heater fan and rear window defogger all
turned OFF
OFF
ELECTRIC LOADIgnition switch ON / Headlight, small light,
heater fan or rear window defogger turned
ON
ON
A / C SWITCH
Engine running after warming up, A / C not
operatingOFF
A/C SWITCHEngine running after warming up, A / C
operatingON
PNP SIGNAL (PARK /
NEUTRAL POSITIONIgnition switch
Selector lever in “P” or “N”
positionP / N Range
NEUTRAL POSITION
SIGNAL) A / T only
g
ONSelector lever in “R”, “D”, “2”
or “L” positionD Range
EGR VALVEAt specified idle speed after warming up0%
FUEL TANK LEVEL––––––––––––0 – 100%
BAROMETRIC PRESS––––––––––––Display the barometric pressure
FUEL PUMP
Within 3 seconds after ignition switch ON or
engine runningON
Engine stop at ignition switch ON.OFF
BRAKE SWIgnition switchBrake pedal is depressingONBRAKE SWg
ONBrake pedal is releasingOFF
BLOWER FANIgnition switchBlower fan switch ONONBLOWER FA Ng
ONBlower fan switch OFFOFF
A / C MAG CLUTCHIgnition switchA / C switch ONONA/C MAG CLUTCHg
ONA / C switch OFFOFF
Page 187 of 557

ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-31
SCAN TOOL DATA DEFINITIONS
FUEL SYSTEM (FUEL SYSTEM STATUS)
Air / fuel ratio feedback loop status displayed as either
open or closed loop. Open indicates that ECM (PCM)
ignores feedback from the exhaust oxygen sensor.
Closed indicates final injection duration is corrected
for oxygen sensor feedback.
CALC LOAD (CALCULATED LOAD VALUE, %)
Engine load displayed as a percentage of maximum
possible load. Value is calculated mathematically us-
ing the formula: actual (current) intake air volume
maximum possible intake air volume x 100%.
COOLANT TEMP.
(ENGINE COOLANT TEMPERATURE, C, F)
It is detected by engine coolant temp. sensor
SHORT FT B1 (SHORT TERM FUEL TRIM, %)
Short term fuel trim value represents short term
corrections to the air / fuel mixture computation. A val-
ue of 0 indicates no correction, a value greater than
0 means an enrichment correction, and a value less
than 0 implies an enleanment correction.
LONG FT B1 (LONG TERM FUEL TRIM, %)
Long term fuel trim Value represents long term correc-
tions to the air / fuel mixture computation. A value of 0
indicates no correction, a value greater than 0 means
an enrichment correction, and a value less than 0 im-
plies an enleanment correction.
MAP (INTAKE MANIFOLD ABSOLUTE
PRESSURE, kPa, inHg)
It is detected by manifold absolute pressure sensor and
used (among other things) to compute engine load.
ENGINE SPEED (rpm)
It is computed by reference pulses from crankshaft
position sensor.
VEHICLE SPEED (km / h, MPH)
It is computed based on pulse signals from vehicle
speed sensor.
IGNITION ADVANCE
(IGNITION TIMING ADVANCE FOR NO.1
CYLINDER, )
Ignition timing of NO.1 cylinder is commanded by
ECM (PCM). The actual ignition timing should be
checked by using the timing light.
INTAKE AIR TEMP. (C, F)
It is detected by intake air temp. sensor and used to
determine the amount of air passing into the intake
manifold as air density varies with temperature.
MAF (MASS AIR FLOW RATE, gm / s, lb / min)
It represents total mass of air entering intake manifold
which is computed based on signals from MAP sen-
sor, IAT sensor, TP sensor, etc.
THROTTLE POS
(ABSOLUTE THROTTLE POSITION, %)
When throttle position sensor is fully closed position,
throttle opening is indicated as 0% and 100% full open
position.
OXYGEN SENSOR B1 S1
(HEATED OXYGEN SENSOR-1, V)
It indicates output voltage of HO2S-1 installed on ex-
haust manifold (pre-catalyst).
OXYGEN SENSOR B1 S2
(HEATED OXYGEN SENSOR-2, V)
It indicates output voltage of HO2S-2 installed on ex-
haust pipe (post-catalyst). It is used to detect catalyst
deterioration.
DESIRED IDLE (DESIRED IDLE SPEED, rpm)
The Desired Idle Speed is an ECM (PCM) internal pa-
rameter which indicates the ECM (PCM) requested
idle. If the engine is not running, this number is not valid.
TP SENSOR VOLT (THROTTLE POSITION
SENSOR OUTPUT VOLTAGE, V)
The Throttle Position Sensor reading provides throttle
valve opening information in the form of voltage.
INJ PULSE WIDTH
(FUEL INJECTION PULSE WIDTH, msec.)
This parameter indicates time of the injector drive
(valve opening) pulse which is output from ECM
(PCM) (but injector drive time of NO.1 cylinder for
multiport fuel injection).
IAC FLOW DUTY (IDLE AIR (SPEED) CONTROL
DUTY, %)
This parameter indicates current flow time rate within
a certain set cycle of IAC valve (valve opening rate)
which controls the amount of bypass air (idle speed).
TOTAL FUEL TRIM (%)
The value of Total Fuel Trim is obtained by putting val-
ues of short Term Fuel Trim and Long Term Fuel Trim
together. This value indicates how much correction is
necessary to keep the air / fuel mixture stoichiomet-
rical.
BATTERY VOLTAGE (V)
This parameter indicates battery positive voltage in-
putted from main relay to ECM (PCM).
Page 188 of 557

6-1-32 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
CANIST PURGE DUTY (EVAP CANISTER
PURGE FLOW DUTY, %)
This parameter indicates valve ON (valve open) time
rate within a certain set cycle of EVAP purge solenoid
valve which controls the amount of EVAP purge.
0% means that the purge valve is completely closed
while 100% is a fully open valve.
CLOSED THROTTLE POSITION (ON / OFF)
This parameter will read ON when throttle valve is ful-
ly closed, or OFF when the throttle is not fully closed.
FUEL CUT (ON / OFF)
ON : Fuel being cut (output signal to injector is
stopped)
OFF : Fuel not being cut
RADIATOR FAN
(RADIATOR FAN CONTROL RELAY, ON / OFF)
ON : Command for radiator fan control relay opera-
tion being output.
OFF : Command for relay operation not being out-
put.
ELECTRIC LOAD (ON / OFF)
ON : Headlight, small light, heater fan or rear win-
dow defogger ON signal inputted.
OFF : Above electric loads all turned OFF.
A / C SWITCH (ON / OFF)
ON : Command for A / C operation being output
from ECM (PCM) to A / C amplifier.
OFF : Command for A / C operation not being output.
FUEL TANK LEVEL (%)
This parameter indicates approximate fuel level in the
fuel tank. As the detectable range of the fuel level sen-
sor is set as 0 to 100%, however, with some models
whose fuel tank capacity is smaller, the indicated fuel
level may be only 70% even when the fuel tank is full.
PNP SIGNAL (PARK / NEUTRAL POSITION
SIGNAL, P / N RANGE or D RANGE)
It is detected by signal from TCM.
D range : A / T is in “R”, “D”, “2” or “L” range.
P / N range : A / T is in “P” or “N” range or the above
signal is not inputted from TCM.
EGR VALVE (%)
This parameter indicates opening rate of EGR valve
which controls the amount of EGR flow.
Page 190 of 557

6-1-34 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
CONNECTOR “C01”
TERMINAL
NO.CIRCUITNORMAL
VOLTAGECONDITION
1Ground——
2Ground——
3Ground——
4EVAP canister purge valve10 – 14 VIgnition switch ON
Indication
deflection
5Power steering switch
deflection
repeated
0 V and
Ignition switch ON
0 V and
10 – 14 V
6Idle air control valve0 – 13 VAt specified idle speed after engine warmed
up
7Heater of HO2S-110 – 14 VIgnition switch ON
8Fuel injector NO.410 – 14 VIgnition switch ON
9Fuel injector NO.110 – 14 VIgnition switch ON
10Sensor ground——
11Camshaft position sensor0 – 0.8 V
and 4 – 6 VIgnition switch ON
12Blank——
13Heater oxygen sensor-1Refer to DTC P0130 diag. flow table
14Engine coolant temp. sensor0.55 – 0.95 VIgnition switch ON
Engine coolant temp.: 80C (176F)
15Intake air temp. sensor2.0 – 2.7 VIgnition switch ON
Intake air temp.: 20C (68F)
16Blank——
17Electric load signal (+)
0 – 1 VIgnition switch ON
Small light and rear defogger OFF
17Electric load signal (+)
10 – 14 VIgnition switch ON
Small light and rear defogger ON
18Blank——
19Ignition coil #2——
20Ignition coil #1——
21Fuel injector NO.210 – 14 VIgnition switch ON
22Power source for sensor4.75 – 5.25 VIgnition switch ON
23Crankshaft position sensor (+)——
24Crankshaft position sensor (–)——
25Blank——
26Manifold absolute pressure
sensor3.3 – 4.0 VIgnition switch ON
Barometric pressure: 100 kPa (760 mmHg)
27Blank——
28Immobilizer indicator lamp0 – 2 VIgnition switch ON28Immobilizer indicator lamp10 – 14 VWhen engine running
29Blank——
30Blank——
31Fuel injector NO.310 – 14 VIgnition switch ON
Page 195 of 557

Main
fuseIgnition
switch
Main
relay Malfunction indicator lamp in combination meter
Relay
box Fuse box
C01-1
C01-2
C01-3
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-39
TABLE A-1 MALFUNCTION INDICATOR LAMP CIRCUIT CHECK – LAMP DOES
NOT COME “ON” AT IGNITION SWITCH ON (BUT ENGINE AT STOP)
CIRCUIT DESCRIPTION
When the ignition switch is turned ON, ECM (PCM) causes the main relay to turn ON (close the contact point).
Then, ECM (PCM) being supplied with the main power, turns ON the malfunction indicator lamp (MIL). When the
engine starts to run and no malfunction is detected in the system, MIL goes OFF but if a malfunction was or is de-
tected, MIL remains ON even when the engine is running.
INSPECTION
STEPACTIONYESNO
1MIL Power Supply Check
1) Turn ignition switch ON.
Do other indicator / warning lights in
combination meter comes ON?Go to Step 2.“IG” fuse blown, main
fuse blown, ignition switch
malfunction, “B/W” circuit
between “IG” fuse and
combination meter or poor
coupler connection at
combination meter.
2ECM (PCM) Power and Ground Circuit
Check Does engine start?Go to Step 3.Go to TABLE A-3 ECM (PCM)
POWER AND GROUND
CIRCUIT CHECK.
If engine is not cranked, go to
DIAGNOSIS in SECTION 6G.
3MIL Circuit Check
1) Turn ignition switch OFF and disconnect
connectors from ECM (PCM).
2) Check for proper connection to ECM
(PCM) at terminal C03-1.
3) If OK, then using service wire, ground
terminal C03-1 in connector
disconnected.
Does MIL turn on at ignition switch ON?Substitute a
known-good ECM
(PCM) and recheck.Bulb burned out or “V” wire
circuit open.
Page 197 of 557

Main
fuseIgnition
switch
Main
relay Malfunction indicator lamp in combination meter
Relay
box
Fuse box
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-41
TABLE A-3 ECM (PCM) POWER AND GROUND CIRCUIT CHECK – MIL
DOESN’T LIGHT AT IGNITION SWITCH ON AND ENGINE DOESN’T
START THOUGH IT IS CRANKED UP
CIRCUIT DESCRIPTION
When the ignition switch tuned ON, the main relay turns ON (the contact point closes) and the main power is sup-
plied to ECM (PCM).
INSPECTION
STEPACTIONYESNO
1Main Relay Operating Sound Check
Is operating sound of main relay heard at ignition switch ON?Go to Step 5.Go to Step 2.
2Main Relay Check
1) Turn OFF ignition switch and remove main relay (1).
2) Check for proper connection to main relay (1) at terminal
3 and 4.
3) Check resistance between each two terminals. See Fig. 1
and 2.
Between terminals 1 and 2: Infinity
Between terminals 3 and 4: 100 – 150 Ω
4) Check that there is continuity between terminals 1 and 2
when battery is connected to terminals 3 and 4. See Fig. 3.
Is main relay in good condition?Go to Step 3.Replace main
relay.
3Fuse Check
Is main “FI” fuse in good condition?Go to Step 4.Check for short in
circuits connected
to this fuse.
4ECM (PCM) Power Circuit Check
1) Turn OFF ignition switch, disconnect connectors from ECM
(PCM) and install main relay.
2) Check for proper connection to ECM (PCM) at terminals
C03-6, C02-10, C02-5 and C02-6.
3) If OK, then measure voltage between terminal C03-6 and
ground, C02-10 and ground with ignition switch ON.
Is each voltage 10 – 14 V?Go to Step 5.“B/W”, “W/R” or
“Gr” circuit open.