Board SUZUKI SX4 2006 1.G Service Workshop Manual
[x] Cancel search | Manufacturer: SUZUKI, Model Year: 2006, Model line: SX4, Model: SUZUKI SX4 2006 1.GPages: 1556, PDF Size: 37.31 MB
Page 8 of 1556

Downloaded from www.Manualslib.com manuals search engine 00-1 Precautions:
Precautions
Precautions
Precautions
Precautions for Vehicles Equipped with a
Supplemental Restraint (Air Bag) System
S6RW0D0000001
WARNING!
• The configuration of air bag system parts
are as shown in the figure. When it is
necessary to service (remove, reinstall and
inspect) these parts, be sure to follow
procedures described in Air Bag System
section. Failure to follow proper
procedures could result in possible air bag
system activation, personal injury, damage
to parts or air bag system being unable to
activate when necessary.
• If the air bag system and another vehicle
system both need repair, SUZUKI
recommends that the air bag system be
repaired first, to help avoid unintended air
bag system activation.
• Do not modify the steering wheel,
dashboard, or any other air bag system
components. Modifications can adversely
affect air bag system performance and
lead to injury.
• If the vehicle will be exposed to
temperatures over 93 °C (200 °F) (for
example, during a paint baking process),
remove the air bag system components
beforehand to avoid component damage
or unintended air bag system activation.
Diagnosis
• When troubleshooting air bag system, be sure to
follow “Diagnosis” in Air Bag System section.
Bypassing these procedures may result in extended
diagnostic time, incorrect diagnosis, and incorrect
parts replacement.
• Never use electrical test equipment other than that
specified.
WARNING!
Never attempt to measure the resistance of
the air bag (inflator) modules (driver,
passenger, side and curtain) and seat belt
pretensioners (driver and passenger). It is
very dangerous as the electric current from
the tester may deploy the air bag or activate
the pretensioner.
1. Air bag wire harness (in floor, main
and instrument panel harness)6. Driver air bag (inflator) module
2. Passenger air bag (inflator)
module7. Side air bag (inflator) module
(if equipped)
3. SDM 8. Curtain air bag (inflator)
module (if equipped)
4. Seat belt pretensioner 9. Forward sensor
5. Contact coil 10. Side sensor (if equipped)
23
7
8
4
10
10
4 7 9156
I5RW0A000001-01
I4RS0A000002-02
Page 24 of 1556

Downloaded from www.Manualslib.com manuals search engine 0A-1 General Information:
General Information
General Information
General Description
AbbreviationsS6RW0D0101001
A:
ABDC: After Bottom Dead Center
ABS: Anti-lock Brake System
AC: Alternating Current
A/C: Air Conditioning
A-ELR: Automatic-Emergency Locking Retractor
A/F: Air Fuel Mixture Ratio
ALR: Automatic Locking Retractor
API: American Petroleum Institute
APP sensor: Accelerator Pedal Position Sensor
A/T: Automatic Transmission, Automatic Transaxle
AT D C : After Top Dead Center
ATF: Automatic Transmission Fluid, Automatic
Transaxle Fluid
B:
B+: Battery Positive Voltage
BBDC: Before Bottom Dead Center
BCM: Body Electrical Control Module
BTDC: Before Top Dead Center
C:
CAN: Controller Area Network
CKT: Circuit
CKP Sensor: Crankshaft Position Sensor
CMP Sensor: Camshaft Position Sensor
CO: Carbon Monoxide
CPP Switch: Clutch Pedal Position Switch (Clutch
Switch, Clutch Start Switch)
CPU: Central Processing Unit
CRS: Child Restraint System
D:
DC: Direct Current
DLC: Data Link Connector (Assembly Line Diag. Link,
ALDL, Serial Data Link, SDL)
DOHC: Double Over Head Camshaft
DOJ: Double Offset Joint
DRL: Daytime Running Light
DTC: Diagnostic Trouble Code (Diagnostic Code)
E:
EBCM: Electronic Brake Control Module, ABS Control
Module
EBD: Electronic Brake Force Distribution
ECM: Engine Control Module
ECT Sensor: Engine Coolant Temperature Sensor
(Water Temp. Sensor, WTS)
EFE Heater: Early Fuel Evaporation Heater (Positive
Temperature Coefficient, PTC Heater)
EGR: Exhaust Gas Recirculation
EGRT Sensor: EGR Temperature Sensor (Recirculated
Exhaust Gas Temp. Sensor, REGTS)
EPS: Electronic Power Steering
EVAP: Evaporative Emission
EVAP Canister: Evaporative Emission Canister
(Charcoal Canister)F:
4WD: 4 Wheel Drive
G:
GEN: Generator
GND: Ground
GPS: Global Positioning System
H:
HAVC: Heating, Ventilating and Air Conditioning
HC: Hydrocarbons
HO2S: Heated Oxygen Sensor
I:
IAC Valve: Idle Air Control Valve (Idle Speed Control
Solenoid Valve, ISC Solenoid Valve)
IAT Sensor: Intake Air Temperature Sensor (Air
temperature Sensor, ATS)
ICM: Immobilizer Control Module
IG: Ignition
ISC Actuator: Idle Speed Control Actuator
L:
LH: Left Hand
LHD: Left Hand Drive vehicle
LSPV: Load Sensing Proportioning Valve
M:
MAF Sensor: Mass Air Flow Sensor (Air Flow Sensor,
AFS, Air Flow Meter, AFM)
MAP Sensor: Manifold Absolute Pressure Sensor
(Pressure Sensor, PS)
Max: Maximum
MFI: Multiport Fuel Injection (Multipoint Fuel Injection)
Min: Minimum
MIL: Malfunction Indicator Lamp (“SERVICE ENGINE
SOON” Light)
M/T: Manual Transmission, Manual Transaxle
N:
NOx: Nitrogen Oxides
O:
OBD: On-Board Diagnostic System (Self-Diagnosis
Function)
O/D: Overdrive
OHC: Over Head Camshaft
O2S: Oxygen Sensor
P:
PCM: Powertrain Control Module
PCV: Positive Crankcase Ventilation
PNP: Park / Neutral Position
P/S: Power Steering
PSP Switch: Power Steering Pressure Switch (P/S
Pressure Switch)
R:
RH: Right Hand
RHD: Right Hand Drive vehicle
Page 45 of 1556

Downloaded from www.Manualslib.com manuals search engine Table of Contents 1- i
1
Section 1
CONTENTS
Engine
Precautions ................................................. 1-1
Precautions............................................................. 1-1
Precautions for Engine .......................................... 1-1
Engine General Information and
Diagnosis ................................................. 1A-1
Precautions........................................................... 1A-1
Precautions on Engine Service ........................... 1A-1
Precaution on On-Board Diagnostic (OBD)
System .............................................................. 1A-1
Precautions in Diagnosing Trouble ..................... 1A-1
Precautions for DTC Troubleshooting ................. 1A-2
Precautions of ECM Circuit Inspection................ 1A-2
Precautions of Electric Throttle Body System
Calibration ......................................................... 1A-2
Precaution on CAN Troubleshooting .................. 1A-3
General Description ............................................. 1A-5
Statement on Cleanliness and Care ................... 1A-5
Engine Diagnosis General Description ............... 1A-5
On-Board Diagnostic System Description ........... 1A-5
Data Link Connector (DLC) ................................. 1A-8
Engine and Emission Control System
Description ........................................................ 1A-8
CAN Communication System Description........... 1A-9
Air Intake System Description ........................... 1A-11
Description of Electric Throttle Body System
Calibration ....................................................... 1A-11
Description of Electric Throttle Body System .... 1A-11
Engine and Emission Control Input / Output
Table ............................................................... 1A-18
Schematic and Routing Diagram ...................... 1A-19
Engine and Emission Control System
Diagram .......................................................... 1A-19
Component Location ......................................... 1A-21
Electronic Control System Components
Location .......................................................... 1A-21
Diagnostic Information and Procedures .......... 1A-22
Engine and Emission Control System Check.... 1A-22
Malfunction Indicator Lamp (MIL) Check .......... 1A-25
DTC Check ....................................................... 1A-25
DTC Clearance ................................................. 1A-26
Troubleshooting for Communication Error
with Scan Tool Using CAN.............................. 1A-26
DTC Table ......................................................... 1A-32For Vehicle Equipped with A/T .......................... 1A-36
Fail-Safe Table .................................................. 1A-36
Scan Tool Data ................................................. 1A-38
Visual Inspection ............................................... 1A-43
Engine Basic Inspection .................................... 1A-43
Engine Symptom Diagnosis .............................. 1A-45
Malfunction Indicator Lamp Does Not Come
ON with Ignition Switch ON and Engine Stop
(but Engine Can Be Started) ........................... 1A-52
Malfunction Indicator Lamp Remains ON after
Engine Starts................................................... 1A-54
DTC P0010: Camshaft Position Actuator
Circuit (for engine with VVT system) ............... 1A-55
DTC P0011 / P0012: Camshaft Position -
Timing Over-Advanced or System
Performance / Retarded (for engine with
VVT system).................................................... 1A-57
DTC P0031 / P0032: HO2S Heater Control
Circuit Low / High (Sensor-1) .......................... 1A-59
DTC P0037 / P0038: HO2S Heater Control
Circuit Low / High (Sensor-2) .......................... 1A-61
DTC P0101: Mass Air Flow Circuit Range /
Performance.................................................... 1A-63
DTC P0102: Mass Air Flow Circuit Low Input ... 1A-66
DTC P0103: Mass Air Flow Circuit High Input .. 1A-67
DTC P0106: Manifold Absolute Pressure
Range / Performance ...................................... 1A-69
DTC P0107: Manifold Absolute Pressure
Circuit Low Input ............................................. 1A-70
DTC P0108: Manifold Absolute Pressure
Circuit High Input............................................. 1A-72
DTC P0111: Intake Air Temperature Circuit
Range / Performance ...................................... 1A-74
DTC P0112: Intake Air Temperature Sensor
Circuit Low ...................................................... 1A-76
DTC P0113: Intake Air Temperature Sensor
Circuit High...................................................... 1A-78
DTC P0116: Engine Coolant Temperature
Circuit Range / Performance ........................... 1A-80
DTC P0117: Engine Coolant Temperature
Circuit Low ...................................................... 1A-83
DTC P0118: Engine Coolant Temperature
Circuit High...................................................... 1A-85
DTC P0122: Throttle Position Sensor (Main)
Circuit Low ...................................................... 1A-87
Page 51 of 1556

Downloaded from www.Manualslib.com manuals search engine Engine General Information and Diagnosis: 1A-1
Engine
Engine General Information and Diagnosis
Precautions
Precautions on Engine ServiceS6RW0D1100001
CAUTION!
The following information on engine service
should be noted carefully, as it is important in
preventing damage, and in contributing to
reliable engine performance.
• When raising or supporting engine for any reason, do
not use a jack under oil pan. Due to small clearance
between oil pan and oil pump strainer, jacking against
oil pan may cause it to be bent against strainer,
resulting in damaged oil pick-up unit.
• It should be kept in mind, while working on engine,
that 12-volt electrical system is capable of violent and
damaging short circuits.
When performing any work where electrical terminals
can be grounded, ground cable of the battery should
be disconnected at battery.
• Any time the air cleaner, throttle body or intake
manifold is removed, the intake opening should be
covered. This will protect against accidental entrance
of foreign material which could follow intake passage
into cylinder and cause extensive damage when
engine is started.
Precaution on On-Board Diagnostic (OBD)
System
S6RW0D1100006
There are two types of On-Board Diagnostic (OBD)
system, Euro OBD system and non-Euro-OBD system,
depending on the vehicle specification.
It is possible to identify each OBD system by checking if
it is equipped with the HO2S-2 or not.
• Euro OBD model is equipped with HO2S-2.
• Non-Euro-OBD model is not equipped with HO2S-2.
NOTE
For Taiwan model, bear in mind that it is non-
Euro-OBD model which is equipped with
HO2S-2.
As the diagnosis function is different between these two
types, be sure to fully understand the OBD system
referring to “On-Board Diagnostic System Description”.
OBD System Summary Table
Precautions in Diagnosing TroubleS6RW0D1100002
NOTE
There are two types of OBD system
depending on the vehicle specification.
For identification, refer to “Precaution on On-
Board Diagnostic (OBD) System”.
• Don’t disconnect ECM couplers from ECM, battery
cable from battery, ECM ground wire harness from
engine or main fuse before confirming diagnostic
information (DTC, freeze frame data, etc.) stored in
ECM memory. Such disconnection will erase
memorized information in ECM memory.
• Diagnostic information stored in ECM memory can be
cleared as well as checked by using SUZUKI scan
tool or CAN communication OBD generic scan tool.
Before using scan tool, read its Operator’s
(Instruction) Manual carefully to have good
understanding as to what functions are available and
how to use it.
For Euro OBD model, it is indistinguishable which
module turns on MIL because not only ECM but also
TCM (for A/T model) turns on MIL (for details of on-
board diagnostic system for A/T model, refer to “On-
Board Diagnostic System Description in Section 5A”
for A/T).
Therefore, check both ECM and TCM (for A/T model)
for DTC when MIL lights on.
IYSQ01110001-01
Euro OBD
model (with
HO2S-2)Non-Euro-OBD
model (without
HO2S-2)
Quantity of DTC
related to engine
controlApprox. 100 Approx. 50 to 80
Freeze frame
dataAvailable Not available
SUZUKI scan tool
(SUZUKI- SDT)Available Available
CAN
communication
OBD generic
scan toolAvailable Not available
Page 55 of 1556

Downloaded from www.Manualslib.com manuals search engine Engine General Information and Diagnosis: 1A-5
General Description
Statement on Cleanliness and CareS6RW0D1101001
An automobile engine is a combination of many
machined, honed, polished and lapped surfaces with
tolerances that are measured in the thousands of an
millimeter (ten thousands of an inch).
Accordingly, when any internal engine parts are
serviced, care and cleanliness are important.
It should be understood that proper cleaning and
protection of machined surfaces and friction areas is part
of the repair procedure. This is considered standard
shop practice even if not specifically stated.
• A liberal coating of engine oil should be applied to
friction areas during assembly to protect and lubricate
the surfaces on initial operation.
• Whenever valve train components, pistons, piston
rings, connecting rods, rod bearings, and crankshaft
journal bearings are removed for service, they should
be retained in order.
At the time of installation, they should be installed in
the same locations and with the same mating
surfaces as when removed.
• Battery cables should be disconnected before any
major work is performed on the engine.
Failure to disconnect cables may result in damage to
wire harness or other electrical parts.
• The four cylinders of the engine are identified by
numbers; No.1 (1), No.2 (2), No.3 (3) and No.4 (4)
counted from crankshaft pulley side to flywheel side.
Engine Diagnosis General DescriptionS6RW0D1101002
NOTE
There are two types of OBD system
depending on the vehicle specification.
For identification, refer to “Precaution on On-
Board Diagnostic (OBD) System”.
This vehicle is equipped with an engine and emission
control system which are under control of ECM.
The engine and emission control system in this vehicle
are controlled by ECM. ECM has an On-Board
Diagnostic system which detects a malfunction in this
system and abnormality of those parts that influence the
engine exhaust emission. When diagnosing engine
troubles, be sure to have full understanding of the outline
of “On-Board Diagnostic System Description” and each
item in “Precautions in Diagnosing Trouble” and execute
diagnosis according to “Engine and Emission Control
System Check”.
There is a close relationship between the engine
mechanical, engine cooling system, ignition system,
exhaust system, etc. and the engine and emission
control system in their structure and operation. In case of
an engine trouble, even when the malfunction indicator
lamp (MIL) doesn’t turn ON, it should be diagnosed
according to “Engine and Emission Control System
Check”.
On-Board Diagnostic System DescriptionS6RW0D1101003
NOTE
There are two types of OBD system
depending on the vehicle specification.
For identification, refer to “Precaution on On-
Board Diagnostic (OBD) System”.
Euro OBD model
ECM in this vehicle has the following functions.
• When the ignition switch is turned ON with the engine
at a stop, malfunction indicator lamp (MIL) (1) turns
ON to check the circuit of the malfunction indicator
lamp (1).
• When ECM detects a malfunction which gives an
adverse effect to vehicle emission while the engine is
running, it makes the malfunction indicator lamp (1) in
the meter cluster of the instrument panel turn ON or
flash (flashing only when detecting a misfire which
can cause damage to the catalyst) and stores the
malfunction area in its memory.
(If it detects that continuously 3 driving cycles are
normal after detecting a malfunction, however, it
makes MIL (1) turn OFF although DTC stored in its
memory will remain.)
1
234
I3RM0A110001-01
Page 58 of 1556

Downloaded from www.Manualslib.com manuals search engine 1A-8 Engine General Information and Diagnosis:
For information about the following items, refer to “Euro
OBD model: ”.
• Warm-up cycle
• Driving cycle
• 2 driving cycle detection logic
• Pending DTC
Data Link Connector (DLC)S6RW0D1101011
NOTE
There are two types of OBD system
depending on the vehicle specification.
For identification, refer to “Precaution on On-
Board Diagnostic (OBD) System”.
DLC (1) is in compliance with SAE J1962 in the shape of
connector and pin assignment.
OBD CAN Hi line (6) and Low line (3) (CAN line of ISO
15765-4) are used for SUZUKI scan tool (SUZUKI-SDT)
(7) or CAN communication OBD generic scan tool to
communicate with ECM (included in immobilizer control)
and TCM (Transmission Control Module) (for A/T
model).
Engine and Emission Control System
Description
S6RW0D1101004
The engine and emission control system is divided into 4
major sub-systems: air intake system, fuel delivery
system, electronic control system and emission control
system.
Air intake system includes air cleaner, throttle body and
intake manifold.
Fuel delivery system includes fuel pump, delivery pipe,
etc.
Electronic control system includes ECM, various sensors
and controlled devices.
Emission control system includes EGR, EVAP and PCV
system.
3. DLC
1
2 3
I5RW0C110001-01
2. B + (Unswitched vehicle battery positive)
4. ECM ground (Signal ground)
5. Vehicle body ground (Chassis ground)
2
45 6
1
9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8
7
3
1I7RW01110092-01
Page 75 of 1556

Downloaded from www.Manualslib.com manuals search engine Engine General Information and Diagnosis: 1A-25
Step 2: DTC / Freeze Frame Data Check, Record and
Clearance
First, check DTC (including pending DTC), referring to
“DTC Check”. If DTC is indicated, print it and freeze
frame data or write them down and then clear them by
referring to “DTC Clearance”. DTC indicates malfunction
that occurred in the system but does not indicate
whether it exists now or it occurred in the past and the
normal condition has been restored now. To check which
case applies, check the symptom in question according
to Step 5 and recheck DTC according to Step 6 and 7.
Attempt to diagnose a trouble based on DTC in this step
only or failure to clear the DTC in this step will lead to
incorrect diagnosis, trouble diagnosis of a normal circuit
or difficulty in troubleshooting.
Step 3 and 4: Visual Inspection
As a preliminary step, be sure to perform visual check of
the items that support proper function of the engine
referring to “Visual Inspection”.
Step 5: Trouble Symptom Confirmation
Based on information obtained in “Step 1: Customer
Complaint Analysis: ” and “Step 2: DTC / Freeze Frame
Data Check, Record and Clearance: ”, confirm trouble
symptoms. Also, reconfirm DTC according to “DTC
Confirmation Procedure” described in each DTC diag.
flow.
Step 6 and 7: Rechecking and Record of DTC /
Freeze Frame Data
Refer to “DTC Check” for checking procedure.
Step 8: Engine Basic Inspection and Engine
Symptom Diagnosis
Perform basic engine check according to “Engine Basic
Inspection” first. When the end of the flow has been
reached, check the parts of the system suspected as a
possible cause referring to “Engine Symptom Diagnosis”
and based on symptoms appearing on the vehicle
(symptoms obtained through steps of customer
complaint analysis, trouble symptom confirmation and/or
basic engine check) and repair or replace faulty parts, if
any.
Step 9: Troubleshooting for DTC (See each DTC
Diag. Flow)
Based on the DTC indicated in Step 6 or 7 and referring
to the applicable DTC diag. flow, locate the cause of the
trouble, namely in a sensor, switch, wire harness,
connector, actuator, ECM or other part and repair or
replace faulty parts.Step 10: Intermittent Problems Check
Check parts where an intermittent trouble is easy to
occur (e.g., wire harness, connector, etc.), referring to
“Intermittent and Poor Connection Inspection in Section
00” and related circuit of DTC recorded in Step 2.
Step 11: Final Confirmation Test
Confirm that the problem symptom has gone and the
engine is free from any abnormal conditions. If what has
been repaired is related to the DTC, clear the DTC once,
perform DTC confirmation procedure and confirm that no
DTC is indicated.
Malfunction Indicator Lamp (MIL) CheckS6RW0D1104002
1) Turn ON ignition switch (with engine at stop) and
check that MIL (1) lights.
If MIL does not light up (or MIL dims) but engine can
be starting, go to “Malfunction Indicator Lamp Does
Not Come ON with Ignition Switch ON and Engine
Stop (but Engine Can Be Started)” for
troubleshooting.
If MIL does not light with ignition switch ON and
engine does not start though it is cranked up, go to
“ECM Power and Ground Circuit Check”.
2) Start engine and check that MIL turns OFF.
If MIL remains ON and no DTC is stored in ECM, go
to “Malfunction Indicator Lamp Remains ON after
Engine Starts” for troubleshooting.
DTC CheckS6RW0D1104085
NOTE
• There are two types of OBD system
depending on the vehicle specification.
For identification, refer to “Precaution on
On-Board Diagnostic (OBD) System”.
1
I4RS0A110012-01
Page 76 of 1556

Downloaded from www.Manualslib.com manuals search engine 1A-26 Engine General Information and Diagnosis:
• The MIL is turned on when the ECM and/or
TCM detect malfunction(s). Each ECM and
TCM stores diagnostic information as the
diagnostic trouble code (DTC) in its
memory and outputs the DTC to the scan
tool.
Therefore, check both of the ECM and TCM
for any DTC with the scan tool because the
DTC stored in ECM and TCM is not read
and displayed at a time. However, each of
the ECM and TCM needs not to be checked
with the generic scan tool because the
DTC stored in ECM and TCM is read and
displayed at a time.
1) Prepare CAN communication OBD generic scan tool
or SUZUKI scan tool.
Special tool
(A): SUZUKI scan tool (SUZUKI-SDT)
2) With ignition switch OFF, connect it to DLC (1)
located on underside of instrument panel at driver’s
seat side.
3) Turn ignition switch ON and confirm that MIL lights.
4) Read DTC and freeze frame data according to
instructions displayed on scan tool and print them or
write them down. Refer to scan tool operator’s
manual for details.
If communication between scan tool and ECM is not
possible, go to “Troubleshooting for Communication
Error with Scan Tool Using CAN”.
5) After completing the check, turn ignition switch off
and disconnect scan tool from DLC.
DTC ClearanceS6RW0D1104004
NOTE
There are two types of OBD system
depending on the vehicle specification.
For identification, refer to “Precaution on On-
Board Diagnostic (OBD) System”.
1) Connect SUZUKI scan tool or CAN communication
OBD generic scan tool to data link connector in the
same manner as when making this connection for
DTC check.2) Turn ignition switch OFF and then ON.
3) Erase DTC and pending DTC according to
instructions displayed on scan tool. Freeze frame
data is cleared with the DTC. Refer to scan tool
operator’s manual for further details.
If communication between scan tool and ECM is not
possible, go to “Troubleshooting for Communication
Error with Scan Tool Using CAN”.
4) After completing the clearance, turn ignition switch
OFF and disconnect scan tool from data link
connector.
NOTE
DTC and freeze frame data stored in ECM
memory are also cleared in the following
cases. Be careful not to clear them before
keeping their record.
• When power to ECM is cut off (by
disconnecting battery cable, removing
fuse or disconnecting ECM connectors).
• When the same malfunction (DTC) is not
detected again during 40 engine warm-up
cycles. (See “Warm-Up Cycle” of “On-
Board Diagnostic System Description”.)
Troubleshooting for Communication Error with
Scan Tool Using CAN
S6RW0D1104083
Perform this troubleshooting when it is not possible to
communicate between scan tool and ECM/TCM.
NOTE
• When performing this troubleshooting, be
sure to have full understanding of
“Precaution on CAN Troubleshooting” and
observe it.
• It may be possible that CAN system has
trouble because of fuse blown or low
battery voltage. Before troubleshooting,
check to make sure that fuse, battery
voltage and generator status are normal.
• When disconnecting each control module
connector in this troubleshooting, various
DTCs will be detected. Be sure to clear
DTCs in the following control modules
after completing this troubleshooting.
–ECM
–BCM
–TCM
– Keyless start control module
– 4WD control module
– HVAC control module (Auto A/C model)
– P/S control module
(A) 1I5RW0C110011-01
Page 82 of 1556

Downloaded from www.Manualslib.com manuals search engine 1A-32 Engine General Information and Diagnosis:
DTC TableS6RW0D1104005
NOTE
• There are two types of OBD system depending on the vehicle specification.
For identification, refer to “Precaution on On-Board Diagnostic (OBD) System”.
• For non-Euro-OBD model, some of DTC No. with delta ( U) mark in the following table can not be
detected by ECM depending on vehicle specification.
• With the CAN communication generic scan tool, only star (*) marked DTC No. in the following table
can be read.
• 1 driving cycle: MIL lights up when DTC is detected during 1 driving cycle.
• 2 driving cycles: MIL lights up when the same DTC is detected also in the next driving cycle after
DTC is detected and stored temporarily in the first driving cycle.
• *2 driving cycles:
MIL blinks or lights up. Refer to “DTC P0300 / P0301 / P0302 / P0303 / P0304: Random Misfire
Detected / Cylinder 1 / Cylinder 2 / Cylinder 3 / Cylinder 4 Misfire Detected” for details.
DTC No. Detecting itemDetecting condition
(DTC will set when detecting:)MIL
) *P0010Camshaft position actuator circuit
(for engine with VVT system)Oil control valve circuit open or short.1 driving
cycle
) *P0011Camshaft position – timing over-
advanced or system performance
(for engine with VVT system)Actual value of advanced valve timing does not reach
target value, or valve timing is advanced although ECM
command is most retarding.2 driving
cycles
) *P0012Camshaft position – timing over-
retarded
(for engine with VVT system)2 driving
cycles
) *P0031HO2S heater control circuit low
(Sensor-1)Heater current is less than specification while heater ON.2 driving
cycles
) *P0032HO2S heater control circuit high
(Sensor-1)Heater current is more than specification while heater ON.2 driving
cycles
)
U*P0037HO2S heater control circuit low
(Sensor-2)Heater current is less than specification while heater ON.2 driving
cycles
)
U*P0038HO2S heater control circuit high
(Sensor-2)Heater current is more than specification while heater ON.2 driving
cycles
)
U*P0101Mass air flow circuit range/
performanceMAF sensor volume is more than specification or less
than specification.2 driving
cycles
) *P0102 Mass air flow circuit low input Output voltage of MAF sensor is less than specification.1 driving
cycle
) *P0103 Mass air flow circuit high input Output voltage of MAF sensor is more than specification.1 driving
cycle
)
U*P0106Manifold absolute pressure circuit
range/performanceDifference between Max. manifold absolute pressure
value and Min. manifold pressure value is less than
specification or difference between barometric pressure
value and manifold pressure value is less than
specification2 driving
cycles
)
U*P0107Manifold absolute pressure circuit
low inputOutput voltage of MAP sensor is less than specification.
1 driving
cycle
)
U*P0108Manifold absolute pressure circuit
high inputOutput voltage of MAP sensor is more than specification.1 driving
cycle
)
U* P 0 111Intake air temperature sensor circuit
range/performanceVariation of intake air temperature from engine start is
less than specification.2 driving
cycles
) *P0112Intake air temperature sensor circuit
lowCircuit voltage of IAT sensor is less than specification.1 driving
cycle
) *P0113Intake air temperature sensor circuit
highCircuit voltage of IAT sensor is more than specification.1 driving
cycle
)
U*P0116Engine coolant temperature circuit
range/performanceEngine coolant temperature is less than specified
temperature for specified time from engine start.2 driving
cycles
Page 86 of 1556

Downloaded from www.Manualslib.com manuals search engine 1A-36 Engine General Information and Diagnosis:
For Vehicle Equipped with A/TS6RW0D1104081
NOTE
There are two types of OBD system depending on the vehicle specification.
For identification, refer to “Precaution on On-Board Diagnostic (OBD) System”.
When using CAN communication OBD generic scan tool, not only the previous star (*) marked ECM DTC(s) but also
the following DTC(s) is displayed on CAN communication OBD generic scan tool simultaneously.
Fail-Safe TableS6RW0D1104006
When any of the following DTCs is detected, ECM enters fail-safe mode as long as malfunction continues to exist but
that mode is cancelled when ECM detects normal condition after that. DTC No. Detecting itemDetecting condition
(DTC will set when detecting)
P0705 Transmission range sensor circuit malfunction (PRNDL input)
Refer to “DTC Table in Section 5A”. P0707 Transmission range sensor circuit low
P0711Transmission fluid temperature sensor “A” circuit range/
performance
P0712 Transmission fluid temperature sensor circuit low
P0713 Transmission fluid temperature sensor circuit high
P0717 Input/Turbine speed sensor circuit no signal
P0722 Output speed sensor (VSS) circuit no signal
P0741 Torque converter clutch circuit performance or stuck off
P0742 Torque converter clutch circuit stuck on
P0751 Shift solenoid-A (No.1) performance or stuck off
P0752 Shift solenoid-A (No.1) stuck on
P0756 Shift solenoid-B (No.2) performance or stuck off
P0757 Shift solenoid-B (No.2) stuck on
P0787 Shift/Timing solenoid control circuit low
P0788 Shift/Timing solenoid control circuit high
P0961 Pressure control solenoid “A” control circuit range/performance
P0962 Pressure control solenoid control circuit low
P0963 Pressure control solenoid control circuit high
P0973 Shift solenoid-A (No.1) control circuit low
P0974 Shift solenoid-A (No.1) control circuit high
P0976 Shift solenoid-B (No.2) control circuit low
P0977 Shift solenoid-B (No.2) control circuit high
P1702 Internal control module memory check sum error
P1723 Range select switch malfunction
P1878 Torque converter clutch shudder
P2762Torque converter clutch (TCC) pressure control solenoid control
circuit range/performance
P2763Torque converter clutch pressure control solenoid control circuit
high
P2764Torque converter clutch pressure control solenoid control circuit
low
U0100 Lost communication with ECM/PCM “A”
DTC No. Detected item Fail-safe operation
) P0102 Mass air flow circuit low input • ECM controls injector drive time (fuel injection
volume) according to throttle valve opening
(closed throttle position or not).
• ECM stops EGR control. ) P0103 Mass air flow circuit high input
) P0112 Intake air temperature sensor circuit low ECM controls actuators assuming that intake air
temperature is 20 °C (68 °F). ) P0113 Intake air temperature sensor circuit high
) P0117 Engine coolant temperature circuit low • ECM controls actuators assuming that engine
coolant temperature is 80 °C (176 °F).
• ECM operates radiator cooling fan. ) P0118 Engine coolant temperature circuit high