crank BMW 318i 1992 E36 Repair Manual

Page 139 of 759


Fig
.1.



Electrical
system
static
current
draw
being
measured
.

To
determine
the
circuit
or
component
causing
the
problem,

remove
one
Puse
at
a
time
until
the
current
drops
to
a
normal
range
.

BATTERY
SERVICE

The
E36
uses
a
six-cell,
12-volt
leadacid
battery
mounted

in
the
luggage
compartment
.
See
Fig
.
2
.

NOTE-

E36
convertible
models
require
a
specialbattery
which
is
designed
for
constant
vibratfon
.
A
battery
not
de-signed
for
this
will
fail
much
earlier
.

Battery
capacity
is
determined
by
the
amount
of
current

needed
tostart
the
vehicle,
and
by
the
amount
of
current
con-
sumed
by
the
electrical
system
.

BMW
batteries
are
rated
by
ampere/hours
(Ah)
and
cold

cranking
amps
(CCA)
rating
.
The
Ah
rating
is
determined
by

the
average
amount
of
current
the
battery
can
deliver
over
time
without
dropping
below
a
specified
voltage
.
The
CCA
is

determined
by
the
battery's
ability
to
deliver
starting
current
at


F
(-18°
C)
without
dropping
below
a
specified
voltage
.

Battery
Testing

noN~A

B9517

Battery
testing
determines
the
state
of
battery
charge
.
On

conventional
or
low-maintenance
batteries
the
most
common

method
of
testing
the
battery
is
that
of
checking
the
specific

gravity
of
the
electrolyte
using
a
hydrometer
.
Before
testing

the
battery,
check
that
the
cables
are
tight
and
free
of
corro-

sion
.
See
Fig
.
2
.

Hydrometer
Testing

The
hydrometer
consists
of
a
glass
cylinder
with
a
freely

moving
float
inside
.
When
electrolyte
is
drawn
into
the
cylin-

der,
the
levelto
which
the
float
sinks
indicates
the
specific

BATTERY,
STARTER,
ALTERNATOR



121-
3

Fig
.
2
.



Battery
in
right
sideof
luggage
compartment
.

gravity
of
the
electrolyte
.
The
more
dense
the
concentration
of
sulfuric
acid
in
the
electrolyte,
the
less
the
float
will
sink,
result-

ing
in
a
higher
reading
and
indicating
a
higher
state
of
charge)
.

NOTE-

Electrolyte
temperature
affects
hydrometer
reading
.
Check
the
electrolyte
temperaturewith
a
thermometer
.
Add
0
.004
to
the
hydrometer
reading
for
every
10°F
(6°C)
that
the
electrolyte
is
above
80°F
(27°C)
.
Sub-
tract
0
.004
from
the
reading
for
every
10°F
(6°C)
that
the
electrolyte
is
below
80°F
(27°C)
.

Before
checking
the
specificgravity
of
a
battery,
load
the
battery
with
15
amperes
for
one
minute
.
lf
the
battery
is
in-

stalled
in
the
vehicle,
this
can
be
done
by
turning
on
the
head-

lights
without
the
engine
running
.
Table
b
lists
the
percentage

of
charge
based
on
specific
gravity
values
.

Table
b
.
Specific
Gravity
of
Battery
Electrolyteat

80
°
F
(27°C)

Specific
gravity



1



Stateof
charge

1
.265



Fully
charged
1
.225



75%
charged
1
.190



50%
charged
1
.155



25%
charged
1
.120



Fully
discharged

The
battery
isin
satisfactory
condition
if
theaverage
specif-

ic
gravity
of
the
six
cells
is
at
least
1
.225
.
If
the
specific
gravity

is
above
this
leve¡,
butthe
battery
lacks
power
for
starting,
de-

termine
the
battery's
senrice
condition
with
a
load
voltage
test,

as
described
below
.
If
the
average
specific
gravity
of
the
six

cells
is
below
1
.225,
remove
the
battery
from
the
luggage

compartment
and
recharge
.
If,
after
recharging,
the
specific
gravity
varies
by
more
than
0
.005
between
any
two
celis,
re-

place
the
battery
.

CHARGING
SYSTEM
TROUBLESHOOTING

Page 148 of 759


130-2



FUEL
INJECTION

GENERAL

This
repair
group
covers
fuel
injection
system
component

testing
and
repair
.
Special
equipment
is
necessary
for
some

of
the
procedures
given
in
this
repair
group
.
If
you
do
not
have

the
equipment
required
to
do
the
job,
it
is
recommended
that

these
repairs
be
left
to
an
authorized
BMW
dealer
.
The
BMW

dealer
is
equipped
with
sophisticated
diagnostic
test
equip-

ment
that
is
capable
of
quicklypinpointing
hard-to-find
fuel
in-

jection
problems
.

NOTE-

"
Wiring
diagrams
for
the
engine
management
system,

can
be
found
at
the
rear
of
the
manual
under
Electri-
cal
Wiring
Diagrams
.

"
For
ignition
system
repairinformation,
see120
Igni-

tion
System
.

"
For
fuel
supply
system
testing
and
repair,
see160



The
engine
control
module
(ECM)
uses
electrical
signals

Fuel
Tank
and
Fuel
Pump
.



from
the
mass
air
flow
sensor,
the
air
and
coolant
temperature

sensors,
the
crankshaft
position/rpm
sensor,
the
knock
sen

Principies
Of
Operation



sors
and
the
oxygen
sensorsas
the
primary
inputs
to
electron-

ically
control
fuel
delivery
and
ignition
timing
.

There
are
five
versions
of
engine
management
systems

usedon
the
E36
cars
.
Each
has
the
same
basic
components

and
operating
principles
.
The
most
notable
difference
is
that

1996
and
later
cars
use
a
sophisticated
OBD
II-compliant
sys-

tem
.
See
Table
a
.

Table
a
.
Engine
Management
System
Variants

Engine
code/year



1
System

4-cy1inder
M42
(1
.8
I)
1992-1995



Bosch
DME
Ml
.7
M44
(1
.91)
1996-1998



~
Bosch
DME
M5
.2
(OBD
II)

6-cylinder
M50
1992
(2.5
I)



Bosch
DME
M3
.1
1993-1995
(2.5
I)



Bosch
DME
M3
.3.1
(VANOS)
M52
1996-1998
(3281-
2
.8
I)



Siemens
MS
41
.1
(OBD
II)
1998
(3231
-
2
.5
I)



Siemens
MS
41
.1
(OBD
II)
M-Power
S50US
(M3
-
3
.01)
1995



Bosch
DME
M3
.3
.1
S52US
(M3
-
3
.21)
1997-1998



Siemens
MS
41
.1
(0131)
11)

NOTE-

-
Descriptions
and
procedures
in
the
first
partof
this
re-

pairgroup
refer
to
all
the
various
engine
management
systems
.

"
Particulars
of
each
fuel
injection
system
are
treated
in
separate
sections
in
the
second
part
of
this
repair
group
.

GENERAL

Fig
.1
.



OBD
II
diagnostic
connector
locatíon
.

The
fuel
injection
system
is
completely
electronic
in
opera-

tion
.
Air
flow
is
measured
electronically
via
a
mass
air
flow

sensor
and
additional
sensors
supply
information
about
en-

gine
operating
conditions
.
The
ECM
calculates
the
amount
of
fuel
needed
for
the
correct
air-fuel
ratio
and
actuates
the
fuel

injectors
accordingly
.
The
amount
offuel
metered
to
theen-

gine
is
determined
by
how
long
the
injectors
are
open
.

Airintake
.
Air
entering
the
engine
passes
through
a
pleat-

ed
paper
air
filter
in
the
air
cleaner
.
Intake
air
volume
or
mass

is
then
measured
bya
mass
air
flow
(MAF)
sensor
.
In
al¡
ex-

cept
the
vane
type
sensor
(DME
M1
.7),
a
reference
current
is

used
to
heat
a
thin
wireor
film
in
the
sensor
when
the
engine

is
running
.
The
current
used
to
heat
the
wire/film
is
electroni-

cally
converted
into
a
voltage
measurement
corresponding
to

the
mass
of
the
intake
air
.

Table
b
.
Mass
Air
Flow
Sensor
Variants

System



Al
r
flow
sensor
type

Bosch
DME
M1
.7



Vane
(volume
sensor)

Bosch
DME
M3
.1



Hot
wire
(mass
sensor)

Bosch
DME
M3
.3
.1



Hot
film
(mass
sensor)

Bosch
DME
M5
.2



Hot
film
(mass
sensor)

Siemens
MS
41
.1



Hot
film
(mass
sensor)

"
The
16-pin
OBD
11
diagnostic
connector
is
located
on



NOTE-

the
lower
left
dashpanel
.
See
Fig
.
1
.



On
cars
equipped
wíth
tractioncontrol,
an
additional
throttle
valve
is
controlled
by
an
electronic
throttle
actu-
ator
(motor)
.
This
valve
is
used
for
engine
speed
inter
vention
.
Repair
information
forthis
system
is
notcovered
here
due
to
the
special
electrical
testing
equip-
ment
required
to
service
it
.

Page 152 of 759


130-
6



FUEL
INJECTION

Warnings
and
Cautions

For
personal
safety,
as
well
as
the
protection
of
sensitive

electronic
components,
the
following
warnings
and
cautions

should
be
adhered
to
when
working
on
the
engine
manage-

ment
system
.

GENERAL
WARNING
-

"
The
ignition
system
produces
high
voltages
that

can
be
fatal
.
Avoid
contact
with
exposed
termi-

nals
.
Use
extreme
caution
when
working
onacar
with
the
ignition
switched
on
or
the
engine
run-
ning
.

"
Do
not
touch
or
disconnect
any
high
voltage
ca-

bles
from
the
coils
or
spark
plugs
while
the
engine

is
running
or
beingcranked
by
the
starter
.

"
Connect
and
disconnect
the
DME
system
wiring
and
test
equipment
leads
only
when
the
ignition
is
switched
off
.

"
Gasoline
is
highly
flammable
and
fts
vaporsare

explosive
.
Do
not
smoke
or
work
on
a
car
near
heaters
or
other
fire
hazards
when
diagnosing
and
repalring
fuel
system
problems
.
Have
a
tire
extinguisher
avaílable
in
case
of
an
emergency
.

"
When
working
onan
open
fuel
system,
wear
suit-
able
hand
protection,
asprolonged
contact
wfth
fuel
can
cause
illnesses
and
skin
disorders
.

"
Renew
fuel
system
hoses,
clamps
and
O-rings
any
timethey
are
removed
.

"
Before
makingany
electrical
tests
that
require
the
engine
to
be
cranked
using
the
starter,
disable
the
ignition
system
as
described
in
120
Ignition
System
.

CAUTION-

"
Prior
to
disconnecting
the
battery,
read
the
bat-
tery
disconnectinn
cautions
given
at
the
front
of
this
manual
onpage
vifi
.

"
Do
not
connect
any
test
equipment
that
delivers

a
12-volt
power
supply
to
terminal
15
(+)
of
the
ig-

nitioncoil
.
The
current
flow
may
damage
the

ECM
.
In
general,
connect
test
equipment
only
as

speclfied
by
BMW,
this
manual,
or
the
equipment

maker
.

"
Only
use
a
digital
multlmeter
for
electrical
test
.

"
Only
use
an
LED
test
light
for
quick
tests
.

"
Disconnecting
the
battery
may
erase
fault

code(s)
stored
in
memory
.
Check
for
fault
codes

prior
to
disconnecting
the
battery
cables
.
ff
the

Check
Engine
light
ís
illuminated,
see100En-
gine-General
for
DME
fault
code
information
.
ff
any
other
system
faults
have
been
detected
(indi-
catedbyan
illuminated
warning
light),
see
an
au-
thorized
BMW
dealer
.
Additional
systems
with
self-diagnostic
capabilities
include,
ABS
(Anti-
lock
brakes),
SRS
(Airbags),
EML
and
ASC+T
and
AST
(Traction
Control)
.

"
Do
not
run
the
engine
wfth
any
of
the
spark
plug
wires
dlsconnected
.
Catalytic
converter
damage
may
result
.

"
Always
waitat
least
40
seconds
afterturning
off
the
ignition
before
removing
the
engine
control
module
(ECM)
connector
.
ff
the
connector
isre-
moved
before
this
time,
residual
power
in
the
sys-
tem
relay
may
damage
the
control
module
.

"
Cleanliness
is
essential
when
working
onan
open
fuel
system
.
Thoroughly
clean
fuel
line
con-
nections
and
surroundlng
areas
before
loosen-
ing
.
Avoid
moving
the
car
.
Only
fnstall
cleanparts
.

"
Fuel
system
cleaners
and
other
chemical
addi-
tives
other
than
those
specifically
recommended
by
BMW
may
damage
the
catalytic
converter,
the
oxygensensor
or
other
fuel
supply
components
.

Page 164 of 759


130-18



FUEL
INJECTION
The
engine
coolant
temperature
(ECT)
sensor
sends
con-

tinuous
engine
coolant
temperature
information
to
the
ECM
.
Fig
.
26
.
Mass
air
flow
sensor
terminalidentifcation
on
carswith
DME



As
temperature
increases
sensor
resistance
decreases
.
M3
.1
fuel
injection
.

Mass
air
flow
sensor
(hot
film),

testing
and
replacing

MOTE-

A
burn-off
cycle
is
not
used
on
hot
film
sensors
.

8
.
With
ignition
off,
disconnect
harness
connector
from
air



ECT
Sensor
Location
flow
sensor
.
Using
a
digital
multimeter,
check
resis-



"
M50/S50US
engine
............
left
side
of
cylinder
tance
at
terminals
listed
.



head
under
intake
manifold

Air
Flow
Sensor
Test
Values
(DMEM3
.1)

"
Terminals
5
and
6
.
.
.
.........
..
.
..
....
3-4
ohms

If
any
faults
are
found,
check
wiring
lo
and
from
the
ECM
.
Make
ECM
pinout
test
as
listed
in
See
Table
i
.
Main
power
to
air
flow
sensor
comes
from
DME
main
relay
.

On
cars
with
DME
M3
.3
.1
a
hot
film
mass
air
flow
sensor
is
used
.
When
the
engine
is
running,
a
current
is
used
lo
heat
a
thinfilm
in
the
center
of
the
sensor
.
This
current
is
electroni-
cally
converted
into
a
voltage
measurement
corresponding
to
the
mass
of
intake
air
.

If
thehot
film
breaks
or
if
there
is
no
output
from
the
air
flow
sensor,
the
ECM
automatically
switches
to
a
"limp-home"
mode
and
tucos
on
the
Check
Engine
light
.
The
engine
can
usually
be
started
and
driven
.
The
air
flow
sensor
has
no
inter-
nal
moving
parts
and
cannot
be
senricedor
adjusted
.

CA
UTION-

Use
only
a
digital
multimeter
when
checking
the
mass
air
flow
sensor
.
An
analogmetercan
dam-
age
the
air
flow
sensor
.

BOSCH
DME
M3
.
1
AND
M32
.1
COMPONENT
TESTS
AND
REPAIRS

1
.
Disconnect
harnessconnector
from
air
flow
sensor
.

2
.
Turn
ignition
on
and
check
for
voltage
and
ground
at

connector
.
There
should
beground
at
pin
1
.
There

should
be
positive
(+)
battery
voltage
at
pin
3
.
If
any
faults
are
found,
check
wiring
to
and
from
ECM
.
Make
ECM
pinout
test
.
See
Table
j
.

NOTE-

Positive
(+)
battery
voltage
to
air
flow
sensor
comes
from
DME
main
relay
when
the
ignition
is
switch
on
orengine
running
.

Engine
coolant
temperature
(ECT)
sensor,

testing
and
replacing

0012704
Fig
.
27
.
Engine
coolant
temperature
(ECT)
sensor
(A)
is
located
be-
neath
top
engine
cover
(B)
and
crankcase
vent
hose
(C)
.
M52
engine
shown
.
M50
is
similar
.

1
.
Check
ECM
reference
voltage
to
sensor
:
"
Disconnect
harnessconnector
from
ECT
sensor
.
"
Turn
ignition
keyon
.
"
Check
for
5
volts
between
supply
voltage
wire
(brown/red)
wire
of
harness
connector
and
ground
.
"
Turn
ignition
key
off
.
"
If
voltage
is'
not
present
or
incorrect,
check
wiring
from
ECM
and
check
referencevoltage
output
at
ECM
(pin
78)
.
See
Table
i
(DM
E
3
.1)
or
Table
j
(DME
3
.3
.1)

2
.
Check
ECT
sensor
resistance
:

"
With
harnessconnector
disconnected,
check
resis-
tance
acrosssensor
terminals
.
"
Compare
tests
results
to
values
in
Table
f
.

Page 170 of 759


130-24



FUEL
INJECTION

Jo
'0

o_A

í1
RELAY

..
.
.

CAMSHAFT
POSITION
SENSOR

'
.
~'



~
:UhI~IIUH~W~`bY~7~d~t~II7

.
.
.
,

1111111
~ilf

ASC

TERMINAL
15

MEMORY
POWER

CRANKSHAFT
POSITION
qtcMSENSOR

THROTTLE
POSITION

ENGINE
COOLANT
TEMP

FUELTANK
PRESSURE
SENSOR

S-EML
S-MSR

S-ASC

VEHICLE
SPEED

LOW
FUEL
LEVEL

A/C
SWITCH
ON
(AC)
E36
IHKA



COMPRESSOR
"ON"
SIGNAL
(KO)

INDIVIDUAL
SERIAL
NUMBER

SIEMENS
MS
41
.
1
COMPONENT
REPLACEMENT

FUEL
PUMP
RELAY
CONTROL
AUX
GROUND
P

MAIN
GROUND
AC
COMPRESSOR
RELAY
CONTROL





SECONDARY
AIR
INJECTION
AIR
PUMP
RELAY
CONTROL
-
M

PRE
CAT



POST
CAT
m
nXYGEN
SENSOR

ys
U
~
4



,
HEATING

FUELINJECTOR
CONTROL
(

MS
41
.1



(

MS

PURGE
CONTROL
VALVE



//



PURGE
'
CANISTERSHUT-OFF
VALVE

ECM
RELAY
CONTROL

IGNITION
COILS
CONTROL

1
ASC

o
ayi

THROTTLE
POTENTIOMETER
POWER

,

al
;
..
i

r71a
.

"a
fn7111,
/



r

Fig
.
36
.
Siemens
MS
41
.1
OBD
II
engine
management
system
usedon
M52
engine
.
Bosch
M5
.2
systemusedon
M44
engine
is
similar
.

Page 171 of 759


Mass
air
flow
sensor,
replacing

1
.
Disconnect
harness
connector
and
intake
air
boots

from
air
flow
sensor
.
See
Fig
.
37
.

Fig
.
37
.
Mass
air
flow
sensor
(arrow)
on
M52
engine
.

2
.
Installation
is
reverse
of
removal
.

"
No
adjustment
to
aír
flow
sensor
is
possible
.

"
Check
intake
hoses
for
cracks
and
vacuum
leaks
.

Engine
coolant
temperature(ECT)
sensor,

replacing

The
ECT
sensor
is
a
dual
temperature
sensor
.
One
circuit

provides
coolant
temperature
information
to
the
ECM
while

the
other
circuit
provides
coolant
temperature
information
to

the
instrument
cluster
.

1
.
Remove
left-side
top
engine
cover
.

4
.
Remove
sensor
.

5
.
Installation
is
reverse
of
removal
.

"
Replace
any
lost
coolant
.

0012703

"
Use
a
new
copper
sealing
washer
when
installing
new

Tightening
Torque

"
Engine
coolant
temperature

to
cylinder
head
.....
..
.
...
......
13
Nm
(10
ft-Ib)

FUEL
INJECTION



130-
25

0012704b

Fig
.
38
.
M52
engine
:
Engine
coolant
temperature
(ECT)
sensor
(A)
is
located
beneath
top
engine
cover
(8)
and
crankcase
vent

hose
(C)
.

Intake
air
temperature
(IAT)
sensor,

replacing

The
intake
air
temperature
(IAT)
sensor
for
the
M52/S52US

engine
is
mounted
on
the
bottom
of
the
intake
manifold
.
See
Fig
.

39
.

2
.
Unclip
crankcase
venting
hose
from
cylinder
head
cov-

er
.
See
Fig
.
38
.



Fig
.
39
.
M52/S52US
engine
:
Intake
air
temperaturesensor
location
in

bottom
of
intake
manifold(arrow)
.
Throttle
housing
shown
re

3
.
Under
intake
manifold,
disconnect
harness
connector



moved
.

fromsensor
.

1
.
Disconnect
intake
air
bootfrom
throttle
housing
.
Unbolt

throttle
housing
and
¡ay
aside
.
(It
is
not
necessary
to

disconnect
throttle
cable
or
electrical
harnessconnec-

tors
from
throttle
housing
.)

sensor
.



2
.
Remove
electrical
harness
connector
from
IAT
sensor
.

3
.
Unclip
temperature
sensor
and
remove
from
intake

manifold
.

4
.
Installation
is
reverse
of
removal
.
Use
a
new
gasket
at

the
throttle
housing
.

SIEMENS
MS
41
.1
COMPONENT
REPLACEMENT

Page 175 of 759

Tableh
.
ECM
Pin
Assignment--Bosch
DME
M1
.7

Pin



1
Signal



1
Component/function



1
Signal

45
Notused

46
Notused

47
Notused

48



Output



A/C
compressor
cut-out



Compressor
control
relay,
terminal
85
49
Notused

50
Notused

51



Output



Cyl
.
4
ignition
coil
control



Cyl
.
4
ignition
coil

52



Output



Cyl
.
2
ignition
coil
control



Cyl
.
2
ignition
coil

53



Not
used
54



Input



Battery
voltage
from
engine
control
module



Engine
control
module
relay,
terminal
87a

55



Ground



Ground,
ignition



Ground
point

56



Input



Ignition
switch,
terminal
15



Ignition
switch,
terminal
15
57
Notused

58



Not
used

59



Output



Throttleposition
sensor
and
volume
air
flow
sensor



Reference
voltage
(5
VDC)

60



Input



Programming
voltage



Data
link
connector

61
Notused

62
Notused

63
Notused

64



Input



Ignition
timing
intervention



Transmission
control
module
(EGS)

65



Input



Drive
range
P/N



Automatic
transmission
range
switch

66
Notused

67



Input



Crankshaft
position
RPM
sensor



Crankshaft
position
RPM
sensor

68



Input



Crankshaft
position
RPM
sensor



Crankshaft
position
RPM
sensor

69
Notused

70



Input



Oxygen
sensor
signal



Heated
oxygen
sensor

71



Ground



Oxygen
sensor
signal
ground



Heated
oxygen
sensor

72
Notused

73



Input



Vehicle
speed
signal



Instrument
cluster

74



Output



Engine
speed
signal



Instrument
cluster

75



Not
used
76



Input



Volume
air
flow
sensor



Volume
air
flow
sensor

77



Input



Intake
air
temperature
sensor
(IAT)



Intake
air
temperature
sensor
(IAT)

78



Input



Engine
coolant
temperature



Engine
coolant
temperature
sensor

79
Notused

80



Not
used

81



Input



Drive-away
protection
signal
(code)



On-boardcomputer

82



Not
used
83
Notused

84



Not
used
85



Input



A/C
pressure



Pressure
switch

86



Input



A/C
switch



Integrated
climate
regulation
control
module

87



Output



RxD
diagnosisdata
line



Data
link
connector

88



Output-Input



TxD
diagnosisdata
line



l
Data
link
connector

FUEL
INJECTION



130-
2
9

ECM
PIN
ASSIGNMENTS

Page 176 of 759


130-
3
0



FUEL
INJECTION

Pin
Signal
Component/function



Signal

ECM
PIN
ASSIGNMENTS

Table
1.
ECM
Pin
Assignment-Bosch
DME
M3
.1

1



output



Fuel
pump
relay
control



Fuel
pump
relay
switches
with
engine
runningor
cranking
(crankshaft
position
Signal
mustbe
present
for
relay
switchover)

2



1
output



1
Idle
speed
control
valve



1
Pulsad
ground-
close
signal
(seealsopin29)

3



output



Fuel
injectorcontrol,
cyl
.
1



Pulsedground
(injection
pulsewidth
in
ms)
with
engine
running

4



output



Fuel
injectorcontrol,
cyl
.
3



Pulsedground
(injection
pulsewidth
in
ms)
with
engine
running
5



output



Fuel
injector
control,
cyl
.
2



Pulsedground
(injection
pulse
width
in
ms)
with
enginerunning

6



ground



Ground



Ground
for
fuel
injector
output
stages

7
vacant
-



-

8



output



Check
Engine



Check
éngine
lamp
control
ground

9
vacant
-



-

10
vacant
-



-

11



output



Throttle
valve
position



Load
signal
to
transmission
control
module
12



input



Throttle
position
sensor



Voltage
varies
with
throttle
position

13



output



Mass
air
flow
sensor



Air
flow
sensor
hotwire
burn
off
(voltage
for
0
.5
seconds
after
shutdown)

14



ground



Mass
air
flow
sensor



Ground
for
air
flow
sensor

15
vacant
-



-

16



input



Cylinder
identification
sensor



A/C
voltage
pulse
per
camshaft
revolution
(between
pin
16
and
44)
17



output



Fuel
consumption
(ti)



Fuel
consumption
output
(KVA
Signal)
to
instrument
cluster

18
vacant
-



-

19
vacant
-



-

20
vacant
-



-

21vacant
-



-

22
vacant
-



-

23



output



Ignition
control
(terminal
1),
cyl
.
no
.
2



Primary
Signal,
ignition
coil
cyl
.
no
.
2

24



output



Ignition
control
(terminal
1),
cyl
.
n
o
.
3



Primary
signal,
ignition
coil
cyl
.
no
.
3

25



output



Ignition
control
(terminal
1),
cyl
.
n
o
.
1



Primary
signal,
ignitioh
coil
cyl
.
no
.
1

26



input



Power
supply
(terminal
30)



Battery
voltage
(B+)
at
al¡
times
(terminal
30)

27



output



Main
relay
control



Main
relay
activation
(to
relay
terminal
85)

28



ground



Ground



Ground
for
ECM
and
sensor
shielding

29



output



Idle
speed
control
valve



Pulsed
ground-
open
signal
(see
also
pin
2)

30
vacant
-



-

31



output



Fuel
injector,cyl
.
no
.
5



Pulsedground
(injection
pulsewidth
in
ms),
cyl
.
no
.
5

32



output



Fuel
injector,cyl
.
no
.
6



Pulsedground
(injection
pulse
width
in
ms),
cyl
.
no
.
6

33



output



Fuel
injector,cyl
.
no
.
4



Pulsedground
(injection
pulsewidth
in
ms),
cyl
.
no
.
4

34



ground



Ground



Ground
for
output
stages

35
vacant

36



output



Evaporative
purgevalve
control



Pulsed
ground
with
engine
at
normal
temperature
and
varying
engine
load

37



output



Oxygen
sensor
heater
relay
control



Oxygen
sensor
heater
relayactivation
(ground
at
terminal
85)

38
vacant
-



-

39
vacant
-



-

40
vacant



-

41



input



Mass
air
flow
sensor



Voltage
(+)

42
vacant
-



-

43



ground



Ground



Ground
for
temperatura
sensors
(ECT
sensor,
IAT
sensor,
TP
sensor)

44



input



Cylinder
identification
sensor



A/C
voltagepulseper
camshaft
revolution
(between
pin
16
and
44)

Page 177 of 759


Table
i
.
ECM
Pin
Assignment-Bosch
DME
M3
.1

Pin



Signal



Component/function



2

ignal

FUEL
INJECTION



130-
3
1

45
vacant
-

46
vacant
-



-

47
vacant
-



-

48



output



A/C
compressor
control



A/C
compressor
disabled
via
compressor
control
relay

49
vacant
-



-

50



output



Ignition
control
(terminal
1),cyl
.
n
o
.
4



Primary
signal,
ignition
coil
cyl
.
n
o
.
4

51



output



Ignition
control
(terminal
1),cyl
.
n
o
.
6



Primary
signal,
ignition
coil
cyl
.
no
.
6

52



output



Ignition
control
(terminal
1),cyl
.
n
o
.
5



Primary
signal,
ignitioncoil
cyl
.
no
.
5

53
vacant



-

54



input



Power
supply



Battery
voltage
(+)
from
main
relay
terminal
87
55



ground



Ground



Ground
for
ignition
control

56



input



Power
supply
(terminal
15)



Batteryvoltage
(+)
with
key
on
or
engine
running

57
vacant
-



-

58
vacant
-



-

59



output



Throttleposition
sensor



Throttleposition
sensorsupply
voltage
(5
VDC)

60



input



Data
link
connector



Programming
voltage

61
vacant
-



-

62
vacant
-



-

63
vacant
-



-

64



input



Ignition
timing
intervention



from
A/T
control
module
(only
active
during
gearshift)

65



input



Automatic
transmission
(A/T)
range
switch



Transmission
park
or
neutral
signal

66
vacant
-



-

67



input



Engine
speed/crankshaft
position
sensor



Crankshaft
position/rpm
(voltage
(VAC)
between
pins
67
and
68)

68



input



Engine
speed/crankshaft
position
sensor



Crankshaft
position/rpm
(voltage
(VAC)
between
pins
67
and
68)

69
vacant
-



-

70



input



Oxygen
sensor



Oxygen
sensor
signal
(0-1
VDC
fluctuating
with
engine
running)

71



ground



Oxygen
sensor



Oxygen
sensor
signal
ground

72
vacant
-



-

73



input



Road
speed



Road
speed
signal
from
instrument
cluster

74



output



Engine
speed
(TD)



Engine
speed
(TD)
signalto
instrument
cluster

75
vacant
-



-

76
vacant
-



-

77



input



Intakeair
temperature
(IAT)
sensor



Intake
air
temperature
(0-5
V,
temperaturedependent)

78



input



Engine
coolant
temperature
(ECT)
sensor



Engine
coolant
temperature
(0-5V,
temperature
dependent)

79
vacant
-



-

80
vacant
-



-

81



input



On-boardcomputer



Drive-away
protection
enable

82
vacant
-



-

83
vacant
-



-

84
vacant
-



-

85



input



A/C
pressure
switch



From
Integrated
climate
control
module
via
A/C
pressure
switch

86



input



A/C
compressor
on



From
Integrated
climate
control
module
87



input



Diagnostic
connector
(RxD)



Diagnostic
RxD
(receive)signal
to
pin
15
in
Data
link
connector

88



input/output



Diagnostic
connector
(TxD)



Diagnostic
TxD
(transmit)
signal
to
pin
20
in
Data
link
connector

ECM
PIN
ASSIGNMENTS

Page 178 of 759


130-
3
2



FUEL
INJECTION

Pin



1
Signal



1
Component/function



1
Signal

1



output



Fuel
pump
relay
control



Fuel
pump
relay
switches
with
engine
running
or
cranking
(crankshaft
position
signal
must
be
present
for
relay
switchover)

2



output



Idle
speed
control
valve



Pulsed
ground-close
signal
(seealso
pin
29)

3



output



Fuel
ínjectorcontrol,
cyl
.
5



Pulsed
ground
(injection
pulsewidth
in
ms)
cyl
.
5
4



output



Fuel
injectorcontrol,
cyl
.
6



Pulsed
ground
(injection
pulsewidth
in
ms)
cyl
.
6
5



output



Fuel
injectorcontrol,
cyl
.
4



Pulsed
ground
(injection
pulsewidth
in
ms)
cyl
.
4
6



ground



Ground



Ground
for
fuel
injector
output
stage

7



output



Camshaft
actuator
(VANOS
solenoid)
control



Camshaft
actuator
(VANOS
solenoid)

8



output



Check
Engine



Instrument
cluster,
Check
Engine
lamp

9
vacant
-



-

10
vacant
-



-

11



output



Throttle
position



Throttle
angle
signal
to
A/T
control
module
12
vacant
-



-

13



input



Oxygen
sensor



Oxygen
sensor
signal
(0-1
VDC
fluctuating
with
engine
running)

14



input



Mass
air
flow
sensor



Mass
air
flow
sensor

15
ground
Ground



Ground

16



input



Crankshaft
position/rpm
sensor



Voltage
pulse
(VAC)
between
pin
16
and
43
(crank
position/rpm
sensor)

17



input



Camshaft
position
sensor



Halleffect
camshaft
sensor

18
vacant
-



-

19
vacant
-



-

20
vacant
-



-

21
vacant
-



-

22
vacant
-



-

23



output



Ignition
coil
control,
cyl
.
4



Ignition
coil
4

24



output



Ignition
coil
control,
cyl
.
6



Ignition
coil
6

25



output



Ignition
coil
control,
cyl
.
5



Ignition
coil
5

26



input



Power
supply
(terminal
30)



Battery
voltage(B+)
at
all
times

27



input



Main
relay
control



Main
relayactivation
(terminal
85)

28



ground



Ground



Ground
for
ECM
and
sensor
shielding

29



output



Idle
speed
control
valve



Pulsed
ground-open
signal
(seealsopin
2)

30
vacant
-



-

31



output



Fuel
injectorcontrol,
cyl
.
3



Injection
pulse
wicith
in
ms-cyl
.
3

32



output



Fuel
injectorcontrol,
cyl
.
2



Injection
pulse
wicith
in
ms-cyl
.
2

33



output



Fuel
injectorcontrol,
cyl
.
1



Injection
pulsewidth
in
ms-cyl
.
1

34



ground



Ground



Ground
for
remaining
output
stages

35
vacant
-



-

36



output



Evaporative
purge
valve
control

37
vacant
-



-

38



output



Oxygen
sensor
heater
relay
control



Oxygen
sensor
heater
relay
switchover
(terminal
85)

39
vacant
-



-

40



ground



Oxygen
sensor



Oxygen
sensor
signal
ground

41



input



Mass
air
flow
sensor



Mass
air
flow
voltage
signal

42



input



Vehicle
speed



Vehicle
speed
signal
from
instrument
cluster

43



input



Crankshaft
position/rpm
sensor



Voltage
pulse
(VAC)
between
pin16
and
43
44



ground



Ground



Ground
for
intake
air
temp
.
sensor,
engine
coolant
temp
.
sensor,
throttle
position
sensor

ECM
PIN
ASSIGNMENTS

Table
j
.
ECM
Pin
Assignment-Bosch
DME
M3
.3
.1

Page:   < prev 1-10 ... 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 101-110 ... 110 next >