BMW 750IL 1992 E32 Level Control System Manual

Page 31 of 57

31
Level Control Systems
The pressure accumulator decreases the load on the compressor and significantly reduces
the time required for large changes in ride height.
The EHC 2 control module monitors system pressure via a pressure sensor mounted on
the accumulator. Normal system pressure is 15.7 +/- 0.7 bar. Minimum system pressure
is 9 bar.
The pressure accumulator's charge is sufficient to fill the four suspension struts once from
the Access position to the normal position and compensate for vehicle load up to maximum
gross weight.
Valve Unit
In the valve unit, four bellows valves and the pressure accumulator valve are activated.
The bellows valves and the pressure accumulator valve are solenoid valves which are
closed under spring pressure when de-energized.
Accumulator/Valve Unit
1. Air Lines
Yellow-Black Front
Red-Blue Rear
2. Pressure Accumulator
3. Connecting Cable
4. Pressure Sensor
5. Valve Unit
Valve Unit
1. Connections for Air Lines
2. Pressure Accumulator valve
Pneumatic Layout of Control Valve
1. Pressure Accumulator
2. Accumulator Pressure Sensor
3. Pressure Accumulator Valve
4. Bellows Valves
5. From the Air Supply Unit
NW Size of opening/tubing size in mm.

Page 32 of 57

32
Level Control Systems
Ride Height Sensor
The control unit obtains information about the ride height of the vehicle via a ride height sen-
sor attached to each of the four wheels.
The ride height sensor is an angle Hall sensor which is activated by a ring magnet. The ring
magnet is polarized vertically from north to south.
The magnetic field line of the ring magnets intersect a Hall cell. The Hall cell is arranged in
such a way that only the horizontal components of the field lines are evaluated. This results
in different field line strengths at different positions of the ring magnet. The Hall cell mea-
sures the field strength of the magnetic flux and converts it into an analog signal with a volt-
age level between 0.5 and 4.5 V.
600Rear Axle
350Front Axle
350Front Axle
600Rear Axle
Ride Height Sensor
Sensor Principle of
Operation
1. Ring Magnet
2. Hall Cell
3. Longitudinal magnetic
field lines, low voltage
0.5V
4. Transverse magnetic
field lines, high voltage
4.5V

Page 33 of 57

33
Level Control Systems
Air Suspension Strut
Rear
Minor modifications were made to the rear axle air springs. The air springs and the dampers
are configured separately at the rear axle.
Front
The air suspension replaces the steel suspension at the front axle, i.e. the spring bellows is
attached to the damper. The front air suspension strut and the impact absorber form a
complete unit.
Control Unit
The EHC2 Control Unit is located behind the glovebox adjacent to the General Module.
The connector is a black 54 pin connector.
Inputs received directly into the control unit are:
Ride Height Level Sensor (X4) Up and Down requests from the switch assy.
General Module (Load cutout signal) CAN Bus Inputs
K Bus Inputs Pressure Sensor
Compressor Temperature
O Ou
ut
tp
pu
ut
ts
s
i
in
nc
cl
lu
ud
de
e:
:
Air Unit Control (Activation) Front and Rear Axle Valves
LED’s for Switch Unit Compressor Relay
Pressure Accumulator
Air Suspension Strut
1. Auxiliary Spring
2. Air Bellows
3. Damper

Page 34 of 57

34
Level Control Systems
Switch Assembly
The dash mounted switch assembly supplies a momentary switched ground to the EHC2
Control Unit requesting a ride height change in the up or down direction. Three LED’s pro-
vide current ride level selected and target ride level if a request for change has been made.
The LED for the current ride height will always be illuminated. The LED for the target ride
level will flash until the new ride level is reached.
Notes:

Page 35 of 57

35
Level Control Systems
Principle of Operation
Ride Height Control Operations
In addition to the automatic ride-height control system for payload compensation, the dri-
ver can set three different vehicle ride heights.
 Off-road (+25 mm), high ground clearance to a max. speed of 50 km/h
 Standard (0 mm), normal ride level
 Access (-35 mm), for entry and exit, loading and unloading to a max. speed of 35 km/h
or can be activated in Standard mode at road speeds < 25 km/h
The various heights are selected by scroll rocker. Light emitting diodes indicate the present
ride height setting.
Ride height can be adjusted from terminal 15 and with the doors closed. The hood and tail-
gate may be open.
The system also controls inclination automatically, like the single axle air suspension.
All control operations are executed without stopping at intermediate levels. The vehicle is
configured pneumatically in such a way that the front and rear axles can be lowered in par-
allel in any load situation. Depending on the load situation, either the front axle or the rear
axle is slightly quicker. On account of the different control speeds, a difference in height
between the two axles is possible during all control operations. If a max. permissible thresh-
old is exceeded, the quicker axle is stopped briefly.
The various levels can be preselected while travelling. Changeover between ride levels is
effected at the speed threshold values defined in the control unit. The control unit monitors
the change-over.
As soon as the driver sets a new target ride level by pressing a button or when a change-
over is initiated automatically by a specific driving condition, the LED for the current ride
level remains lit and the LED for the target ride level begins to flash.
When the new level is reached, the LED for the previous level goes out and the LED for the
new level reached stays lit permanently.

Page 36 of 57

36
Level Control Systems
The various levels can be preselected while travelling. Changeover between ride levels is
effected at the speed threshold values defined in the control unit. The control unit monitors
the change-over.
As soon as the driver sets a new target ride level by pressing a button or when a change-
over is initiated automatically by a specific driving condition, the LED for the current ride
level remains lit and the LED for the target ride level begins to flash.
When the new level is reached, the LED for the previous level goes out and the LED for the
new level reached stays lit permanently.
If a ride level selection is not allowed, the LED indicating the momentary ride level of the
vehicle flashes for 3 seconds.
A special case is preselection of Access levels while travelling. The Access LED flashes and
the LED for the original ride level is lit permanently. However, this does not mean that a con-
trol operation has already begun. The control operation does not actually begin until the
speed threshold which the Access level allows is reached or undershot.
Off-Road
(+25 mm)
Standard
(0 mm)
Access
(-35 mm)
Up button
and
<50km/h
Up button
or
>35km/h Up button
or
60 s time period
Access
Preselection
<25km/h Down Button and
<80km/h
and
Accumulator pressure
>threshold
and/or
compressor temperature
<threshold
Down button
or
>50km/h

Page 37 of 57

37
Level Control Systems
In addition to the LED indicator, the following text messages can
be displayed in the instrument cluster:
T TR
RA
AI
IL
LE
ER
R
M
MO
OD
DE
E
A coupled trailer is identified via the trailer connector. To avoid damaging the trailer and
the vehicle, changes of vehicle level are generally avoided. The standard level is "frozen."
If the trailer is coupled at a level other than the Standard level, the vehicle ride level is
not changed to Standard unless a button is pressed or the speed threshold for auto-
matic change-over is reached. The standard level is then "frozen" until the trailer con-
nector is disconnected.
R RI
ID
DE
E
H
HE
EI
IG
GH
HT
T
C
CO
ON
NT
TR
RO
OL
L
I
IN
NA
AC
CT
TI
IV
VE
E
Faults in the system and on the control unit which are only identified by the instrument
cluster, e.g. control unit disconnected
R RI
ID
DE
E
H
HE
EI
IG
GH
HT
T
C
CO
ON
NT
TR
RO
OL
L
I
IN
NA
AC
CT
TI
IV
VE
E
+
+
M
MA
AX
X.
.
6
60
0
k
km
m/
/h
h
For safety-critical faults (vehicle is too high or at inclination)
Control Modes
Sleep mode
If the vehicle is parked, it enters Sleep mode after 16 minutes. No further control opera-
tions are executed. A "watch dog" wakes up the control unit for a few minutes every 6
hours (wakeup mode) in order to compensate for possible inclination of the vehicle. (Vehicle
height may only be corrected once as air supply unit only operates with engine running.)
Wake-up
In wake-up mode, the control unit is woken up for a set period of time in order to com-
pensate for possible inclination of the vehicle. Inclination of the vehicle can be caused by
large temperature differences or by minor leaks. Adjustments to the front and rear axles
ensure that the vehicle is visually level. To minimize power consumption, the vehicle is low-
ered only. The nominal level of the lowest wheel serves as the nominal level for all other
wheels. The lowest nominal level to which the vehicle is lowered is the Access level (-35
mm).
Exception:if the vehicle is parked at Access level, the vehicle is lowered to max. -50 mm
in wake-up mode. If the vehicle is parked for a prolonged period of time and there is a leak
in the system, further loss of pressure does not produce a change of ride level since the
weight of the body is born by the auxiliary suspension and the residual tire pressure.
Advance /Overrun
When the vehicle is woken out of sleep mode by the load-cutout signal (VA), it normally
enters advance / overrun mode. Since the engine is not (no longer) running in this mode,
however, there are restrictions on the control operations that can be performed in order to
conserve the battery. Ride level compensation is restricted to tolerance ranges of 20 mm
and 25 mm in the up and down directions respectively. This serves to reduce the frequen-
cy of control operations.

Page 38 of 57

38
Level Control Systems
All control operations in advance / overrun mode are executed as long as pressure is avail-
able in the accumulator. When the accumulator is empty and the engine is turned off, con-
trol operations are directly driven by the compressor. User-activated changes of ride level
and filling of the accumulator are not possible.
Terminal 15
As soon as the ignition is turned on (terminal 15), the user is allowed to lower the ride level
as required.
However, it is still not possible to raise the ride level or fill the accumulator.
Ride level is compensated outside a narrow tolerance range of 10 mm upwards and 10 mm
downwards.
Engine "on"
Ride level compensation, raising and lowering the vehicle's ride height as well as filling the
accumulator are permitted when the engine is running. The compressor also starts up dur-
ing every control operation.
Ride level is still compensated outside the narrow tolerance range of ±10 mm.
As long as the vehicle is stationary, high speed filtered ride level signals are used to detect
a change of load. This allows the system to react immediately to changes in ride level.
As soon as the vehicle is travelling, it changes over to low speed filtered ride-level signals.
The system no longer reacts to bump movements caused by road surface unevenness. A
mean value is formed over a prolonged period of time, i.e. payload is only altered by the
progressive emptying of the fuel tank.
The high speed filter is not used until the vehicle is stationary again and a lid is opened. If
no lid is opened, the vehicle logically cannot be loaded or unloaded.
SleepWake-Up
Power Down
Watch Dog
Ignition “ON”Advance/
Overrun
VA = Load Cutout Signal
Sleep = Temporary Power Down of Control Unit
Wake-up = Activating the Control Unit
Watch Dog = Monitoring
Engine Off
Engine On
Engine Running
Terminal 15 “ON” VA up
VA Down
Terminal 15 “OFF”

Page 39 of 57

39
Level Control Systems
Workshop Hints
If a threshold level is exceeded on all 4 wheels when the vehicle is stationary, the control
unit assumes that the vehicle has been raised on a workshop platform.
There are three possible reset conditions for workshop platform recognition:
 The original level values are undershot at all four wheels,
 A selection is made by button,
 A speed of >40 km/h is recognized for 3 s.
Vehicle jack
If the lowering speed at a wheel is too low during the lowering operation, the system
assumes that the wheel is jacked up. However, the downward velocity must be less than
a certain preprogrammed speed threshold. If the system detects a jacked wheel, it stores
the height of this wheel.
Car jack recognition is reset when the stored ride height is again undershot. When a trav-
elling speed of 40 km/h is maintained for at least 3 s, another control attempt is performed.
The car jack recognition can also be reset by button selection.
Please note that the system also controls ride height in diagnostic mode. For this reason,
Belt Mode must be activated before carrying out work on the system or before setting the
vehicle ride height.
Belt Mode:
Heights are fixed and are not compensated. If Belt Mode is set, the function LED is off. The
text message "ride-height control system inactive" appears in the instrument cluster.
Transport Mode:
The Transport Mode setting is for transportation purposes. When the ignition is turned on,
the message "ride-height control system inactive" appears. Heights are increased or
decreased depending on ignition key status, e.g. ride height is reduced when the vehicle is
lashed to a ship or train and raised when the "Engine on" signal is generated and when the
vehicle is transported on a transporter truck.
The correct ride height is set to ± 5 mm via "Activate components." The left and right ride
levels are set separately at the rear axle. The ride levels are then set at the front axle. The
left and right air springs are adjusted jointly for this purpose.
Following this, the new ride height for the front and rear axles is stored via the "Offset func-
tion."
Before replacing components, the system must be depressurized! This is done in the diag-
nostics via "control unit functions," "Component activation," "Pressure-relieve front axle/rear
axle." Repeat the activation procedure 6 times.

Page 40 of 57

40
Level Control Systems
If the fabric of the bellows is visible, then the bellows must be replaced.
Upon completion of repair work, the air suspension system of the vehicle raised on the
workshop platform must be refilled with air via the diagnostics. The activation procedures
must also be repeated 6 times. This prevents the bellows from being folded incorrectly.
The vehicle must with be set down on its wheels when the suspension struts are depres-
surized!
Important Workshop Hint
S Si
im
mi
il
la
ar
rl
ly
y,
,
a
a
d
de
ef
fe
ec
ct
ti
iv
ve
e
v
ve
eh
hi
ic
cl
le
e
w
wi
it
th
h
l
le
ea
ak
ky
y
p
pn
ne
eu
um
ma
at
ti
ic
c
s
sy
ys
st
te
em
m
m
mu
us
st
t
n
no
ot
t
b
be
e
r
ra
ai
is
se
ed
d
o
on
n
t
th
he
e
w
wo
or
rk
k-
-
s sh
ho
op
p
p
pl
la
at
tf
fo
or
rm
m.
.
I
If
f
d
de
ep
pr
re
es
ss
su
ur
ri
iz
ze
ed
d,
,
t
th
he
e
b
be
el
ll
lo
ow
ws
s
w
wo
ou
ul
ld
d
c
co
on
nt
tr
ra
ac
ct
t
u
un
nd
de
er
r
s
su
uc
ct
ti
io
on
n
f
fo
or
rm
mi
in
ng
g
i
in
nc
co
or
rr
re
ec
ct
t
f fo
ol
ld
ds
s.
.
T
Th
he
es
se
e
f
fo
ol
ld
ds
s
c
co
ou
ul
ld
d
r
re
es
su
ul
lt
t
i
in
n
m
ma
al
lf
fu
un
nc
ct
ti
io
on
ns
s
l
la
at
te
er
r
o
on
n.
.
Areas on the air bellows which can possibly become leaky are the O-ring at the piston rod
and the seal carrier on the roll piston.
The connectors attached to all cables are identical to the connections on the single-axle air
suspension. 6 mm cable is used. The tightening torque is 3+
1 Nm throughout the system.
Special care must be taken when handling breakage-prone plastic parts of air suspension
elements.
Upon completion of repair work, Belt mode must be deactivated via the diagnostics. The
function LED on the button comes on. No text message appears in the instrument cluster.
The system is OK and ready for operation.

Page:   < prev 1-10 11-20 21-30 31-40 41-50 51-60 next >