change time DATSUN 610 1969 Workshop Manual

Page 34 of 171


Fuel

System

DESCRIPTION

FUEL
TANK

FUEL
PUMP

CARBURETTOR
IDLING
ADJUSTMENT

FAST
IDLE
OPENING
ADJUSTMENT

THROTTLE
VALVES
INTERLOCK
OPENING

DASHPOT

DESCRIPTION

The

diaphragm
type
fuel

pump
shown
in

Fig
D
1
feeds

fuel

from
the
tank
to
the
carburettor
in
a

regulated
supply

according
to
the
needs
of
the

engine
A
cartridge
type
fuel

strainer

prevents
any
dirt
from

reaching
the

pump
inlet
valve

The

carburettor
fitted
to

the

engine
is
either
a
down

draught
two
barrel

type
equipped
with
a
throttle

operated

acceleration

pump
and
power
valve
mechanism

See
Fig
D
2

or
a
twin
SU
carburettor
of
the

type
shown
in

Fig
D
3
In
the

two
barrel

type
carburettor

fuel
flows
from
the

passage
at
the

bottom
of
the
float
chamber

passes
through
the

primary
main

jet
and
mixes
with
air

introduced

through
the
main
air
bleed

screw

The

petrol
and
air
mixture
is

injected
into
the
venturi

through
the
main
nozzle

Each
time
the
accelerator

pedal
is

depressed
the
throttle

opens
and
the
accelerator

pump
forces
a

jet
of

petrol
into
the

air
stream
to
allow
the

engine
to
accelerate

smoothly
See

Fig

0
4
The

power
valve
mechanism
is

operated
automatically

according
to
the
demands
made

by
the

engine
Under
light
load

i
e

part
throttle
conditions
the
intake
manifold

depression
is

transmitted
below
the
throttle
valve
the
vacuum

pulls
a

piston

upwards
against
a

spring
and
leaves
the

power
valve
closed

allowing
additional
air
to
be

admitted
through
the
air
bleed
screw

and
thereby
weaken
the

petrol
and
air
mixture
When
the
vacuum

below
the
throttle
vaJve
is
lowered

during
full
load
conditions

the

piston
is

pushed
down
opening
the

power
valve
and
providing

additional
fuel
to
enrichen
the
mixture

The
model

HJ
L
38W6
SU
twin
carburettor
is
of

the

horizontal
variable
venturi

type
and
is
used

only
on
the
1600

and
1800
cc

engines
In
this

type
of
carburettor
a

constant

flow
of
intake
air
is

maintained

by
the

automatically
adjusted

venturi

opening
this
is
accomplished

by
the
suction

piston

sliding
in
accordance
with

changes
in
the
volume
of
intake
air

Referring
to

Fig
D
5
the
suction
chamber
is
mounted
above

the
venturi
The
suction

piston
slides
vertically
within
the

chamber

and

changes
the
venturi

opening
area
The

piston
is

operated
by
a

difference
between
the

upper
vacuum

pressure

which
is

applied
through
the
suction

poct
and
the
atmospheric

pressure
which

is
introduced

through
the
air
hole
from
the
air

cleaner

The
amount

by
which
the
throttle
is

opened
causes
the

suction

piston
to
rise
or
fall
under
the
intluence
of
the

engine

suction
The

pozzle

opening
therefore

changes
and

provides
an

optimum
air
fuel
mixture
at
all

engine
speeds

The

cartridge
type
fuel
strainer
utilizes
a
fibre
strainer

element
which
should
be

replaced
every
20
000
km
12
000

miles
Removal
of
the
fuel
strainer
is
a

simple
operation
but
as

it
cannot
be
drained
the
strainer
should
not
be
removed
when
CARBURETIOR
Removal
and
Overhaul

FLOAT
LEVEL
Adjustment

SU
TWIN
CARBURmORS

Adjustments

SU
TWIN
CARBURmORS

Dismantling

SU
TWIN
CARBURETTORS

Inspection

STARTING
INTERLOCK
VALVE
OPENING

HYDRAULIC
DAMPER

the
tank
is

full
unless

absolutely
necessary

A

viscous

paper
type
air
cleaner
element
is
fitted
which

does
not

require
cleaning
and
should
be

repl
ced

every
40
000
km

24
000
miles
The
air

cleaner
fitted
on
the

single
carburettor

is
equipped
with
an

idling
compensator
to

prevent
the
mixture

from

becoming
too

rich
at

high
idling

temperatures
Additional

fresh
air
is
introduced
into
the
inlet
manifold

by
the
action
of

a
bimettalic

strip
located
in
the
air
cleaner
When
the

temperature

under
the
bonnet
is

high
the
bimetal
is

heated

by
the
hot
inlet

air
and
lifts
to
allow
the
valve
to

open
The

idling
compensator

valve

partially
opens
at

550
I310F
and
is

fully
open
at

650C

l490F
The
unit
cannot
be
dismantled
as

it
is

pre
sealed
and

correctly
adjusted
for
valve

timing
Fig
D
6
shows
the

layout

of

the
idling
compensator
piping

FUEL
TANK

Replacing

The
fuel
tank
can
be
removed
in
the
following
manner

Remove
the
rear
seat

and
back
rest

2
Take
out
the
board
behind
the
back
rest

3
Take
out
the

luggage
compartment
lining
board
and

disconnect
the
cable
to
the

petrol
gauge
unit

4
Disconnect
the
petrol
filler
tube
from
the
tank

5
Remove
the
tank
retaining
bolts
and
disconnect
the

rubber
fuel
outlet
and
return
hoses

Installation
is

a
reversal
of
the
removal

procedure
always

ensure
that
the
fuel
lines
arc
carefully
checked
for

signs
of

damage
before

replacing
the
tank

FUEL
PUMP

Testing

Pressure
and
capacity
tests
can
be
carried
out
with
the

pump
installed
in
the

following
manner

Static

pressure
test

Disconnect
the
fuel
line
at

the
carburettor
install
an

adaptor
tee

fitting
and
suitable

pressure
gauge
to
the
fuel
line

between
carburettor
and
fuel

pump
Start
the
engine
and
run
it

at

varying
speeds

The

reading
on

the
gauge
should
be
0
18
0
24

kg
sq

cm
2
6
34
Ib

sq
in
If
the

pressure
is
below
the

specified

figure
then
either
one

part
of
the

pump
has
worn

excessively

or

general
wear
has
occured
to

all
the

working
parts
The
faults

may
include
a

ruptured
diaphragm
worn
and

warped
valves

33

Page 40 of 171


FLOAT
LEVEL

Adjustment

A
constant
fuel

level
in
the
float

chamber
is
maintained

by

the
float
and
ball
valve

Fig
D
12
If
the
fuel
level
is
not

in

accordance
with
the
level

gauge
line
it
will
be

necessary
to
care

fully
bend

the
float
seat
until
the
float

upper
position
is

correctly

set

Fig
D
13

The
clearance
H
between
the
valve
stem

and
float
seat

should
be
1
0
mm
0
039
in
with
the
float

fully
lifted
as
shown

Adjustment
can

be
carried
out

by
carefully
bending
the
float

stopper
Fig
D
14
until
the

required
clearance
is
obtained

SU
TWIN
CARBURETTORS

Adjustments

It
is
essential
that
the
two

carburettors
are

correctly
adjusted

if

peak
m3l1ce
and
economical
fuel

consumption
is
to
be

realized
Incorrect
carburettor

a
ljustment
will
have
an
adverse

affect

during
idling
and
on

acceleration
etc

Carburettor

synchronization
and

idling
adjustment

Run
the

engine
until
it
reaches
its
normal

operating

temperature
remove
the
air
cleaner
and
slacken

the
front

and

rear
throttle

adjusting
screws
the
balance
screw
and
the
fast

idling
setting
screw
Make
sure
that
the
front
and
rear
throttle

shafts
are
not
connected

Fully
tighten
the

idling
adjustment

nuts
of

the
front

and
rear

carburettors

Fig
D
15

the
back

off
each
nut

by
an

equal
amount
and

by
one
and
a
half
to
two

tUrns

Screw
in
the
front
and
rear
throttle

adjusting
screws

by
a

few
turns
and
start
the

engine
Allow
the

engine
to
reach
its

normal

operating
temperature
before

proceding
to

the
next

stage

Adjust
the
front
and
rear
throttle

adjusting
screws
until

the

engine
speed
is
reduced
to

approximately
600
700
r

p
m

The

engine
should
turn
over

smoothly
and

consistently
Apply

a

flow
meter
to
the
front
carburettor
air
cleaner

flange
and
turn

the

adjustment
screw
on
the
flow
meter
so
that
the

upper
end

of
the
float
in
the

glass
tube
is
in

line
with
the
scale
Uft
off
the

flow
meter

and
apply
it
to

the
rear
carburettor
air
cleaner

flange

without

altering
the

setting
of
the
flow
meter

adjusting
screw

If

the

position
of
the
flow

meter
float
is
not

aligned
with
the

scale

adjust
the
rear
carburettor

throttle
adjusting
screw
to

align
the
float
with
the
mark
on
the
scale

With
the
carburettor
flow

correctly
adjusted
turn
the

idling
adjustment
nuts

of
both
carburettors

approximately
1
8

of

a
turn

either
way
to
obtain

a
fast

and
stable

engine
speed

Both
nuts
must

be
turned

by
an

equal
amount

Back
off
the
front
and
rear
throttle

adjusting
screws
and

adjust
the

engine
speed
to

the

specified
value
of

650
r

p
m

for

the
standard

engine
or
700
r

p
m
with
vehicles
fitted
with

automatic
transmission
Make
sure

that
the
air
flow
of

both

carburettors
remains

unchanged
Screw
in
the
balance
screw

until
the
screw
head
contacts
the

throttle
shafts
without

changing
the

idling

speed
setting

Move
the
throttle

connecting
shaft
and
accelerate
the

engine
a
few
times
then
check
that
the

idling
speed
is

unchanged

Turn
the
fast
idle

setting
screw

to
increase
the

engine
speed

to

approximately
1500

r

p
m
and
recheck
with
the
flow
meter
that
the
air
flow
for
both
carburettors
is

correctly
matched
If

the
air
flow
is
uneven

it
will
be

necessary
to

readjust
the
balance

screw

Finally
back
off

the
fast
idle

setting
screw

Fig
D
16

and
decrease
the

engine
speed
Apply
the
flow
meter
to

the

carburettors
to
confirm
that
the
float

positions
are
even
Re

adjust
if

necessary
by
means
of

the
throttle

adjusting
screws

Stop
the

engine
and
fit
the
air
cleaner

SU
TWIN
CARBURETTOR

Dismantling

Piston
and
suction
chamber

Dismantling

Unscrew
the
plug
and
withdraw
the

piston
damper
Fig
D

17
Remove
the
four
set
screws

and
lift
out

the
suction

chamber
withdraw
the

spring
nylon
washer
and
the

piston

Take
care
not
the

damage
the

jet
needle
and
the
interior
of

the

suction
chamber

Do
not
remove
the

jet
needle
from
the

piston
unless

absolutely
necessary
If
a

replacement
is
to
be
fitted
ensure
that

the
shoulder
of
the
needle
is
flush
with
the
lower
face
of

the

piston
This

operation
can

be
accomplished
by
holding
a
strai

edge
over
the
shoulder
of
the
needle
and
then

tightening
the

set
screw
as
shown
in
Fig
D
18

Wash
the
suction
chamber
and

piston
with
dean
solvent

and

dry
with

compressed
air
Lubricate
the
piston
rod
with
a

light
oil
Do

NOT
lubricate
the

large
end
of
the

piston
or
the

interior
of
the
suction
chamber

NOZZLE

Dismantling

The
nozzle
See
Fig
D
19
can
be
removed

quite
easily

but
should
not
be
dismantled
unless

absolutely
necessary
as

reassembly
of

the
nozzle
sleeve
washer
and
nozzle
sleeve

set
screw
is
an

extremely
intricate

operation

To
remove
the
nozzle
detach
the

connecting
plate
from

the
nozzle
head

pulling
lightly
on

the
starter
lever
to
ease
the

operation
Loosen
the

retaining
clip
take
off
the
fuel
line
and

remove
the
nozzle
Be
careful
not
to

damage
either
the
jet

needle
oc

the
nozzle
Remove
the
idle

adjusting
nut
and

spring

The
nozzle
sleeve
can
be
removed
if

necessary
by
taking
out

the
set
screw
but
as
previously
stated
should
not
be
dismantled

unless

absolutely
necessary

SU
TWIN
CARBUREfTOR

Assembly

Assemble
the

piston
assembly
into

position
but
do
not

fill
with

damper
oil

Assemble
the
nozzle
sleeve
washec
and
set
screw

by

temporarily
tightening
the
set
screw

Set
the
piston
to
its

fully

closed

position
and
insert
the
nozzle
until
it
contacts

the
nozzle

sleeve
When

the
nozzle

jet
contacts
the

jet
needle
the
nozzle

sleeve
must
be

slightly
adjusted
so

that
it
is
at

right
angles
to
the

centre
axis

and
positioned
to
leave
the
nozzle

jet
clear
of

the

jet
needle
Raise
the

piston
without

disturbing
the
setting
and

allow
it
to

drop
The

piston
should

drop
smoothly
until
the

stop
pin
strikes
the
venturi
with
a

liaht
metallic
click
See
below

under

Centering
the

jet
Tighten
the
nozzle
sleeve
set
screw

remove
the

nozzle
install
the
idle

adjustinJ
spring
and

adjusting

nut
on
the
nozzle
sleeve
and
refit
the
nozzle

39

Page 118 of 171


4
Remove
the
shell
covers

from
the

steering
column
slacken

the

screws
securing
the
meter

housing
and
withdraw
the

panel
from
the
facia

Fig
M
33

5
Pull

out
the
12

pole
round

shaped
connector
and
remove

the

speedometer
cable
union

nut
then
remove
the
instru

ment

panel
completely

WINDSCREEN
WIPERS

A
two

speed
wiper
motor
is
fitted

The
motor
has
an
auto

stop
mechanism
and
drives
the

wiper
arms

through
a
link

mechanism
located
behind
the
instrument
panel
If
the

wiper

system
does
not

operate
check
the
fuses
connectors
control

switch
and
motor
If
the

wiper
speed
does
not

change
the

switch
must

be
repaired
or

replaced
If

the

wiper
motor
becomes

unserviceable
it
can
be
removed
from
the
vehicle
in
the

fOllowing

manner

I
Remove
the
connector

plug
from

the
motor
See

Fig
M

34

2

Working
from
the

passenger
compartment
side
of
the
dash

panel
remove
the
nut

connecting
the

wiper
motor
worm

wheel
shaft
to
the

connecting
rod

3
Remove
the
three
bolts

securing
the

wiper
motor
to

the

cowl
and
lift
out
the
motor

Battery

Starter
motor

Type

Output

No
load

Terminal

voltage

Current

Revolution

Load

Terminal

voltage

Current

Torque

Brushes

Brush

length

Wear
limit

Spring
tension

Commutator

Standard
outer

diameter

Wear
limit

Depth
of

nuca

Repair
limit

Repair
accuracy

Qearance
between
armature

shaft
and

bushing

Repair
liinit

Repair
accuracy

Armature
shaft
ou
ter

diameter

Pinion
side

Rear
end

Wear
limit

Bend
limit
The

wiper
arms
can
be
removed
quite
easily
by
taking
off

the
attachment
bolt
as
shown
in

Fig
M

J
5
and
then

pullin

the

wiper
arm
from
the

pivot
shaft
When

installing
the

wiper

arm
make
sure
that
the
blade
is

positioned
approximately

27mm
1
06
in
away
from
the

bottom
of
the
windscreen
and

tighten
the

wiper
arm
attachment
bolt

WINDSCREEN
WASHERS

The
windscreen
washer
SWItch
and

wiper
switch
are
com

bined
in
a

single
unit
See

Fig
M
36
the
washers
can
be

operated
by
turning
the
switch
in
the

appropriate
direction
It

should
be
pointed
out
that
it
is
inadvisable
to

operate
the
washers

for
more
than
30
seconds
at
a
time
If
the
washers
are

operated

in
short

spells
of

approximately
10
seconds
duration
their

working
efficiency
will
remain

unimpaired
for
a
considerable

length
of
time

IGNITION
SWITCH
AND
STEERING
LOCK

The

steering
lock
is
built
in

to
the

goition
switch
When

the

key
is
turned
to
the
LOCK

position
and

then
removed

the
steering
system
is

automatically
locked

by
the

steering
lock

spindle
which

engages
in
a
notch
in
the
collar
on
the

steering

shaft

See

Fig
M
37
The
heads
of

the
screws
are
sheared
off

on
installation
so
that
the

steering
lock

system
cannot
be

tampered
with
If

the

steering
lock
is
to

be

replaced
it
will
be

necessary
to
remove
the
two

securing
screws
8
and
then
drill

out

the
self

shearing
screws
7
When

installing
a
new

steering

lock

tighten
the
new
self

shearing
screws
until
the
heads
shear

TechnICal
Data

12
volt

HITACHI
S114
87M

1
0KW

12
volts

Less
than
60

amperes

More

than
7000
r

p
m

6
3

volts

Less
than
420

amperes

More
than
0
9

mkg
6
5
lb

ft

16
mm

0
630
in

6
5mm
0
256
in

0
8

kg
1
8
lb

33mm
1
299
in

2mm

0
078
in

0
2mm
0
008
in

0
5
0
8mm
0
0197

0
0315
in

0
2mm
0
008

in

0
03
O
lmm
0
0012

0
0039
in

13mm
0
512
in

11
5
mm

0
453
in

O
lmm
0
0039

in

0
08

mm
0
0031

in
Oearance
between

pinion
and

stopper
0
3
1
5mm
0
0118

0
0591
in

ALTERNATOR

Type
HITACHI
LTl25
06

HITACHI
LTl33
05
USA

Canada

More
than
18

amps
at

14

volts
2500
r

p
m

More
than
25

amps
at

14

volts
5000
r

p
m
Output
current

LTl25
06

Output
current

LT
133
05

More
than
24

amps
at

14

volts
2500
r

p
m

More
than
33

amps
at
14

volts
5000
r

p
m

Brushes

Lengtb

Wear
limit

Spring
pressure
14
5mm
0
571
In

7mm
0
2756
in

0
25
0
35

kg
0
55
0
771b

Slip
ring

Outer
diameter

Reduction
limit

Repair
limit

Repair
accuracy
31
mm
1
220
in

I
mm

0
039

in

O
3mm
0
0118
in

0
05
mm

0
0197
in

VOLTAGE
REGULATOR

Type

Regulating

voltage
HITACHI
TL
lZ
37

14
3
15
3
volts
at
200C
680F

117

Page 156 of 171


Remove

the
road
wheel
and
disconnect
the
brake
hose
at

the
connector
as

shown
in

Fig
C
4
of
this
section

Remove
the
brake

calliper
assembly
and
hub

cap
Withdraw

the
cotter

pin
and
remove
the
wheel

bearing
locknut

Remove
the
wheel

bearing
washer
and
take
off

the
hub

and
brake
disc

Fig
C
5
Remove
the

bearing
collar
take
out

the
outer

bearing
cage
and

prise
out

the
hub

grease
seal
Remove

the
inner
bearing
cage
and
drive
out
the
outer
races

of
the
inner

and
outer

bearings
using
the

special
drift
ST49120000

if
avail

able

Separate
the
brake
disc
from
the
hub
by
taking
out
the

retaining
bolts
as
shown
in

Fig
C
6

Installation
is
a

reversal
of
the
removal

procedure
Adjust

the
wheel

bearings
as

previously
described

taking
care
to

tighten
the
wheel

bearing
locknut
to
the

specified

torque
read

ing
of
3
0
to
3
5

kgm
21
7
to
25
3lb
ft
Turn
the
hub

several
times
to
settle
the

bearing
then
retighten
the
nut
to
the

same

figure
Slacken
the
locknut

by
a

quarter
turn
900
and

insert
the
cotter

pin
when
the
hole

in
the

spindle
is
aligned

with
the
hole
in
the
nut
Check
that
the
force

required
to
turn

the
hub
is
less
than
7
0

kg
cm
97
2
in
oz

STABILIZER
Removal
and
Installation

Remove
the

splash
board
and
take
off
the
bolts
I
in

Fig
C
7
which
attach
the
stabilizer
at

the
transverse
link
sides

Remove
the
bolts

attaching
the

stabilizer
bracket
2
to

the
frame
then

withdraw
the
stabilizer

Check

the
bar
and
rubber

components
for

signs
of
deforma

tion
or

damage
and
renew
as

necessary

Installation

is
a
reversal
of
the
removal

procedures
Tighten

the

fixing
bolts
to
a

torque
reading
of
1
2
to
I
7

kgm
8
7
to

12
3
lb
ft
at

the
transverse
link

side
and
1
9
to
2
5

kgm
13
7
to

18
llb
ft
at
the
frame
bracket

SPRING
AND
STRUT
ASSEMBLY

The

spring
and
strut
assembly
can
be
serviced

by
following

the
instructions
previously
given
for
the
assemblies
on
vehicles

fitted
with
the
L14
L16
and

Ll8engines

When

reassembling
make
sure
that
the

parts
shown
in

Fig
C
8
are

thomughly
greased
Installation
of
the

assembly

will
be

accomplished
more

easily
if
the
dust
cover
on
the
bonnet

ledge
is
removed

Tighten
the
nuts
and
bolts
to
a

torque
figures
given
in

TIGHTENING

TORQUES

TRANSVERSE
LINK
AND
LOWER
BALL
JOINT

The
transverse
link
and
lower
ball

joint
can
be

removed
in

a

similar
manner
to
the

parts
on
vehicles
fitted
with
L
14
L
16

and
L
18

engines

Renew
the
link

if
cracked
or

damaged
in

any
way
Check

the

measurement
A
in

Fig
C
9
The
measurement
between

front
and
rear
transverse

link
bushes
should
be
less
than
1
0
mm

0
039
in

Replace
the
bushes
if

necessary
The

lower
ball

joint

should
be

replaced
if
the
axial

play
of
the

joint
exceeds
0
03

to
0
6

mm
0
0012
to
0
0136

in
A

grease
nipple
must

be
installed

in

place
of
the
ball

joint

plug
so

that
the

joint
can
be
lubricated
with
multi

purpose
grease

as

previously
described

SUSPENSION
MEMBER

Removing
and

Installing

Jack

up
the
vehicle
and

support
it
on

stands

2
Remove
the

splash
board
Refer
to

Fig
C
I
0
and
detach

the

compression
rod
I
the
stabilizer
2
from
the
trans

verse
link
3
Detach

the
steering
linkage
from

the
suspen

sion
crossmember
4

3
Take
out

the
nuts

attaching
the
transverse
links
and
remove

the
links
at
both
sides
of
the
vehicle

4

Support
the

engine
with
a
hoist
as
shown
in

Fig
C
II

taking

care
not
to

damage
the
throttle
and
remote
control

linkages

and
then
remove
the

engine
mounting
bolts
at
both
sides

5
Remove
the

bolts
shown
arrowed
in
Fig
C
12

and
lift
the

suspension
member

away

Renew
the

suspension
member
if
it
is
cracked
or

deformed

in

any
way
Installation
is
a
reversal
of
the
removal

procedure

FRONT
WHEEL
ALIGNMENT

As

previously
stated
the
castor
and
camber

angles
are

preset
and
cannot

be

adjusted
A

thorough
check

should
be

made
of
the

steering
and

suspension
system
and
all
defective

parts
renewed
if

the

angles
are

incorrect
See
Technical

Data

The
front
wheels
should
toe
in

12
to

15
mm
0
4
7
to

0
59

in

Adjustment
can
be
carried
out

by
slackening
the
locknuts

1
in

Fig
C
13
and
then

turning
the
tie

rods

by
an

equal
amount

until
the
correct
toe

in
is
achieved
A
toe

in
gauge
will
of
course

be

required
for
this

operation

STEERING
WHEEL
AND
COLUMN
Removal

Disconnect
the
horn
wire
and
remove
the
horn
bar
Remove

the

steering
wheel
nut
and

pull
off
the

steering
wheel

2
Remove
the
turn

signal
and

lighting
switch

assembly
followed

by
the

steering
column
shell
covers

3
Remove
the
bolts
from
the
rubber

coupling
to

disconnect

the
lower

joint
See

Figs
C
14
and
C

I
5
if
the
car
is

fitted
with

right
hand
drive
The
lower
joint
upper
bolt

should
be
removed
to
disconnect
the

joint
if
the
car

is

fitted
with
left
hand
drive

4
Remove
the
cotter

pin
from
the
trunnion
and
disconnect

the

gearchange
rod
and
selector
rod

5
Remove
the

steering
column

upper
clamp
and
take
out
the

bolts

securing
the
lower

plate

STEERING
COLUMN

Dismantling
and

Assembling

Remove
the
C
washer
socket
screw
and

upper
bracket

bolt
Remove
the
lower
bracket
bolts
and
detach
the
remote

control

linkage
from
the
column

assembly

Remove
the

snap
ring
at
the

top
of
the
column
and
extract

the
column
shaft
from
the

jacket

Disconnect
the
rubber
coupling
from
the
lower

joint

then
remove

the
snap
ring
and
dismantle
the
lower
joint

S25