Injector DODGE RAM 1999 Service Service Manual
Page 1481 of 1691
Fuel pump is a positive displacement, immersible pump with a
permanent magnet electric motor. Fuel is drawn in through a separate
filter/strainer at bottom of fuel pump and pushed through filter to
fuel outlet line (to fuel injectors). Voltage to operate pump is
supplied from fuel pump relay. On some models, fuel pump relay is
activated by ASD relay.
Fuel pump module includes a combination fuel filter/fuel
pressure regulator, fuel pump reservoir, a separate in-tank fuel
filter, pressure relief/rollover valve, fuel gauge sending unit and
fuel supply line. See Fig. 3.
Fig. 3: Identifying Fuel Pump Module Components (Typical)
Courtesy of Chrysler Corp.
FUEL CONTROL
Fuel Injectors
Fuel injectors are electric solenoid valves controlled by
PCM. PCM determines when and length of time (pulse width) injectors
should operate by switching ground path on and off. During start-up,
battery voltage is supplied to injectors through ASD relay. On some
models, battery voltage is supplied by charging system once engine is
Page 1482 of 1691
operating. When ground is supplied to injector by PCM, armature and
pintle inside injector move a short distance against spring and open a
small orifice. Since fuel is under high pressure, a fine spray is
developed.
Modes Of Operation
As input signals to PCM change, PCM adjusts its response to
output devices. Modes of operation come in 2 types, open loop and
closed loop. In open loop mode, PCM is not using input from HO2S and
is responding to preset programming to determine injector pulse width
and ignition timing. In closed loop mode, PCM adjusts ignition timing
and uses input from HO2S to fine tune injector pulse width.
The following inputs may be used to determine PCM mode:
* A/C Control Positions
* A/C Switch
* Battery Voltage
* Brake Switch
* Camshaft Position (CMP) Sensor
* Crankshaft Position (CKP) Sensor
* Engine Coolant Temperature (ECT) Sensor
* Engine Speed (RPM)
* Heated Oxygen Sensor (HO2S)
* Intake Air Temperature (IAT) Sensor
* Manifold Absolute Pressure (MAP) Sensor
* Park/Neutral (P/N) Switch
* Starter Relay
* Throttle Position (TP) Sensor
* Vehicle Speed Sensor (VSS)
From these inputs, PCM determines which mode vehicle is in
and responds appropriately. Not all inputs are used in all modes or by
all models. Modes of operation are:
* Ignition Switch On (Engine Not Running) - This is an open
loop mode. PCM pre-positions IAC motor based on ECT sensor
input. PCM determines atmospheric pressure from MAP sensor
and determines basic fuel strategy. PCM modifies fuel
strategy according to IAT sensor, ECT sensor and TP sensor
inputs. PCM activates ASD relay, which in turn activates fuel
pump for only 2 seconds unless engine is cranked. PCM also
energizes HO2S heater element for approximately 2 seconds
unless engine is cranked.
* Engine Start-Up - This is an open loop mode. When starter is
engaged, PCM receives input from battery voltage, ignition
switch, CKP sensor, CMP sensor, ECT sensor, IAT sensor, MAP
sensor and TP sensor. Based on these inputs, voltage is
applied to fuel injectors with PCM controlling injection
sequence, rate, and pulse width. PCM provides ground for
injectors to fire in proper order.
PCM determines proper ignition timing according to input
received from CKP sensor. If PCM does not receive CKP sensor signal
within 3 seconds after engine begins cranking, fuel injection system
is shut down and a Diagnostic Trouble Code (FTC) is set in PCM memory.\
* Engine Warm-Up - This is an open loop mode. PCM determines
injector pulse width using input information from battery
voltage, CKP sensor, CMP sensor, ECT sensor, IAT sensor, MAP
sensor and TP sensor. PCM also monitors A/C request and P/N
switch (A/T only) for fuel calculation. PCM controls engine
idle speed through IAC motor. PCM controls ignition timing
based on CKP sensor input.
Page 1483 of 1691
PCM also operates A/C compressor clutch (if A/C is requested)\
through A/C clutch relay. When engine reaches operating temperature,
vehicle will go into idle mode and PCM will begin monitoring HO2S
input and go into closed loop operation.
* Idle - When engine is at operating temperature, this is a
closed loop mode. In idle mode, PCM now adds HO2S signal to
array of inputs used in ENGINE WARM-UP mode. PCM maintains
correct air/fuel ratio by adjusting injector pulse width and
ignition timing. PCM also controls A/C clutch operation (if
A/C is requested).
* Cruise - When engine is at operating temperature, this is a
closed loop mode. Using information from A/C switch, battery
voltage, CKP sensor, ECT sensor, IAT sensor, MAP sensor and
CMP sensor. PCM also monitors A/C request and P/N switch (A/T
only), TP sensor and VSS signals for fuel calculation. PCM
monitors HO2S and adjusts air/fuel ratio as needed. PCM
controls engine idle speed through IAC motor. PCM controls
spark advance as necessary.
* Acceleration - This is an open loop mode. When PCM
recognizes an abrupt increase in throttle position or
manifold pressure as a demand for increased engine output, it
increases injector pulse width in response to increased fuel
demand. HO2S signals are ignored.
* Deceleration - This is an open loop mode when engine is at
operating temperature and under deceleration. When PCM
receives inputs signaling a closed throttle and an abrupt
decrease in manifold pressure, it reduces injector pulse
width to lean air/fuel mixture. Under certain RPM and closed
throttle position conditions, HO2S signals are ignored and
PCM cuts off fuel injection until idle speed is reached. PCM
also drives IAC motor for smooth transition to idle mode.
* Wide Open Throttle - This is an open loop mode. When PCM
senses wide open throttle, it grounds fuel injectors in
sequence, it ignores HO2S input and it controls pulse width
to supply a pre-determined amount of additional fuel. PCM
also adjusts spark advance and disengages A/C clutch for
approximately 15 seconds.
* Ignition Switch Off - This is an open loop mode. PCM drives
IAC motor into position in anticipation of next start-up. All
outputs are turned off, no inputs are monitored and PCM shuts
down.
Sequential Fuel Injection (SFI)
Individual, electrically pulsed injectors (one per cylinder)
are located in intake manifold runners. These injectors are next to
intake valves in intake manifold. PCM controls injection timing based
on crankshaft position signal input. PCM regulates air/fuel mixture by
length of time injector stays open (pulse width) based on inputs from
HO2S, ECT sensor, MAP and other sensors.
IDLE SPEED
NOTE: DO NOT attempt to correct a high idle speed condition by
turning factory sealed throttle body throttle plate set
screw. This will not change idle speed of warm engine, but
may cause cold start problems due to restricted airflow.
Idle Air Control (IAC) Motor
IAC motor adjusts idle speed to compensate for engine load
and ambient temperature by adjusting amount of air flowing through by-
pass in back of throttle body. PCM uses ECT sensor, VSS, TP sensor and
Page 1484 of 1691
various switch input operations to adjust IAC motor to obtain optimum
idle conditions. Deceleration stall is prevented by increasing airflow
when throttle is closed suddenly.
IGNITION SYSTEM
NOTE: Pickup equipped with 8.0L engine uses Distributorless
Ignition system (DIS). All other models use a Hall Effect
ignition system.
The PCM completely controls ignition system. During
crank/start mode, PCM will set a fixed amount of spark advance for an
efficient engine start. Amount of spark advance or retard is
determined by inputs that PCM receives from ECT sensor, engine vacuum
and engine RPM. During engine operation, PCM can supply an infinite
number of advance curves to ensure proper engine operation.
DISTRIBUTORLESS IGNITION SYSTEM (DIS)
DIS eliminates mechanical ignition components that can wear
out. PCM has complete ignition control and uses a coil pack, CMP
sensor and CKP sensor to control ignition timing. CMP sensor reads
slots in cam timing sprocket. PCM uses this information along with
information from CKP sensor to determine if fuel injectors and
ignition coils are properly sequenced for correct cylinders.
Basic timing is determined by CKP sensor position and is not
adjustable. One complete engine revolution may be required for PCM to
determine crankshaft position during cranking.
Molded ignition coils are used. Each coil fires 2 paired
spark plugs at the same time. One cylinder is on compression stroke
and other cylinder is on exhaust stroke.
HALL EFFECT IGNITION SYSTEM
This system is equipped with a Hall Effect distributor. See
Fig. 1 . Shutter(s) attached to distributor shaft rotate through
distributor Hall Effect switch, also referred to as a CMP sensor,
which contains a distributor pick-up (a Hall Effect device and
magnet). As shutter blade(s) pass through pick-up, magnetic field is
interrupted and voltage is toggled between high and low. PCM uses this
cylinder position data from CMP sensor, along with engine speed (RPM)
and CKP sensor data, to control ignition timing and injector pulse
width to maintain optimum driveability.
EMISSION SYSTEMS
Vehicles are equipped with different combinations of emission
system components. Not all components are used on all models. To
determine component usage on a specific model, see EMISSION
APPLICATIONS - TRUCKS article.
AIR INJECTION SYSTEM
This system adds a controlled amount of air to exhaust gases,
through air relief valve and check valves, to assist oxidation of
hydrocarbons and carbon monoxide in exhaust stream. Air is injected at
catalytic converters.
CRANKCASE VENTILATION (CCV) SYSTEM
CCV system performs same function as a conventional Positive
Page 1486 of 1691
PCM.
MISCELLANEOUS CONTROLS
NOTE: Although not strictly considered part of engine performance
system, some controlled devices can adversely affect
driveability if they malfunction.
A/C CLUTCH RELAY
A/C clutch relay is controlled by PCM. When A/C or Defrost
mode is selected and PCM receives A/C request signal from evaporator
switch, PCM will cycle clutch on and off through A/C clutch relay.
When this relay is energized during engine operation, PCM will
determine correct engine idle speed through IAC motor.
When PCM senses low idle speed or wide open throttle through
TP sensor, PCM will de-energize A/C clutch relay, preventing A/C
operation.
AUTO SHUTDOWN (ASD) RELAY & FUEL PUMP RELAY
ASD relay and electric fuel pump relay are energized when
ignition is on. These relays are controlled through PCM by switching a
common ground circuit on and off. Following components are controlled
by ASD and fuel pump relays:
* Electric Fuel Pump
* Fuel Injectors
* Generator Field Winding
* Ignition Coil(s)
* HO2S Heating Element
When ignition switch is turned to RUN position, PCM energizes
ASD relay and electric fuel pump relay which powers these components.
If PCM does not receive a CMP and CKP sensor signal within one second
of engine cranking (start-up), PCM will turn ground circuit off and
de-energize ASD relay.
GENERATOR
Powertrain Control Module (PCM) regulates charging system
voltage.
LIMP-IN MODE
Limp-in mode is the attempt by PCM to compensate for failure
of certain components by substituting information from other sources
so that vehicle can still be operated. If PCM senses incorrect data or
no data at all from MAP sensor, TP sensor, ECT sensor or battery
voltage, system is placed into limp-in mode and Malfunction Indicator
Light (MIL) on instrument panel comes on.
If faulty sensor comes back on line, PCM will resume closed
loop operation. On some vehicles, MIL will remain on until ignition is
shut off and vehicle is restarted. To prevent damage to catalytic
converter, vehicle should NOT be driven for extended periods in limp-
in mode.
RADIATOR FAN RELAY
Electric cooling fan is used only on Dakota. Using
information supplied by A/C signal (if equipped), ECT sensor, and VSS,\
Page 1538 of 1691
WAVEFO RM S - IN JE C TO R P A TTE R N T U TO RIA L
1999 D odge P ic ku p R 1500
GENERAL INFORMATION
Waveforms - Injector Pattern Tutorial
* PLEASE READ THIS FIRST *
NOTE: This article is intended for general information purposes
only. This information may not apply to all makes and models.
PURPOSE OF THIS ARTICLE
Learning how to interpret injector drive patterns from a Lab
Scope can be like learning ignition patterns all over again. This
article exists to ease you into becoming a skilled injector pattern
interpreter.
You will learn:
* How a DVOM and noid light fall short of a lab scope.
* The two types of injector driver circuits, voltage controlled
& current controlled.
* The two ways injector circuits can be wired, constant
ground/switched power & constant power/switched ground.
* The two different pattern types you can use to diagnose with,
voltage & current.
* All the valuable details injector patterns can reveal.
SCOPE OF THIS ARTICLE
This is NOT a manufacturer specific article. All different
types of systems are covered here, regardless of the specific
year/make/model/engine.
The reason for such broad coverage is because there are only
a few basic ways to operate a solenoid-type injector. By understanding
the fundamental principles, you will understand all the major points
of injector patterns you encounter. Of course there are minor
differences in each specific system, but that is where a waveform
library helps out.
If this is confusing, consider a secondary ignition pattern.
Even though there are many different implementations, each still has
a primary voltage turn-on, firing line, spark line, etc.
If specific waveforms are available in On Demand for the
engine and vehicle you are working on, you will find them in the
Engine Performance section under the Engine Performance category.
IS A LAB SCOPE NECESSARY?
INTRODUCTION
You probably have several tools at your disposal to diagnose
injector circuits. But you might have questioned "Is a lab scope
necessary to do a thorough job, or will a set of noid lights and a
multifunction DVOM do just as well?"
In the following text, we are going to look at what noid
lights and DVOMs do best, do not do very well, and when they can
mislead you. As you might suspect, the lab scope, with its ability to
look inside an active circuit, comes to the rescue by answering for
the deficiencies of these other tools.
OVERVIEW OF NOID LIGHT
Page 1539 of 1691
The noid light is an excellent "quick and dirty" tool. It can
usually be hooked to a fuel injector harness fast and the flashing
light is easy to understand. It is a dependable way to identify a no-
pulse situation.
However, a noid light can be very deceptive in two cases:
* If the wrong one is used for the circuit being tested.
Beware: Just because a connector on a noid light fits the
harness does not mean it is the right one.
* If an injector driver is weak or a minor voltage drop is
present.
Use the Right Noid Light
In the following text we will look at what can happen if the
wrong noid light is used, why there are different types of noid lights
(besides differences with connectors), how to identify the types of
noid lights, and how to know the right type to use.
First, let's discuss what can happen if the incorrect type of
noid light is used. You might see:
* A dimly flashing light when it should be normal.
* A normal flashing light when it should be dim.
A noid light will flash dim if used on a lower voltage
circuit than it was designed for. A normally operating circuit would
appear underpowered, which could be misinterpreted as the cause of a
fuel starvation problem.
Here are the two circuit types that could cause this problem:
* Circuits with external injector resistors. Used predominately
on some Asian & European systems, they are used to reduce the
available voltage to an injector in order to limit the
current flow. This lower voltage can cause a dim flash on a
noid light designed for full voltage.
* Circuits with current controlled injector drivers (e.g. "Peak
and Hold"). Basically, this type of driver allows a quick
burst of voltage/current to flow and then throttles it back
significantly for the remainder of the pulse width duration.
If a noid light was designed for the other type of driver
(voltage controlled, e.g. "Saturated"), it will appear dim
because it is expecting full voltage/current to flow for the
entire duration of the pulse width.
Let's move to the other situation where a noid light flashes
normally when it should be dim. This could occur if a more sensitive
noid light is used on a higher voltage/amperage circuit that was
weakened enough to cause problems (but not outright broken). A circuit\
with an actual problem would thus appear normal.
Let's look at why. A noid light does not come close to
consuming as much amperage as an injector solenoid. If there is a
partial driver failure or a minor voltage drop in the injector
circuit, there can be adequate amperage to fully operate the noid
light BUT NOT ENOUGH TO OPERATE THE INJECTOR.
If this is not clear, picture a battery with a lot of
corrosion on the terminals. Say there is enough corrosion that the
starter motor will not operate; it only clicks. Now imagine turning on
the headlights (with the ignition in the RUN position). You find they
light normally and are fully bright. This is the same idea as noid
light: There is a problem, but enough amp flow exists to operate the
headlights ("noid light"), but not the starter motor ("injector").
How do you identify and avoid all these situations? By using
the correct type of noid light. This requires that you understanding
Page 1540 of 1691
the types of injector circuits that your noid lights are designed for.
There are three. They are:
* Systems with a voltage controlled injector driver. Another
way to say it: The noid light is designed for a circuit with
a "high" resistance injector (generally 12 ohms or above).
* Systems with a current controlled injector driver. Another
way to say it: The noid light is designed for a circuit with
a low resistance injector (generally less than 12 ohms)
without an external injector resistor.
* Systems with a voltage controlled injector driver and an
external injector resistor. Another way of saying it: The
noid light is designed for a circuit with a low resistance
injector (generally less than 12 ohms) and an external
injector resistor.
NOTE: Some noid lights can meet both the second and third
categories simultaneously.
If you are not sure which type of circuit your noid light is
designed for, plug it into a known good car and check out the results.
If it flashes normally during cranking, determine the circuit type by
finding out injector resistance and if an external injector resistor
is used. You now know enough to identify the type of injector circuit.
Label the noid light appropriately.
Next time you need to use a noid light for diagnosis,
determine what type of injector circuit you are dealing with and
select the appropriate noid light.
Of course, if you suspect a no-pulse condition you could plug
in any one whose connector fit without fear of misdiagnosis. This is
because it is unimportant if the flashing light is dim or bright. It
is only important that it flashes.
In any cases of doubt regarding the use of a noid light, a
lab scope will overcome all inherent weaknesses.
OVERVIEW OF DVOM
A DVOM is typically used to check injector resistance and
available voltage at the injector. Some techs also use it check
injector on-time either with a built-in feature or by using the
dwell/duty function.
There are situations where the DVOM performs these checks
dependably, and other situations where it can deceive you. It is
important to be aware of these strengths and weaknesses. We will cover
the topics above in the following text.
Checking Injector Resistance
If a short in an injector coil winding is constant, an
ohmmeter will accurately identify the lower resistance. The same is
true with an open winding. Unfortunately, an intermittent short is an
exception. A faulty injector with an intermittent short will show
"good" if the ohmmeter cannot force the short to occur during testing.
Alcohol in fuel typically causes an intermittent short,
happening only when the injector coil is hot and loaded by a current
high enough to jump the air gap between two bare windings or to break
down any oxides that may have formed between them.
When you measure resistance with an ohmmeter, you are only
applying a small current of a few milliamps. This is nowhere near
enough to load the coil sufficiently to detect most problems. As a
result, most resistance checks identify intermittently shorted
injectors as being normal.
There are two methods to get around this limitation. The
first is to purchase an tool that checks injector coil windings under
Page 1541 of 1691
full load. The Kent-Moore J-39021 is such a tool, though there are
others. The Kent-Moore costs around $240 at the time of this writing
and works on many different manufacturer's systems.
The second method is to use a lab scope. Remember, a lab
scope allows you to see the regular operation of a circuit in real
time. If an injector is having an short or intermittent short, the lab
scope will show it.
Checking Available Voltage At the Injector
Verifying a fuel injector has the proper voltage to operate
correctly is good diagnostic technique. Finding an open circuit on the
feed circuit like a broken wire or connector is an accurate check with
a DVOM. Unfortunately, finding an intermittent or excessive resistance
problem with a DVOM is unreliable.
Let's explore this drawback. Remember that a voltage drop due
to excessive resistance will only occur when a circuit is operating?
Since the injector circuit is only operating for a few milliseconds at
a time, a DVOM will only see a potential fault for a few milliseconds.
The remaining 90+% of the time the unloaded injector circuit will show
normal battery voltage.
Since DVOMs update their display roughly two to five times a
second, all measurements in between are averaged. Because a potential
voltage drop is visible for such a small amount of time, it gets
"averaged out", causing you to miss it.
Only a DVOM that has a "min-max" function that checks EVERY
MILLISECOND will catch this fault consistently (if used in that mode).\
The Fluke 87 among others has this capability.
A "min-max" DVOM with a lower frequency of checking (100
millisecond) can miss the fault because it will probably check when
the injector is not on. This is especially true with current
controlled driver circuits. The Fluke 88, among others fall into this
category.
Outside of using a Fluke 87 (or equivalent) in the 1 mS "min-\
max" mode, the only way to catch a voltage drop fault is with a lab
scope. You will be able to see a voltage drop as it happens.
One final note. It is important to be aware that an injector
circuit with a solenoid resistor will always show a voltage drop when
the circuit is energized. This is somewhat obvious and normal; it is a
designed-in voltage drop. What can be unexpected is what we already
covered--a voltage drop disappears when the circuit is unloaded. The
unloaded injector circuit will show normal battery voltage at the
injector. Remember this and do not get confused.
Checking Injector On-Time With Built-In Function
Several DVOMs have a feature that allows them to measure
injector on-time (mS pulse width). While they are accurate and fast to\
hookup, they have three limitations you should be aware of:
* They only work on voltage controlled injector drivers (e.g
"Saturated Switch"), NOT on current controlled injector
drivers (e.g. "Peak & Hold").
* A few unusual conditions can cause inaccurate readings.
* Varying engine speeds can result in inaccurate readings.
Regarding the first limitation, DVOMs need a well-defined
injector pulse in order to determine when the injector turns ON and
OFF. Voltage controlled drivers provide this because of their simple
switch-like operation. They completely close the circuit for the
entire duration of the pulse. This is easy for the DVOM to interpret.
The other type of driver, the current controlled type, start
off well by completely closing the circuit (until the injector pintle
opens), but then they throttle back the voltage/current for the
duration of the pulse. The DVOM understands the beginning of the pulse
Page 1542 of 1691
but it cannot figure out the throttling action. In other words, it
cannot distinguish the throttling from an open circuit (de-energized)
condition.
Yet current controlled injectors will still yield a
millisecond on-time reading on these DVOMs. You will find it is also
always the same, regardless of the operating conditions. This is
because it is only measuring the initial completely-closed circuit on-
time, which always takes the same amount of time (to lift the injector
pintle off its seat). So even though you get a reading, it is useless.
The second limitation is that a few erratic conditions can
cause inaccurate readings. This is because of a DVOM's slow display
rate; roughly two to five times a second. As we covered earlier,
measurements in between display updates get averaged. So conditions
like skipped injector pulses or intermittent long/short injector
pulses tend to get "averaged out", which will cause you to miss
important details.
The last limitation is that varying engine speeds can result
in inaccurate readings. This is caused by the quickly shifting
injector on-time as the engine load varies, or the RPM moves from a
state of acceleration to stabilization, or similar situations. It too
is caused by the averaging of all measurements in between DVOM display
periods. You can avoid this by checking on-time when there are no RPM
or load changes.
A lab scope allows you to overcome each one of these
limitations.
Checking Injector On-Time With Dwell Or Duty
If no tool is available to directly measure injector
millisecond on-time measurement, some techs use a simple DVOM dwell or
duty cycle functions as a replacement.
While this is an approach of last resort, it does provide
benefits. We will discuss the strengths and weaknesses in a moment,
but first we will look at how a duty cycle meter and dwell meter work.
How A Duty Cycle Meter and Dwell Meter Work
All readings are obtained by comparing how long something has
been OFF to how long it has been ON in a fixed time period. A dwell
meter and duty cycle meter actually come up with the same answers
using different scales. You can convert freely between them. See
RELATIONSHIP BETWEEN DWELL & DUTY CYCLE READINGS TABLE .
The DVOM display updates roughly one time a second, although
some DVOMs can be a little faster or slower. All measurements during
this update period are tallied inside the DVOM as ON time or OFF time,
and then the total ratio is displayed as either a percentage (duty
cycle) or degrees (dwell meter).
For example, let's say a DVOM had an update rate of exactly 1
second (1000 milliseconds). Let's also say that it has been
measuring/tallying an injector circuit that had been ON a total of 250
mS out of the 1000 mS. That is a ratio of one-quarter, which would be
displayed as 25% duty cycle or 15
dwell (six-cylinder scale). Note
that most duty cycle meters can reverse the readings by selecting the
positive or negative slope to trigger on. If this reading were
reversed, a duty cycle meter would display 75%.
Strengths of Dwell/Duty Meter
The obvious strength of a dwell/duty meter is that you can
compare injector on-time against a known-good reading. This is the
only practical way to use a dwell/duty meter, but requires you to have
known-good values to compare against.
Another strength is that you can roughly convert injector mS
on-time into dwell reading with some computations.
A final strength is that because the meter averages
everything together it does not miss anything (though this is also a