Ins INFINITI QX56 2004 Factory Service Manual

Page 1198 of 3371

EC-7
C
D
E
F
G
H
I
J
K
L
M
ECA
Revision: August 20072004 QX56 Component Inspection ......................................... 582
Removal and Installation ...................................... 582
IGNITION SIGNAL .................................................. 583
Component Description ........................................ 583
Wiring Diagram .................................................... 584
Diagnostic Procedure ........................................... 589
Component Inspection ......................................... 593
Removal and Installation ...................................... 594
INJECTOR CIRCUIT ............................................... 595
Component Description ........................................ 595
CONSULT-II Reference Value in Data Monitor Mode
. 595
Wiring Diagram .................................................... 596
Diagnostic Procedure ........................................... 597
Component Inspection ......................................... 600
Removal and Installation ...................................... 600
FUEL PUMP CIRCUIT ............................................ 601
Description ........................................................... 601
CONSULT-II Reference Value in Data Monitor Mode
. 601
Wiring Diagram .................................................... 602
Diagnostic Procedure ........................................... 603
Component Inspection ......................................... 606
Removal and Installation ...................................... 606
REFRIGERANT PRESSURE SENSOR ................. 607
Component Description ........................................ 607
Wiring Diagram .................................................... 608
Diagnostic Procedure ........................................... 609
Removal and Installation ....................................... 611
ELECTRICAL LOAD SIGNAL ................................ 612
Description ........................................................... 612
CONSULT-II Reference Value in Data Monitor Mode
. 612
Diagnostic Procedure ........................................... 612
ICC BRAKE SWITCH ............................................. 613
Component Description ........................................ 613
CONSULT-II Reference Value in Data Monitor Mode
. 613
Wiring Diagram .................................................... 614
Diagnostic Procedure ........................................... 615
Component Inspection ......................................... 619
ASCD BRAKE SWITCH ......................................... 621
Component Description ........................................ 621CONSULT-II Reference Value in Data Monitor Mode
.621
Wiring Diagram .....................................................622
Diagnostic Procedure ...........................................623
Component Inspection ..........................................627
ASCD INDICATOR ..................................................628
Component Description ........................................628
CONSULT-II Reference Value in Data Monitor Mode
.628
Wiring Diagram .....................................................629
Diagnostic Procedure ...........................................630
MIL AND DATA LINK CONNECTOR ......................631
Wiring Diagram .....................................................631
EVAPORATIVE EMISSION SYSTEM .....................633
Description ............................................................633
Component Inspection ..........................................636
Removal and Installation ......................................637
How to Detect Fuel Vapor Leakage ......................637
ON BOARD REFUELING VAPOR RECOVERY
(ORVR) ....................................................................640
System Description ...............................................640
Diagnostic Procedure ...........................................641
Component Inspection ..........................................643
POSITIVE CRANKCASE VENTILATION ...............645
Description ............................................................645
Component Inspection ..........................................645
AUTOMATIC SPEED CONTROL DEVICE (ASCD) .647
System Description ...............................................647
Component Description ........................................648
SERVICE DATA AND SPECIFICATIONS (SDS) ....649
Fuel Pressure .......................................................649
Idle Speed and Ignition Timing .............................649
Calculated Load Value ..........................................649
Mass Air Flow Sensor ...........................................649
Intake Air Temperature Sensor .............................649
Engine Coolant Temperature Sensor ...................649
A/F Sensor 1 Heater .............................................649
Heated Oxygen sensor 2 Heater ..........................649
Crankshaft Position Sensor (POS) .......................649
Camshaft Position Sensor (PHASE) ....................649
Throttle Control Motor ...........................................649
Injector ..................................................................650
Fuel Pump ............................................................650

Page 1207 of 3371

EC-16Revision: August 2007
PRECAUTIONS
2004 QX56
PRECAUTIONSPFP:00001
Precautions for Supplemental Restraint System (SRS) “AIR BAG” and “SEAT
BELT PRE-TENSIONER”
UBS00GZ5
The Supplemental Restraint System such as “AIR BAG” and “SEAT BELT PRE-TENSIONER”, used along
with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain
types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS
system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front
air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted.
Information necessary to service the system safely is included in the SRS and SB section of this Service Man-
ual.
WAR NIN G:
To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death
in the event of a collision which would result in air bag inflation, all maintenance must be per-
formed by an authorized NISSAN/INFINITI dealer.
Improper maintenance, including incorrect removal and installation of the SRS, can lead to per-
sonal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air
Bag Module, see the SRS section.
Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this
Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or
harness connectors.
On Board Diagnostic (OBD) System of Engine and A/TUBS00GZ6
The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the
driver of a malfunction causing emission deterioration.
CAUTION:
Be sure to turn the ignition switch OFF and disconnect the negative battery cable before any
repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves,
etc. will cause the MIL to light up.
Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
dirt, bent terminals, etc.)
Certain systems and components, especially those related to OBD, may use a new style slide-
locking type harness connector. For description and how to disconnect, refer to PG-68, "
HAR-
NESS CONNECTOR" .
Be sure to route and secure the harnesses properly after work. The interference of the harness
with a bracket, etc. may cause the MIL to light up due to the short circuit.
Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
may cause the MIL to light up due to the malfunction of the EVAP system or fuel injection system,
etc.
Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and
TCM (Transmission control module) before returning the vehicle to the customer.
PrecautionUBS00GZ7
Always use a 12 volt battery as power source.
Do not attempt to disconnect battery cables while engine is
running.
Before connecting or disconnecting the ECM harness con-
nector, turn ignition switch OFF and disconnect negative
battery cable. Failure to do so may damage the ECM
because battery voltage is applied to ECM even if ignition
switch is turned OFF.
Before removing parts, turn ignition switch OFF and then
disconnect battery ground cable.
SEF 2 89 H

Page 1208 of 3371

PRECAUTIONS
EC-17
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
Do not disassemble ECM.
If a battery cable is disconnected, the memory will return to
the ECM value.
The ECM will now start to self-control at its initial value.
Engine operation can vary slightly when the terminal is dis-
connected. However, this is not an indication of a malfunc-
tion. Do not replace parts because of a slight variation.
When connecting ECM harness connector, fasten it
securely with a lever as far as it will go as shown in the fig-
ure.
When connecting or disconnecting pin connectors into or
from ECM, take care not to damage pin terminals (bend or
break).
Make sure that there are not any bends or breaks on ECM
pin terminal, when connecting pin connectors.
Securely connect ECM harness connectors.
A poor connection can cause an extremely high (surge)
voltage to develop in coil and condenser, thus resulting in
damage to ICs.
Keep engine control system harness at least 10 cm (4 in)
away from adjacent harness, to prevent engine control sys-
tem malfunctions due to receiving external noise, degraded
operation of ICs, etc.
Keep engine control system parts and harness dry.
Before replacing ECM, perform ECM Terminals and Refer-
ence Value inspection and make sure ECM functions prop-
erly. Refer to EC-96, "
ECM Terminals and Reference Value"
.
Handle mass air flow sensor carefully to avoid damage.
Do not disassemble mass air flow sensor.
Do not clean mass air flow sensor with any type of deter-
gent.
Do not disassemble electric throttle control actuator.
Even a slight leak in the air intake system can cause seri-
ous incidents.
Do not shock or jar the camshaft position sensor (PHASE), crankshaft position sensor (POS).
PBIB11 64 E
BBIA0387E
PBIB0090E
MEF040D

Page 1210 of 3371

PRECAUTIONS
EC-19
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
Do not operate fuel pump when there is no fuel in lines.
Tighten fuel hose clamps to the specified torque.
Do not depress accelerator pedal when starting.
Immediately after starting, do not rev up engine unneces-
sarily.
Do not rev up engine just prior to shutdown.
When installing C.B. ham radio or a mobile phone, be sure
to observe the following as it may adversely affect elec-
tronic control systems depending on installation location.
–Keep the antenna as far as possible from the electronic
control units.
–Keep the antenna feeder line more than 20 cm (8 in) away
from the harness of electronic controls.
Do not let them run parallel for a long distance.
–Adjust the antenna and feeder line so that the standing-
wave radio can be kept smaller.
–Be sure to ground the radio to vehicle body.
Wiring Diagrams and Trouble DiagnosisUBS00GZ8
When you read wiring diagrams, refer to the following:
GI-15, "How to Read Wiring Diagrams"
PG-4, "POWER SUPPLY ROUTING CIRCUIT" for power distribution circuit
When you perform trouble diagnosis, refer to the following:
GI-11, "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES"
GI-27, "How to Perform Efficient Diagnosis for an Electrical Incident"
BBIA0402E
SEF 7 09 Y
SEF 7 08 Y

Page 1213 of 3371

EC-22Revision: August 2007
PREPARATION
2004 QX56
Commercial Service ToolsUBS00GZA
Tool name
(Kent-Moore No.)Description
Leak detector
i.e.: (J-41416)Locating the EVAP leak
EVAP service port
adapter
i.e.: (J-41413-OBD)Applying positive pressure through EVAP service
port
Fuel filler cap adapter
i.e.: (MLR-8382)Checking fuel tank vacuum relief valve opening
pressure
Socket wrench Removing and installing engine coolant tempera-
ture sensor
Oxygen sensor thread
cleaner
i.e.: (J-43897-18)
(J-43897-12)Reconditioning the exhaust system threads before
installing a new oxygen sensor. Use with anti-
seize lubricant shown below.
a: 18 mm diameter with pitch 1.5 mm for Zirco-
nia Oxygen Sensor
b: 12 mm diameter with pitch 1.25 mm for Tita-
nia Oxygen Sensor
Anti-seize lubricant
i.e.: (Permatex
TM
133AR or equivalent
meeting MIL specifica-
tion MIL-A-907)Lubricating oxygen sensor thread cleaning tool
when reconditioning exhaust system threads.
S-NT703
S-NT704
S-NT815
S-NT705
AEM488
S-NT779

Page 1216 of 3371

ENGINE CONTROL SYSTEM
EC-25
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
System ChartUBS00GZD
*1: This sensor is not used to control the engine system. This is used only for the on board diagnosis.
*2: This sensor is not used to control the engine system under normal conditions.
*3: This input signal is sent to the ECM through CAN communication line.
*4: This output signal is sent from the ECM through CAN communication line.Input (Sensor) ECM Function Output (Actuator)
Camshaft position sensor (PHASE)
Crankshaft position sensor (POS)
Mass air flow sensor
Engine coolant temperature sensor
A/F sensor 1
Throttle position sensor
Accelerator pedal position sensor
Park/neutral position (PNP) switch
Intake air temperature sensor
Power steering pressure sensor
Ignition switch
Battery voltage
Knock sensor
Refrigerant pressure sensor
Stop lamp switch
ASCD steering switch
ASCD brake switch
Fuel level sensor*1 *3
EVAP control system pressure sensor
Fuel tank temperature sensor*1
Heated oxygen sensor 2*2
TCM (Transmission control module)*3
ABS actuator and electric unit (control unit)*3
Air conditioner switch*3
Wheel sensor*3
Electrical load signal*3
Fuel injection & mixture ratio control Fuel injector
Electronic ignition system Power transistor
Nissan torque demand control system
Electric throttle control actuator
Fuel injector
Fuel pump control Fuel pump relay
ASCD vehicle speed control Electric throttle control actuator
On board diagnostic system
MIL (On the instrument panel)*
4
A/F sensor 1 heater control A/F sensor 1 heater
Heated oxygen sensor 2 heater control Heated oxygen sensor 2 heater
EVAP canister purge flow controlEVAP canister purge volume control
solenoid valve
Air conditioning cut control
Air conditioner relay*
4
Cooling fan control
Cooling fan relay*4
ON BOARD DIAGNOSIS for EVAP system EVAP canister vent control valve

Page 1217 of 3371

EC-26Revision: August 2007
ENGINE CONTROL SYSTEM
2004 QX56
Multiport Fuel Injection (MFI) SystemUBS00GZE
INPUT/OUTPUT SIGNAL CHART
*1: This sensor is not used to control the engine system under normal conditions.
*2: This signal is sent to the ECM through CAN communication line.
*3: ECM determines the start signal status by the signals of engine speed and battery voltage.
SYSTEM DESCRIPTION
The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of
time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the
ECM memory. The program value is preset by engine operating conditions. These conditions are determined
by input signals (for engine speed and intake air) from both the crankshaft position sensor (POS), camshaft
position sensor (PHASE) and the mass air flow sensor.
VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION
In addition, the amount of fuel injected is compensated to improve engine performance under various operat-
ing conditions as listed below.
<Fuel increase>
During warm-up
When starting the engine
During acceleration
Hot-engine operation
When selector lever is changed from N to D
High-load, high-speed operation
<Fuel decrease>
During deceleration
During high engine speed operation
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Engine speed*
3
Piston position
Fuel injection
& mixture ratio
controlFuel injector Camshaft position sensor (PHASE)
Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
A/F sensor 1 Density of oxygen in exhaust gas
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Park/neutral position (PNP) switch Gear position
Knock sensor Engine knocking condition
Battery
Battery voltage*
3
Power steering pressure sensor Power steering operation
Heated oxygen sensor 2*
1Density of oxygen in exhaust gas
ABS actuator and electric unit (control unit)*
2VDC/TCS operation command
Air conditioner switch*
2Air conditioner operation
Wheel sensor*
2Vehicle speed

Page 1218 of 3371

ENGINE CONTROL SYSTEM
EC-27
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)
The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control.
The three way catalyst (manifold) can then better reduce CO, HC and NOx emissions. This system uses air
fuel ratio (A/F) sensor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The
ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about air
fuel ratio (A/F) sensor 1, refer to EC-429
. This maintains the mixture ratio within the range of stoichiometric
(ideal air-fuel mixture).
This stage is referred to as the closed loop control condition.
Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching
characteristics of air fuel ratio (A/F) sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal
from heated oxygen sensor 2.
Open Loop Control
The open loop system condition refers to when the ECM detects any of the following conditions. Feedback
control stops in order to maintain stabilized fuel combustion.
Deceleration and acceleration
High-load, high-speed operation
Malfunction of air fuel ratio (A/F) sensor 1 or its circuit
Insufficient activation of air fuel ratio (A/F) sensor 1 at low engine coolant temperature
High engine coolant temperature
During warm-up
After shifting from N to D
When starting the engine
MIXTURE RATIO SELF-LEARNING CONTROL
The mixture ratio feedback control system monitors the mixture ratio signal transmitted from A/F sensor 1.
This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoret-
ical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally
designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic changes dur-
ing operation (i.e., injector clogging) directly affect mixture ratio.
Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is
then computed in terms of “injection pulse duration” to automatically compensate for the difference between
the two ratios.
“Fuel trim” refers to the feedback compensation value compared against the basic injection duration. Fuel trim
includes short term fuel trim and long term fuel trim.
“Short term fuel trim” is the short-term fuel compensation used to maintain the mixture ratio at its theoretical
value. The signal from A/F sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the the-
oretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in
fuel volume if it is lean.
“Long term fuel trim” is overall fuel compensation carried out long-term to compensate for continual deviation
of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences,
wear over time and changes in the usage environment.
SEF 5 03 YB

Page 1220 of 3371

ENGINE CONTROL SYSTEM
EC-29
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
At idle
At low battery voltage
During acceleration
The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed
within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not
operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition.
The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.
Nissan Torque Demand (NTD) Control SystemUBS00GZG
INPUT/OUTPUT SIGNAL CHART
*1: Signal is sent to the ECM through CAN communication line.
SYSTEM DESCRIPTION
NTD control system decides the target traction based on the accelerator operation status and the current driv-
ing condition. It then selects the engine torque target by correcting running resistance and atmospheric pres-
sure, and controlling the power-train. Using electric throttle control actuator, it achieves the engine torque
development target which corresponds linearly to the driver's accelerator operation.
Running resistance correction control compares the engine torque estimate value, measured vehicle acceler-
ation, and running resistance on a flat road, and estimates vehicle weight gain and running resistance varia-
tion caused by slopes to correct the engine torque estimate value.
Atmospheric pressure correction control compares the engine torque estimate value from the airflow rate and
the target engine torque for the target traction, and estimates variation of atmospheric pressure to correct the
target engine torque. This system achieves powerful driving without reducing engine performance in the prac-
tical speed range in mountains and high-altitude areas.
Sensor Input signal to ECM ECM function Actuator
Camshaft position sensor (PHASE)
Crankshaft position sensor (POS)Engine speed
NTD controlElectric throttle con-
trol actuator and fuel
injector Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Park/Neutral position (PNP) switch Gear position
Power steering pressure sensor Power steering operation
Battery Battery voltage
TCM (CAN communication) A/T control signal
Air conditioner switch*
1Air conditioner operation
ABS actuator and electric unit (control unit)*
1VDC/TCS/ABS operation
Wheel sensor*
1Vehicle speed
Electrical load*
1Electrical load signal

Page 1224 of 3371

BASIC SERVICE PROCEDURE
EC-33
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
3. Check ignition timing.
Idle Speed/Ignition Timing/Idle Mixture Ratio AdjustmentUBS00GZL
PREPARATION
1. Make sure that the following parts are in good order.
Battery
Ignition system
Engine oil and coolant levels
Fuses
ECM harness connector
Vacuum hoses
Air intake system
(Oil filler cap, oil level gauge, etc.)
Fuel pressure
Engine compression
Throttle valve
Evaporative emission system
2. On air conditioner equipped models, checks should be carried out while the air conditioner is OFF.
3. On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio,
checks should be carried out while shift lever is in N position.
4. When measuring CO percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
5. Turn off headlamp, heater blower, rear window defogger.
6. Keep front wheels pointed straight ahead.
SEF 0 11V
BBIA0379E

Page:   < prev 1-10 ... 561-570 571-580 581-590 591-600 601-610 611-620 621-630 631-640 641-650 ... 1700 next >