ECU INFINITI QX56 2006 Factory Service Manual
Page 1266 of 3383
ON BOARD DIAGNOSTIC (OBD) SYSTEMEC-55
C
DE
F
G H
I
J
K L
M A
EC
Revision: November 2009 2006 QX56
*: If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the pr iority for
models with CONSULT-II.
SRT Set Timing
SRT is set as “CMPLT ” after self-diagnosis has been performed one or more times. Completion of SRT is
done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and
is shown in the table below.
OK: Self-diagnosis is carried out and the result is OK.
NG: Self-diagnosis is carried out and the result is NG.
— : Self-diagnosis is not carried out.
When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will
indicate “CMPLT”. → Case 1 above
When all SRT related self-diagnoses showed OK results through several different cycles, the SRT will indicate
“CMPLT ” at the time the respective self-diagnoses have at least one OK result. → Case 2 above
If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indi-
cate “CMPLT ”. → Case 3 above
The table above shows that the minimum number of cycles for setting SRT as “INCMP” is one (1) for each
self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state
emissions inspection, it is unnecessary for each self-diagnosis to be executed twice (Case 3) for the following
reasons:
The SRT will indicate “CMPLT ” at the time the respective self-diagnoses have one (1) OK result.
The emissions inspection requires “CMPLT ” of the SRT only with OK self-diagnosis results.
When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to “CMPLT” of SRT, the self-diagno-
sis memory must be erased from ECM after repair.
If the 1st trip DTC is erased, all the SRT will indicate “INCMP”.
HO2S 2 Air fuel ratio (A/F) sensor 1 P0133, P0153
Heated oxygen sensor 2 P0137, P0157
Heated oxygen sensor 2 P0138, P0158
Heated oxygen sensor 2 P0139, P0159
SRT item
(CONSULT-II indication) Performance
Priority* Required self-diagnostic items to set the SRT to “
CMPLT” Corresponding
DTC No.
Self-diagnosis result Example
Diagnosis Ignition cycle
← ON → OFF ← ON → OFF ← ON → OFF ← ON →
All OK Case 1 P0400 OK (1) — (1)OK (2) — (2)
P0402 OK (1) — (1)— (1) OK (2)
P1402 OK (1) OK (2) — (2) — (2)
SRT of EGR “CMPLT ”“ CMPLT”“ CMPLT”“ CMPLT”
Case 2 P0400OK (1) — (1)— (1) — (1)
P0402 — (0) — (0) OK (1) — (1)
P1402 OK (1) OK (2) — (2) — (2)
SRT of EGR “INCMP ”“ INCMP”“ CMPLT”“ CMPLT”
NG exists Case 3 P0400OKOK ——
P0402 ——— —
P1402 NG—NG NG
(Consecutive
NG)
(1st trip) DTC 1st trip DTC
—1st trip DTC DTC
(= MIL ON)
SRT of EGR “INCMP ”“ INCMP”“ INCMP”“ CMPLT”
Page 1274 of 3383
ON BOARD DIAGNOSTIC (OBD) SYSTEMEC-63
C
DE
F
G H
I
J
K L
M A
EC
Revision: November 2009 2006 QX56
–Test values
Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all
of the data listed above, are cleared from the ECM memory during work procedures.
Malfunction Indicator Lamp (MIL)UBS00KZS
DESCRIPTION
The MIL is located on the instrument panel.
1. The MIL will light up when the ignition switch is turned ON with- out the engine running. This is a bulb check.
If the MIL does not light up, refer to DI-31, "
WARNING LAMPS" ,
or see EC-635, "
MIL AND DATA LINK CONNECTOR" .
2. When the engine is started, the MIL should go off. If the MIL remains on, the on board diagnostic system has
detected an engine system malfunction.
ON BOARD DIAGNOSTIC SYSTEM FUNCTION
The on board diagnostic system has the following three functions.
When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting up MIL when there is
malfunction on engine control system.
Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as
NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means
of operating fail-safe function.
The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands the
driver to repair the malfunction.
SEF217U
Diagnostic Test
Mode KEY and ENG.
StatusFunction
Explanation of Function
Mode I Ignition switch in
ON position
Engine stopped BULB CHECK
This function checks the MIL bulb for damage (blown,
open circuit, etc.).
If the MIL does not come on, check MIL circuit.
Engine running MALFUNCTION WARNING This is a usual driving condition. When a malfunction is
detected twice in two consecutive driving cycles (two trip
detection logic), the MIL will light up to inform the driver
that a malfunction has been detected.
The following malfunctions will light up or blink the MIL in
the 1st trip.
Misfire (Possible three way catalyst damage)
One trip detection diagnoses
Mode II Ignition switch in
ON position
Engine stopped SELF-DIAGNOSTIC
RESULTS
This function allows DTCs and 1st trip DTCs to be read.
Engine operating condition in fail-safe mode
Engine speed will not rise more than 2,500 rpm due to the fuel cut
Page 1277 of 3383
EC-66Revision: November 2009
ON BOARD DIAGNOSTIC (OBD) SYSTEM
2006 QX56
When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are
stored in the ECM memory, and the MIL will come on. For details, refer to EC-48, "
Two Trip Detection
Logic" .
The MIL will go off after the vehicle is driven 3 times (driving pattern B) with no malfunction. The drive is
counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction
occurs while counting, the counter will reset.
The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A)
without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and
Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times
(driving pattern C) without the same malfunction recurring. The “TIME” in “SELF-DIAGNOSTIC
RESULTS ” mode of CONSULT-II will count the number of times the vehicle is driven.
The 1st trip DTC is not displayed when the self-diagnosis results in OK for the 2nd trip.
SUMMARY CHART
For details about patterns B and C under “Fuel Injection System ” and “ Misfire ”, see EC-68, "EXPLANATION FOR DRIVING PATTERNS
FOR “MISFIRE <EXHAUST QUALITY DETERIORATION>”, “FUEL INJECTION SYSTEM”" .
For details about patterns A and B under Other, see EC-70, "
EXPLANATION FOR DRIVING PATTERNS EXCEPT FOR “MISFIRE
<EXHAUST QUALITY DETERIORATION>”, “FUEL INJECTION SYSTEM”" .
*1: Clear timing is at the moment OK is detected.
*2: Clear timing is when the same malfunction is detected in the 2nd trip. Items
Fuel Injection System MisfireOther
MIL (goes off) 3 (pattern B)3 (pattern B) 3 (pattern B)
DTC, Freeze Frame Data (no
display) 80 (pattern C)
80 (pattern C) 40 (pattern A)
1st Trip DTC (clear) 1 (pattern C), *
11 (pattern C), *11 (pattern B)
1st Trip Freeze Frame Data
(clear) *1, *2
*1, *21 (pattern B)
Page 1278 of 3383
ON BOARD DIAGNOSTIC (OBD) SYSTEMEC-67
C
DE
F
G H
I
J
K L
M A
EC
Revision: November 2009 2006 QX56
RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR “MISFIRE
” <EXHAUST QUALITY DETERIORATION>, “FUEL INJECTION SYSTEM”
*1: When the same malfunction is
detected in two consecutive trips,
MIL will light up. *2: MIL will go off after vehicle is driven
3 times (pattern B) without any mal-
functions. *3: When the same malfunction is
detected in two consecutive trips, the
DTC and the freeze frame data will
be stored in ECM.
*4: The DTC and the freeze frame data will not be displayed any longer after
vehicle is driven 80 times (pattern C)
without the same malfunction. (The
DTC and the freeze frame data still
remain in ECM.) *5: When a malfunction is detected for
the first time, the 1st trip DTC and
the 1st trip freeze frame data will be
stored in ECM. *6: The 1st trip DTC and the 1st trip
freeze frame data will be cleared at
the moment OK is detected.
*7: When the same malfunction is detected in the 2nd trip, the 1st trip
freeze frame data will be cleared. *8: 1st trip DTC will be cleared when
vehicle is driven once (pattern C)
without the same malfunction after
DTC is stored in ECM.
SEF392S
Page 1280 of 3383
ON BOARD DIAGNOSTIC (OBD) SYSTEMEC-69
C
DE
F
G H
I
J
K L
M A
EC
Revision: November 2009 2006 QX56
RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS EXCEPT FOR
“MISFIRE <EXHAUST QUALITY DETERIORATION>”, “FUEL INJECTION SYSTEM”
*1: When the same malfunction is
detected in two consecutive trips,
MIL will light up. *2: MIL will go off after vehicle is driven
3 times (pattern B) without any mal-
functions. *3: When the same malfunction is
detected in two consecutive trips, the
DTC and the freeze frame data will
be stored in ECM.
*4: The DTC and the freeze frame data will not be displayed any longer after
vehicle is driven 40 times (pattern A)
without the same malfunction.
(The DTC and the freeze frame data
still remain in ECM.) *5: When a malfunction is detected for
the first time, the 1st trip DTC and
the 1st trip freeze frame data will be
stored in ECM. *6: 1st trip DTC will be cleared after
vehicle is driven once (pattern B)
without the same malfunction.
*7: When the same malfunction is detected in the 2nd trip, the 1st trip
freeze frame data will be cleared.
SEF393SD
Page 1298 of 3383
TROUBLE DIAGNOSISEC-87
C
DE
F
G H
I
J
K L
M A
EC
Revision: November 2009 2006 QX56
10. DETECT MALFUNCTIONING PART BY DIAGNOSTIC PROCEDURE
Inspect according to Diagnostic Procedure of the system.
NOTE:
The Diagnostic Procedure in EC section described based on open circuit inspection. A short circuit inspection
is also required for the circuit check in the Diagnostic Procedure. For details, refer to Circuit Inspection in GI-
28, "How to Perform Efficient Diagnosis for an Electrical Incident" .
Is malfunctioning part detected?
Ye s > > G O T O 11 .
No >> Monitor input data from related sensors or check voltage of related ECM terminals using CON- SULT-II. Refer to EC-105, "
ECM Terminals and Reference Value" , EC-129, "CONSULT-II Refer-
ence Value in Data Monitor" .
11 . REPAIR OR REPLACE THE MALFUNCTIONING PART
1. Repair or replace the malfunctioning part.
2. Reconnect parts or connectors disconnected during Diagnostic Procedure again after repair and replace- ment.
3. Check DTC. If DTC is displayed, erase it, refer to EC-61, "
HOW TO ERASE EMISSION-RELATED DIAG-
NOSTIC INFORMATION" .
>> GO TO 12.
12. FINAL CHECK
When DTC was detected in step 2, perform DTC Confirmation Procedure or Overall Function Check again,
and then make sure that the malfunction have been repaired securely.
When symptom was described from the customer, refer to confirmed symptom in step 3 or 4, and make sure
that the symptom is not detected.
OK or NG
NG (DTC*1 is detected)>>GO TO 10.
NG (Symptom remains)>>GO TO 6.
OK >> 1. Before returning the vehicle to the customer, make sure to erase unnecessary DTC*
1 in ECM
and TCM (Transmission Control Module). (Refer to EC-61, "
HOW TO ERASE EMISSION-
RELATED DIAGNOSTIC INFORMATION" and AT- 3 8 , "OBD-II Diagnostic Trouble Code
(DTC)" .)
2. If the completion of SRT is needed, drive vehicle under the specific driving pattern. Refer to EC-
58, "Driving Pattern" .
3. INSPECTION END
*1: Include 1st trip DTC.
*2: Include 1st trip freeze frame data.
DIAGNOSTIC WORKSHEET
Description
There are many operating conditions that lead to the malfunction of
engine components. A good grasp of such conditions can make trou-
bleshooting faster and more accurate.
In general, each customer feels differently about a incident. It is
important to fully understand the symptoms or conditions for a cus-
tomer complaint.
Utilize a diagnostic worksheet like the one on the next page in order
to organize all the information for troubleshooting.
Some conditions may cause the MIL to come on steady or blink and
DTC to be detected. Examples:
Vehicle ran out of fuel, which caused the engine to misfire.
Fuel filler cap was left off or incorrectly screwed on, allowing fuel
to evaporate into the atmosphere.
SEF907L
Page 1328 of 3383
TROUBLE DIAGNOSISEC-117
C
DE
F
G H
I
J
K L
M A
EC
Revision: November 2009 2006 QX56
5. Touch “ENGINE”.
If “ENGINE ” is not indicated, go to GI-40, "
CONSULT-II Data
Link Connector (DLC) Circuit" .
6. Perform each diagnostic test mode according to each service procedure.
For further information, see the CONSULT-II Operation Manual.
WORK SUPPORT MODE
Work Item
BCIA0030E
BCIA0031E
WORK ITEM CONDITION USAGE
FUEL PRESSURE RELEASE
FUEL PUMP WILL STOP BY TOUCHING “START ” DUR-
ING IDLING.
CRANK A FEW TIMES AFTER ENGINE STALLS. When releasing fuel pressure
from fuel line
IDLE AIR VOL LEARN
THE IDLE AIR VOLUME THAT KEEPS THE ENGINE
WITHIN THE SPECIFIED RANGE IS MEMORIZED IN
ECM. When learning the idle air volume
SELF-LEARNING CONT
THE COEFFICIENT OF SELF-LEARNING CONTROL
MIXTURE RATIO RETURNS TO THE ORIGINAL COEF-
FICIENT. When clearing the coefficient of
self-learning control value
EVAP SYSTEM CLOSE CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN
ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE
FOLLOWING CONDITIONS.
IGN SW ON
ENGINE NOT RUNNING
AMBIENT TEMPERATURE IS ABOVE 0 °C (32°F).
NO VACUUM AND NO HIGH PRESSURE IN EVAP SYS-
TEM
FUEL TANK TEMP. IS MORE THAN 0 °C (32°F).
WITHIN 10 MINUTES AFTER STARTING “EVAP SYS-
TEM CLOSE ”
WHEN TRYING TO EXECUTE “EVAP SYSTEM CLOSE ”
UNDER THE CONDITION EXCEPT ABOVE, CONSULT-
II WILL DISCONTINUE IT AND DISPLAY APPROPRI-
ATE INSTRUCTION.
NOTE:
WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY
“BATTERY VOLTAGE IS LOW. CHARGE BATTERY”,
EVEN IN USING CHARGED BATTERY. When detecting EVAP vapor leak
point of EVAP system
VIN REGISTRATION
IN THIS MODE, VIN IS REGISTERED IN ECM When registering VIN in ECM
Page 1355 of 3383
EC-144Revision: November 2009
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT
2006 QX56
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENTPFP:00006
DescriptionUBS00L0J
Intermittent incidents may occur. In many cases, the malfunction resolves itself (the part or circuit function
returns to normal without intervention). It is important to realize that the symptoms described in the customer's
complaint often do not recur on (1st trip) DTC visits. Realize also that the most frequent cause of intermittent
incidents occurrences is poor electrical connections. Because of this, the conditions under which the incident
occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may
not indicate the specific malfunctioning area.
Common Intermittent Incidents Report Situations
Diagnostic ProcedureUBS00L0K
1. INSPECTION START
Erase (1st trip) DTCs. Refer to EC-61, "
HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMA-
TION" .
>> GO TO 2.
2. CHECK GROUND TERMINALS
Check ground terminals for corroding or loose connection.
Refer to EC-150, "
Ground Inspection" .
OK or NG
OK >> GO TO 3.
NG >> Repair or replace.
3. SEARCH FOR ELECTRICAL INCIDENT
Perform GI-28, "
How to Perform Efficient Diagnosis for an Electrical Incident" , “INCIDENT SIMULATION
TESTS”.
OK or NG
OK >> GO TO 4.
NG >> Repair or replace.
4. CHECK CONNECTOR TERMINALS
Refer to GI-25, "
How to Check Terminal" , “HOW TO PROBE CONNECTORS ”, “How to Check Enlarged Con-
tact Spring of Terminal ”.
OK or NG
OK >> INSPECTION END
NG >> Repair or replace connector.
STEP in Work Flow Situation
2 The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than [0] or [1t].
3 or 4 The symptom described by the customer does not recur.
5 (1st trip) DTC does not appear during the DTC Confirmation Procedure.
10 The Diagnostic Procedure for PXXXX does not indicate the malfunctioning area.
Page 1361 of 3383
EC-150Revision: November 2009
POWER SUPPLY AND GROUND CIRCUIT
2006 QX56
Ground Inspection UBS00H0H
Ground connections are very important to the proper operation of electrical and electronic circuits. Ground
connections are often exposed to moisture, dirt and other corrosive elements. The corrosion (rust) can
become an unwanted resistance. This unwanted resistance can change the way a circuit works.
Electronically controlled circuits are very sensitive to proper grounding. A loose or corroded ground can drasti-
cally affect an electronically controlled circuit. A poor or corroded ground can easily affect the circuit. Even
when the ground connection looks clean, there can be a thin film of rust on the surface.
When inspecting a ground connection follow these rules:
Remove the ground bolt or screw.
Inspect all mating surfaces for tarnish, dirt, rust, etc.
Clean as required to assure good contact.
Reinstall bolt or screw securely.
Inspect for “add-on” accessories which may be interfering with the ground circuit.
If several wires are crimped into one ground eyelet terminal, check for proper crimps. Make sure all of the
wires are clean, securely fastened and providing a good ground path. If multiple wires are cased in one
eyelet make sure no ground wires have excess wire insulation.
For detailed ground distribution information, refer to PG-31, "
Ground Distribution" .
PBIB1870E
Page 1384 of 3383
DTC P0101 MAF SENSOREC-173
C
DE
F
G H
I
J
K L
M A
EC
Revision: November 2009 2006 QX56
7. Maintain the following conditions for at least 10 consecutive sec-
onds.
8. If 1st trip DTC is detected, go to EC-175, "
Diagnostic Procedure"
.
Overall Function CheckUBS00H0Z
PROCEDURE FOR MALFUNCTION B
Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a 1st trip
DTC might not be confirmed.
With GST
1. Start engine and warm it up to normal operating temperature.
2. Select Service $01 with GST.
3. Check the mass air flow sensor signal with Service $01.
4. Check for linear mass air flow sensor signal value rise in
response to increases to about 4,000 rpm in engine speed.
5. If NG, go to EC-175, "
Diagnostic Procedure" .
ENG SPEED More than 2,000 rpm
THRTL SEN 1 More than 3V
THRTL SEN 2 More than 3V
Selector lever Suitable position
Driving location Driving vehicle uphill (Increased engine load) will help
maintain the driving conditions required for this test.
PBIB0199E
SEF534P