sensor ISUZU AXIOM 2002 Service Repair Manual
Page 992 of 2100
6E±25
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
PCM Pinout Table, 80-Way Red Connector ± Row ªS61 ~ 80º
060RY00051
PINPIN FunctionWire ColorIGN ONENG RUNRefer To
S61Intake Air Temperature
(IAT) Sensor GroundYEL/GRN0.0V0.0VGeneral Description and
Operation, IAT
S62ION Sensing ModuleRED1.555V1.555VGeneral Description and
Operation, ION Sensing
Module
S63Bank 1 HO2S 2 HighWHT0.3V0.1±0.9VGeneral Description and
Operation, Catalyst Monitor
HO2S
S64Bank 2 HO2S 1 HighPNK0.3V0.1±0.9VGeneral Description and
Operation, Catalyst Monitor
HO2S
S65Bank 2 HO2S 2 HighGRN0.3V0.1±0.9VGeneral Description and
Operation, Catalyst Monitor
HO2S
S66Transmission Fluid
Temperature SensorRED/BLK0.5±4.9V
(depends on
temperature)0.5±4.9V
(depends on
temperature)4L30E T/Mission
S67Exhaust Gas Recirculation
(EGR) Position SignalGRY/RED0.6V0.6VGeneral Description and
Operation, EGR Control
S68Accelerator Position (AP)
Sensor 1WHT0.41±0.45V0.41±0.45VOn-Vehicle Service
S69Throttle Valve DC
Motor(+: FWD)GRNDuty CycleDuty CycleGeneral Description and
Operation, ETC
S70Not UsedÐÐÐÐ
S71Not UsedÐÐÐÐ
S72Ignition FeedRED/GRNB+B+Chassis Electrical
S73Auto Cruise Main LampGRN/WHTB+B+Chassis Electrical
S74Variable Intake ManifoldYEL/BLK0.0VB+ (rpm
3600 over)General Description
S75Canister Purge Cut
Solenoid ValveRED/WHT6.0V Tank
empty5.7V Tank
emptyGeneral Description and
Operation, EVAP
S76Throttle Position (TP) 1
Sensor SignalBLU0.5±0.8V0.5±0.8V (at
idle)General Description and
Operation, TPS
Page 993 of 2100
6E±26
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
PINRefer To ENG RUN IGN ON Wire Color PIN Function
S775Volt Reference (AP
Sensor 3)ORN5.0V5.0VAP Sensor
S78Accelerator Position (AP)
Sensor 2YEL0.41±0.45V0.41±0.45VOn-Vehicle Service
S79Accelerator Position (AP)
Sensor 3BLU/GRN4.55±4.99V0.41±0.45VOn-Vehicle Service
S80Manifold Absolute
Pressure (MAP) Sensor
GroundGRN0V0VGeneral Description and
Operation, Manifold Absolute
Pressure
Page 995 of 2100
6E±28
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Engine Component Locator Table
Number
NameLocation
1Linear Exhaust Gas Recirculation (EGR) ValveRear right side of the engine
2Throttle Position (TP) SensorOn the throttle body
3Intake Air Temperature (IAT) SensorOn the intake air duct near the throttle body
4Check Engine (MIL) LightOn the instrument panel beneath the
tachometer
5Positive Crankcase Ventilation (PCV) ValveOn the left of the cylinder head cover
6Air CleanerLeft front of the engine bay
7Mass Air Flow (MAF) SensorAttached to the air filter box
8Fuel RailOn the Common Chamber
9Fuel Pressure RegulatorRear side of the engine
10ION Sensing moduleBolted to the top of the Common Chamber
11Common ChamberTop of the engine
12EVAP Duty Solenoid ValveBolted to the front of the coolant pipe
13Fuse/Relay BoxAlong the inside of the right fender
14Manifold Absolute Pressure (MAP) SensorBolted to the top of the Common Chamber
15Throttle BodyBetween the intake air duct and the Common
Chamber
16Engine Coolant Temperature SensorOn the coolant crossover pipe at the front of
the engine, near the throttle body
17Power Train Control Module (PCM)Along the inside of the left fender
Page 996 of 2100
6E±29
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Undercarriage Component Locator
014RW142
Undercarriage Component Locator Table
Number
NameLocation
1Fuel Pump Assembly and Vapor Pressure
(Fuel Tank Pressure) SensorInstalled in the top of the fuel tank
2Fuel Gauge UnitInstalled in the top of the fuel tank
3Evaporative (EVAP) CanisterOn the top of the bracket that is located behind
the cross member
4Vent Solenoid (EVAP Canister)On the top of the bracket that is located behind
the cross member
5Fuel FilterLocated along the inside of the right frame rail,
ahead of the fuel tank
6Vehicle Speed Sensor (VSS)Protrudes from the transmission housing, just
ahead of the propeller shaft
7Heated Oxygen Sensor (Bank 1, HO2S 1)Threaded into the exhaust pipe behind the
right-hand catalytic converter
8Heated Oxygen Sensor (Bank 1, HO2S 2)Threaded into the exhaust pipe ahead of the
right-hand catalytic converter
9Heated Oxygen Sensor (Bank 2, HO2S 1)Threaded into the exhaust pipe ahead of the
left-hand catalytic converter
10Heated Oxygen Sensor (Bank 2, HO2S 2)Threaded into the exhaust pipe behind the
left-hand catalytic converter
Page 998 of 2100
6E±31
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Sensors and Miscellaneous Component Locators
060RY00013
T321067
014RW126
060RW111
060R200080
055RY00002
Page 1001 of 2100
6E±34
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
dissatisfaction. The following list of non-vehicle faults
does not include every possible fault and may not apply
equally to all product lines.
Fuel Quality
Fuel quality is not a new issue for the automotive industry,
but its potential for turning on the MIL (ªCheck Engineº
lamp) with OBD II systems is new.
Fuel additives such as ªdry gasº and ªoctane enhancersº
may affect the performance of the fuel. If this results in an
incomplete combustion or a partial burn, it will show up as
a Misfire DTC P0300. The Reed Vapor Pressure of the
fuel can also create problems in the fuel system,
especially during the spring and fall months when severe
ambient temperature swings occur. A high Reed Vapor
Pressure could show up as a Fuel Trim DTC due to
excessive canister loading. High vapor pressures
generated in the fuel tank can also affect the Evaporative
Emission diagnostic as well.
Using fuel with the wrong octane rating for the vehicle
may cause driveability problems. Many of the major fuel
companies advertise that using ªpremiumº gasoline will
improve the performance of the vehicle. Most premium
fuels use alcohol to increase the octane rating of the fuel.
Although alcohol-enhanced fuels may raise the octane
rating, the fuel's ability to turn into vapor in cold
temperatures deteriorates. This may affect the starting
ability and cold driveability of the engine.
Low fuel levels can lead to fuel starvation, lean engine
operation, and eventually engine misfire.
Non-OEM Parts
All of the OBD II diagnostics have been calibrated to run
with OEM parts. Something as simple as a
high-performance exhaust system that affects exhaust
system back pressure could potentially interfere with the
operation of the EGR valve and thereby turn on the MIL
(ªCheck Engineº lamp). Small leaks in the exhaust
system near the post catalyst oxygen sensor can also
cause the MIL (ªCheck Engineº lamp) to turn on.
Aftermarket electronics, such as transceivers, stereos,
and anti-theft devices, may radiate EMI into the control
system if they are improperly installed. This may cause a
false sensor reading and turn on the MIL (ªCheck Engineº
lamp).
Environment
Temporary environmental conditions, such as localized
flooding, will have an effect on the vehicle ignition system.
If the ignition system is rain-soaked, it can temporarily
cause engine misfire and turn on the MIL (ªCheck Engineº
lamp).
Refueling
A new OBD II diagnostic was introduced in 1996 on some
vehicles. This diagnostic checks the integrity of the entire
evaporative emission system. If the vehicle is restarted
after refueling and the fuel cap is not secured correctly,
the on-board diagnostic system will sense this as a
system fault and turn on the MIL (ªCheck Engineº lamp)
with a DTC P0440.Vehicle Marshaling
The transportation of new vehicles from the assembly
plant to the dealership can involve as many as 60 key
cycles within 2 to 3 miles of driving. This type of operation
contributes to the fuel fouling of the spark plugs and will
turn on the MIL (ªCheck Engineº lamp) with a P0300
Misfire DTC.
Poor Vehicle Maintenance
The sensitivity of OBD II diagnostics will cause the MIL
(ªCheck Engineº lamp) to turn on if the vehicle is not
maintained properly. Restricted air filters, fuel filters, and
crankcase deposits due to lack of oil changes or improper
oil viscosity can trigger actual vehicle faults that were not
previously monitored prior to OBD II. Poor vehicle
maintenance can't be classified as a ªnon-vehicle faultº,
but with the sensitivity of OBD II diagnostics, vehicle
maintenance schedules must be more closely followed.
Related System Faults
Many of the OBD II system diagnostics will not run if the
PCM detects a fault on a related system or component.
One example would be that if the PCM detected a Misfire
fault, the diagnostics on the catalytic converter would be
suspended until Misfire fault was repaired. If the Misfire
fault was severe enough, the catalytic converter could be
damaged due to overheating and would never set a
Catalyst DTC until the Misfire fault was repaired and the
Catalyst diagnostic was allowed to run to completion. If
this happens, the customer may have to make two trips to
the dealership in order to repair the vehicle.
Emissions Control Information Label
The engine compartment ªVehicle Emissions Control
Information Labelº contains important emission
specifications and setting procedures. In the upper left
corner is exhaust emission information. This identifies
the emission standard (Federal, California, or Canada) of
the engine, the displacement of the engine in liters, the
class of the vehicle, and the type of fuel metering system.
There is also an illustrated emission components and
vacuum hose schematic.
This label is located in the engine compartment of every
vehicle. If the label has been removed it should be
replaced. It can be ordered from Isuzu Dealership.
Visual / Physical Engine Compartment
Inspection
Perform a careful visual and physical engine
compartment inspection when performing any diagnostic
procedure or diagnosing the cause of an emission test
failure. This can often lead to repairing a problem without
further steps. Use the following guidelines when
performing a visual/physical inspection:
Inspect all vacuum hoses for pinches, cuts,
disconnections, and proper routing.
Inspect hoses that are difficult to see behind other
components.
Page 1002 of 2100
6E±35
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Inspect all wires in the engine compartment for proper
connections, burned or chafed spots, pinched wires,
contact with sharp edges or contact with hot exhaust
manifolds or pipes.
Basic Knowledge of Tools Required
NOTE: Lack of basic knowledge of this powertrain when
performing diagnostic procedures could result in an
incorrect diagnosis or damage to powertrain
components. Do not attempt to diagnose a powertrain
problem without this basic knowledge.
A basic understanding of hand tools is necessary to effec-
tively use this section of the Service Manual.
Serial Data Communications
Class 2 Serial Data Communications
Government regulations require that all vehicle
manufacturers establish a common communication
system. This vehicle utilizes the ªClass 2º communication
system. Each bit of information can have one of two
lengths: long or short. This allows vehicle wiring to be
reduced by transmitting and receiving multiple signals
over a single wire. The messages carried on Class 2 data
streams are also prioritized. If two messages attempt to
establish communications on the data line at the same
time, only the message with higher priority will continue.
The device with the lower priority message must wait.
The most significant result of this regulation is that it
provides Scan tool manufacturers with the capability to
access data from any make or model vehicle that is sold.
The data displayed on other Scan tools will appear the
same, with some exceptions. Some Scan tools will only
be able to display certain vehicle parameters as values
that are a coded representation of the true or actual value.
On this vehicle the Scan tool displays the actual values for
vehicle parameters. It will not be necessary to perform
any conversions from coded values to actual values.
On-Board Diagnostic (OBD II)
On-Board Diagnostic Tests
A diagnostic test is a series of steps, the result of which is
a pass or fail reported to the diagnostic executive. When
a diagnostic test reports a pass result, the diagnostic
executive records the following data:
The diagnostic test has been completed since the last
ignition cycle.
The diagnostic test has passed during the current
ignition cycle.
The fault identified by the diagnostic test is not
currently active.
When a diagnostic test reports a fail result, the diagnostic
executive records the following data:
The diagnostic test has been completed since the last
ignition cycle.
The fault identified by the diagnostic test is currently
active.
The fault has been active during this ignition cycle.
The operating conditions at the time of the failure.Remember, a fuel trim DTC may be triggered by a list of
vehicle faults. Make use of all information available (other
DTCs stored, rich or lean condition, etc.) when
diagnosing a fuel trim fault.
Comprehensive Component Monitor
Diagnostic Operation
Comprehensive component monitoring diagnostics are
required to monitor emissions-related input and output
powertrain components. The
CARB OBD II
Comprehensive Component Monitoring List Of
Components Intended To illuminate MIL
is a list of
components, features or functions that could fall under
this requirement.
Input Components:
Input components are monitored for circuit continuity and
out-of-range values. This includes rationality checking.
Rationality checking refers to indicating a fault when the
signal from a sensor does not seem reasonable, i.e.
Throttle Position (TP) sensor that indicates high throttle
position at low engine loads or MAP voltage. Input
components may include, but are not limited to the
following sensors:
Vehicle Speed Sensor (VSS)
Crankshaft Position (CKP) sensor
Throttle Position (TP) sensor
Engine Coolant Temperature (ECT) sensor
Manifold Absolute Pressure (MAP) sensor
Mass Air Flow (MAF) sensor
In addition to the circuit continuity and rationality check,
the ECT sensor is monitored for its ability to achieve a
steady state temperature to enable closed loop fuel
control.
Output Components:
Output components are diagnosed for proper response to
control module commands. Components where
functional monitoring is not feasible will be monitored for
circuit continuity and out-of-range values if applicable.
Output components to be monitored include, but are not
limited to, the following circuits:
Control module controlled EVAP Canister Purge
Valve
Electronic Transmission controls
A/C relays
VSS output
MIL control
Cruise control inhibit
Refer to PCM and Sensors in General Descriptions.
Passive and Active Diagnostic Tests
A passive test is a diagnostic test which simply monitors a
vehicle system or component. Conversely, an active test,
actually takes some sort of action when performing
diagnostic functions, often in response to a failed passive
test. For example, the EGR diagnostic active test will
force the EGR valve open during closed throttle decel
and/or force the EGR valve closed during a steady state.
Either action should result in a change in manifold
pressure.
Page 1003 of 2100
6E±36
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Intrusive Diagnostic Tests
This is any on-board test run by the Diagnostic
Management System which may have an effect on
vehicle performance or emission levels.
Warm-Up Cycle
A warm-up cycle means that engine at temperature must
reach a minimum of 70C (160F)
and rise at least 22C
(40F) over the course of a trip.
Freeze Frame
Freeze Frame is an element of the Diagnostic
Management System which stores various vehicle
information at the moment an emissions-related fault is
stored in memory and when the MIL is commanded on.
These data can help to identify the cause of a fault. Refer
to
Storing And Erasing Freeze Frame Data in this section
for more detailed information.
Failure Records
Failure Records data is an enhancement of the OBD II
Freeze Frame feature. Failure Records store the same
vehicle information as does Freeze Frame, but it will store
that information for any fault which is stored in on-board
memory, while Freeze Frame stores information only for
emission-related faults that command the MIL on.
System Status and Drive Cycle for
Satisfying Federal Inspection/Maintenance
(I/M 240) Regulations
I/M Ready Status means a signal or flag for each
emission system test that had been set in the PCM. I/M
Ready Status indicates that the vehicle on-board
emissions diagnostics have been run. I/M Ready Status
is not concerned whether the emission system passed or
failed the test, only that on-board diagnosis is complete.
Not all vehicles use all possible I/M flags.
Common OBD II Terms
Diagnostic
When used as a noun, the word diagnostic refers to any
on-board test run by the vehicle's Diagnostic
Management System. A diagnostic is simply a test run on
a system or component to determine if the system or
component is operating according to specification. There
are many diagnostics, shown in the following list:
Misfire
Oxygen sensors
Oxygen sensor heaters
EGR
Catalyst monitoring
Enable Criteria
The term ªenable criteriaº is engineering language for the
conditions necessary for a given diagnostic test to run.
Each diagnostic has a specific list of conditions which
must be met before the diagnostic will run. ªEnable
criteriaº is another way of saying ªconditions requiredº.The enable criteria for each diagnostic is listed on the first
page of the DTC description in Section 6E under the
heading ªConditions for Setting the DTCº. Enable criteria
varies with each diagnostic, and typically includes, but is
not limited to the following items:
engine speed
vehicle speed
ECT
MAF/MAP
barometric pressure
IAT
TP
high canister purge
fuel trim
TCC enabled
A/C on
Trip
Technically, a trip is a key on-run-key off cycle in which all
the enable criteria for a given diagnostic are met, allowing
the diagnostic to run. Unfortunately, this concept is not
quite that simple. A trip is official when all the enable
criteria for a given diagnostic are met. But because the
enable criteria vary from one diagnostic to another, the
definition of trip varies as well. Some diagnostics are run
when the vehicle is at operating temperature, some when
the vehicle first starts up; some require that the vehicle be
cruising at a steady highway speed, some run only when
the vehicle is idle; some diagnostics function with the
TCC disabled. Some run only immediately following a
cold engine start-up.
A trip then, is defined as a key on-run-key off cycle in
which the vehicle was operated in such a way as to satisfy
the enabling criteria for a given diagnostic, and this
diagnostic will consider this cycle to be one trip. However,
another diagnostic with a different set of enable criteria
(which were not met) during this driving event, would not
consider it a trip. No trip will occur for that particular
diagnostic until the vehicle is driven in such a way as to
meet all the enable criteria.
The Diagnostic Executive
The Diagnostic Executive is a unique segment of
software which is designed to coordinate and prioritize
the diagnostic procedures as well as define the protocol
for recording and displaying their results. The main
responsibilities of the Diagnostic Executive are listed as
the following:
Commanding the MIL (ªCheck Engineº lamp) on and
off
DTC logging and clearing
Freeze Frame data for the first emission related DTC
recorded
Non-emission related Service Lamp
Operating conditions Failure Records buffer, (the
number of records will vary)
Current status information on each diagnostic
System Status (I/M ready)
Page 1024 of 2100
6E±57
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Primary System-Based Diagnostic
Primary System-Based Diagnostic
There are primary system-based diagnostics which
evaluate system operation and its effect on vehicle
emissions. The primary system-based diagnostics are
listed below with a brief description of the diagnostic
function:
Oxygen Sensor Diagnosis
The fuel control heated oxygen sensors (Bank 1 HO2S 1
and Bank 2 HO2S 1) are diagnosed for the following
conditions:
Heater performance (time to activity on cold start)
Slow response
Response time (time to switch R/L or L/R)
Inactive signal (output steady at bias voltage ±
approx. 450 mV)
Signal fixed high
Signal fixed low
The catalyst monitor heated oxygen sensors (Bank 1
HO2S 2 and Bank 2 HO2S 2) are diagnosed for the
following conditions:
Heater performance (time to activity on cold start).
Signal fixed low during steady state conditions or
power enrichment (hard acceleration when a rich
mixture should be indicated).
Signal fixed high during steady state conditions or
deceleration mode (deceleration when a lean mixture
should be indicated).
Inactive sensor (output steady at approx. 438 mV).
If the oxygen sensor pigtail wiring, connector or terminal
are damaged, the entire oxygen sensor assembly must
be replaced. DO NOT attempt to repair the wiring,
connector or terminals. In order for the sensor to function
properly, it must have clean reference air provided to it.
This clean air reference is obtained by way of the oxygen
sensor wire(s). Any attempt to repair the wires, connector
or terminals could result in the obstruction of the
reference air and degrade oxygen sensor performance.
Refer to
On-Vehicle Service, Heated Oxygen Sensors in
this section.
Fuel Control Heated Oxygen Sensor
The main function of the fuel control heated oxygen
sensors is to provide the control module with exhaust
stream oxygen content information to allow proper fueling
and maintain emissions within mandated levels. After it
reaches operating temperature, the sensor will generate
a voltage, inversely proportional to the amount of oxygen
present in the exhaust gases. The control module uses
the signal voltage from the fuel control heated oxygen
sensors while in closed loop to adjust fuel injector pulse
width. While in closed loop, the PCM can adjust fuel
delivery to maintain an air/fuel ratio which allows the best
combination of emission control and driveability. The fuel
control heated oxygen sensors are also used to
determine catalyst efficiency.
HO2S Heater
Heated oxygen sensors are used to minimize the amount
of time required for closed loop fuel control to begin
operation and to allow accurate catalyst monitoring. The
oxygen sensor heater greatly decreases the amount of
time required for fuel control sensors (Bank 1 HO2S 1 and
Bank2 HO2S 1) to become active. Oxygen sensor
heaters are required by catalyst monitor and sensor
(Bank 1 HO2S 2 and Bank 2 HO2S 2) to maintain a
sufficiently high temperature which allows accurate
exhaust oxygen content readings further away from the
engine.
Catalyst Monitor Heated Oxygen Sensors
and Diagnostic Operation
TS24067
To control emissions of hydrocarbons (HC), carbon
monoxide (CO), and oxides of nitrogen (NOx), a
three-way catalytic converter is used. The catalyst within
the converter promotes a chemical reaction which
oxidizes the HC and CO present in the exhaust gas,
converting them into harmless water vapor and carbon
dioxide. The catalyst also reduces NOx, converting it to
nitrogen. The PCM has the ability to monitor this process
using the pre-catalyst and post-catalyst heated oxygen
sensors. The pre-catalyst sensor produces an output
signal which indicates the amount of oxygen present in
the exhaust gas entering the three-way catalytic
converter. The post-catalyst sensor produces an output
signal which indicates the oxygen storage capacity of the
catalyst; this in turn indicates the catalyst's ability to
convert exhaust gases efficiently. If the catalyst is
operating efficiently, the pre-catalyst signal will be far
more active than that produced by the post-catalyst
sensor.
In addition to catalyst monitoring, the heated oxygen
sensors have a limited role in controlling fuel delivery. If
the sensor signal indicates a high or low oxygen content
for an extended period of time while in closed loop, the
PCM will adjust the fuel delivery slightly to compensate.
Page 1025 of 2100
6E±58
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
For the 3.5L w/automatic transmission, the
pre-catalyst sensors are designated Bank 1 HO2S 1
and Bank 2 HO2S 1. The post-catalyst sensors are
Bank 1 HO2S 2 and Bank 2 HO2S 2.
Catalyst Monitor Outputs
The catalyst monitor diagnostic is sensitive to the
following conditions:
Exhaust leaks
HO2S contamination
Alternate fuels
Exhaust system leaks may cause the following:
Preventing a degraded catalyst from failing the
diagnostic.
Causing a false failure for a normally functioning
catalyst.
Preventing the diagnostic from running.
Some of the contaminants that may be encountered are
phosphorus, lead, silica, and sulfur. The presence of
these contaminants will prevent the TWC diagnostic from
functioning properly.
Three-Way Catalyst Oxygen Storage Capacity
The Three-Way catalyst (TWC) must be monitored for
efficiency. To accomplish this, the control module
monitors the pre-catalyst HO2S and post-catalyst HO2S
oxygen sensors. When the TWC is operating properly,
the post-catalyst oxygen sensor will have significantly
less activity than the pre-catalyst oxygen sensor. The
TWC stores and releases oxygen as needed during its
normal reduction and oxidation process. The control
module will calculate the oxygen storage capacity using
the difference between the pre-catalyst and post catalyst
oxygen sensor's voltage levels. If the activity of the
post-catalyst oxygen sensor approaches that of the
pre-catalyst oxygen sensor, the catalyst's efficiency is
degraded.
Stepped or staged testing level allow the control module
to statistically filter test information. This prevents falsely
passing or falsely failing the oxygen storage capacity test.
The calculations performed by the on-board diagnostic
system are very complex. For this reason, post catalyst
oxygen sensor activity should not be used to determine
oxygen storage capacity unless directed by the service
manual.
Two stages are used to monitor catalyst efficiency.
Failure of the first stage will indicate that the catalyst
requires further testing to determine catalyst efficiency.
The seconds stage then looks at the inputs for the pre and
post catalyst HO2S sensors more closely before
determining if the catalyst is indeed degraded. This
further statistical processing is done to increase the
accuracy of oxygen storage capacity type monitoring.
Failing the first (stage 1) test DOES NOT indicate a failed
catalyst. The catalyst may be marginal or the fuel sulfur
content could be very high.Aftermarket HO2S characteristics may be different from
the original equipment manufacturer sensor. This may
lead to a false pass or a false fail of the catalyst monitor
diagnostic. Similarly, if an aftermarket catalyst does not
contain the same amount of cerium as the original part,
the correlation between oxygen storage and conversion
efficiency may be altered enough to set a false DTC.
Misfire Monitor Diagnostic Operation
Misfire Monitor Diagnostic Operation
Misfire is monitored as a function of the combustion
quality (CQ) signals generated from the ignition current
sense system. Combustion signals represent the degree
of combustion in each cylinder. Misfire is detected when
the combustion signal is below a predetermined value.
The misfire ratio is calculated once every 100 engine
cycles. For example, on a 6-cylinder engine, 600 ignition
plug sparks occur every 100 cycles and if a misfire occurs
12 times during that time, the misfire is 12/600 y 100 = 2
%.
Misfire Counters
Whenever a cylinder misfires, the misfire diagnostic
counts the misfire and notes the crankshaft position at the
time the misfire occurred. These ªmisfire countersº are
basically a file on each engine cylinder. A current and a
history misfire counter are maintained for each cylinder.
The misfire current counters (Misfire Cur #1-6) indicate
the number of firing events out of the last 100 cylinder
firing events which were misfires. The misfire current
counter will display real time data without a misfire DTC
stored. The misfire history counters (Misfire Hist #1-6)
indicate the total number of cylinder firing events which
were misfires. The misfire history counters will display 0
until the misfire diagnostic has failed and a DTC P0300 is
set. Once the misfire DTC P0300 is set, the misfire
history counters will be updated every 100 cylinder firing
events. A misfire counter is maintained for each cylinder.
If the misfire diagnostic reports a failure, the diagnostic
executive reviews all of the misfire counters before
reporting DTC. This way, the diagnostic executive
reports the most current information.
When crankshaft rotation is erratic, a misfire condition will
be detected. Because of this erratic condition, the data
that is collected by the diagnostic can sometimes
incorrectly identify which cylinder is misfiring. Misfires are
counted from more than one cylinder. Cylinder #1 has the
majority of counted misfires. In this case, the Misfire
Counters would identify cylinder #1 as the misfiring
cylinder. The misfires in the other counters were just
background noise caused by the erratic misfire rotation of
the crankshaft. If the number of accumulated misfires is
sufficient for the diagnostic to identify a true misfire, the
diagnostic will set DTC P0300 ± Misfire Detected.
Use diagnostic equipment to monitor misfire counter data
on OBD II-compliant vehicles. Knowing which specific
cylinder(s) misfired can lead to the root cause, even when
dealing with a multiple cylinder misfire. Using the
information in the misfire counters, identify which
cylinders are misfiring. If the counter indicate cylinders