tow ISUZU AXIOM 2002 Service User Guide
Page 686 of 2100
5C±6
POWER±ASSISTED BRAKE SYSTEM
Diagnosis
Road Testing The Brakes
Brake Test
Brakes should be tested on a dry, clean, reasonably
smooth and level roadway. A true test of brake
performance cannot be made if the roadway is wet,
greasy or covered with loose dirt where all tires do not grip
the road equally. Testing will also be adversely affected if
the roadway is crowned so as to throw the weight of the
vehicle toward wheels on one side or if the roadway is so
rough that wheels tend to bounce. Test the brakes at
different vehicle speeds with both light and heavy pedal
pressure; however, avoid locking the wheels and sliding
the tires. Braking without locking the tires will stop the
vehicle in less distance than braking to a skid (which has
no brake efficiency). More tire to road friction is present
while braking without locking the tires than braking to a
skid.
The standard brake system is designed and balanced to
avoid locking the wheels except at very high deceleration
levels.
It is designed this way because the shortest stopping
distance and best control is achieved without brake
lock±up.
Because of high deceleration capability, a firmer pedal
may be felt at higher deceleration levels.
External Conditions That Affect Brake Performance
1. Tires: Tires having unequal contact and grip on the
road will cause unequal braking. Tires must be
equally inflated, identical in size, and the thread
pattern of right and left tires must be approximately
equal.
2. Vehicle Loading: A heavily loaded vehicle requires
more braking effort.
3. Wheel Alignment: Misalignment of the wheels,
particularly in regard to excessive camber and caster,
will cause the brakes to pull to one side.
Brake Fluid Leaks
With engine running at idle and the transmission in
ªNeutralº, depress the brake pedal and hold a constant
foot pressure on the pedal. If pedal gradually falls away
with the constant pressure, the hydraulic system may be
leaking.
Check the master cylinder fluid level. While a slight drop in
the reservoir level will result from normal lining wear, an
abnormally low level in reservoir indicates a leak in the
system. The hydraulic system may be leaking internally
as well as externally. Refer to
Master Cylinder Inspection.
Also, the system may appear to pass this test but still
have slight leakage. If fluid level is normal, check the
vacuum booster push rod length. If an incorrect length
push rod is found, adjust or replace the push rod. Check
the brake pedal travel and the parking brake adjustment.
When checking the fluid level, the master cylinder fluid
level may be lower than the ªMAXº mark if the front and
rear linings are worn. This is normal.
Warning Light Operation
When the ignition switch is in the START position, the
ªBRAKEº warning light should turn on and go off when the
ignition switch returns to the ON position.
The following conditions will activate the ªBRAKEº light:
1. Parking brake applied. The light should be on
whenever the parking brake is applied and the ignition
switch is on.
2. Low fluid level. A low fluid level in the master cylinder
will turn the ªBRAKEº light on.
3. During engine cranking the ªBRAKEº light should
remain on. This notifies the driver that the warning
circuit is operating properly.
Page 744 of 2100
5C±64
POWER±ASSISTED BRAKE SYSTEM
Disc Brake
Front Disc Brake
A05R200001
Rear Disc Brake (4y4 Model)
A05RW002
The disc brake assembly consists of a caliper, piston,
rotor, pad assembly and support bracket. The caliper
assembly has a fornt dual bore, rear single bore and is
mounted to the support bracket with two mounting bolts.
The support bracket allows the caliper to move laterally
against the rotor. The caliper is a one±piece casting with
the inboard side containing the piston bore. A square cut
rubber seal is located in a groove in the piston bore which
provides the hydraulic seal between the piston and the
cylinder wall.
NOTE:
1. Replace all components included in repair kits used to
service this caliper.
2. Lubricate rubber parts with clean brake fluid to ease
assembly.3. If any hydraulic component is removed or
disconnected, it may be necessary to bleed all or part
of the brake system.
4. Replace pads in axle sets only.
5. The torque values specified are for dry, unlubricated
fasteners.
6. Perform the service operation on a clean bench free
from all mineral oil materials.
Operation
Hydraulic pressure, created by applying the brake pedal,
is converted by the caliper to a stopping force. This force
creates a clamping action of the piston pressing towards
the rotors (outward) and the caliper slides inward toward
the vehicle. This clamping action forces the linings
against the rotor, creating friction to stop the vehicle.
Page 746 of 2100
5C±66
POWER±ASSISTED BRAKE SYSTEM
Diagnosis
Road Testing The Brakes
Brake Test
Brakes should be tested on a dry, clean, reasonably
smooth and level roadway. A true test of brake
performance cannot be made if the roadway is wet,
greasy or covered with loose dirt where all tires do not grip
the road equally. Testing will also be adversely affected if
the roadway is crowned so as to throw the weight of the
vehicle toward wheels on one side or if the roadway is so
rough that wheels tend to bounce. Test the brakes at
different vehicle speeds with both light and heavy pedal
pressure; however, avoid locking the wheels and sliding
the tires. Braking without locking the tires will stop the
vehicle in less distance than braking to a skid (which has
no brake efficiency). More tire to road friction is present
while braking without locking the tires than braking to a
skid.
The standard brake system is designed and balanced to
avoid locking the wheels except at very high deceleration
levels.
It is designed this way because the shortest stopping
distance and best control is achieved without brake
lock±up.
Because of high deceleration capability, a firmer pedal
may be felt at higher deceleration levels.
External Conditions That Affect Brake Performance
1. Tires: Tires having unequal contact and grip on the
road will cause unequal braking. Tires must be
equally inflated, identical in size, and the thread
pattern of right and left tires must be approximately
equal.
2. Vehicle Loading: A heavily loaded vehicle requires
more braking effort.
3. Wheel Alignment: Misalignment of the wheels,
particularly in regard to excessive camber and caster,
will cause the brakes to pull to one side.
Brake Fluid Leaks
With engine running at idle and the transmission in
ªNeutralº, depress the brake pedal and hold a constant
foot pressure on the pedal. If pedal gradually falls away
with the constant pressure, the hydraulic system may be
leaking.
Check the master cylinder fluid level. While a slight drop in
the reservoir level will result from normal lining wear, an
abnormally low level in reservoir indicates a leak in the
system. The hydraulic system may be leaking internally
as well as externally. Refer to
Master Cylinder Inspection.
Also, the system may appear to pass this test but still
have slight leakage. If fluid level is normal, check the
vacuum booster push rod length. If an incorrect length
push rod is found, adjust or replace the push rod. Check
the brake pedal travel and the parking brake adjustment.
When checking the fluid level, the master cylinder fluid
level may be lower than the ªMAXº mark if the front and
rear linings are worn. This is normal.
Warning Light Operation
When the ignition switch is in the START position, the
ªBRAKEº warning light should turn on and go off when the
ignition switch returns to the ON position.
The following conditions will activate the ªBRAKEº light:
1. Parking brake applied. The light should be on
whenever the parking brake is applied and the ignition
switch is on.
2. Low fluid level. A low fluid level in the master cylinder
will turn the ªBRAKEº light on.
3. During engine cranking the ªBRAKEº light should
remain on. This notifies the driver that the warning
circuit is operating properly.
Page 813 of 2100
6A±3
ENGINE MECHANICAL (6VE1 3.5L)
General Description
Engine Cleanliness And Care
An automobile engine is a combination of many
machined, honed, polished and lapped surfaces with
tolerances that are measured in the thousandths of a
millimeter (ten thousandths of an inch). Accordingly,
when any internal engine parts are serviced, care and
cleanliness are important. Throughout this section, it
should be understood that proper cleaning and protection
of machined surfaces and friction areas is part of the
repair procedure. This is considered standard shop
practice even if not specifically stated.
A liberal coating of engine oil should be applied to all
friction areas during assembly to protect and lubricate
the surfaces on initial operation.
Whenever valve train components, pistons, piston
rings, connecting rods, rod bearings, and crankshaft
journal bearings are removed for service, they should
be retained in order.
At the time of installation, they should be installed in
the same locations and with the same mating
surfaces as when removed.
Battery cables should be disconnected before any
major work is performed on the engine. Failure to
disconnect cables may result in damage to wire
harness or other electrical parts.
The six cylinders of this engine are identified by
numbers; Right side cylinders 1, 3 and 5, Left side
cylinders 2, 4 and 6, as counted from crankshaft
pulley side to flywheel side.
General Information on Engine Service
The following information on engine service should be
noted carefully, as it is important in preventing damage
and contributing to reliable engine performance.
When raising or supporting the engine for any reason,
do not use a jack under the oil pan. Due to the small
clearance between the oil pan and the oil pump
strainer, jacking against the oil pan may cause
damage to the oil pick±up unit.
The 12±volt electrical system is capable of damaging
circuits. When performing any work where electrical
terminals could possibly be grounded, the ground
cable of the battery should be disconnected at the
battery.
Any time the intake air duct or air cleaner is removed,
the intake opening should be covered. This will
protect against accidental entrance of foreign
material into the cylinder which could cause extensive
damage when the engine is started.
Cylinder Block
The cylinder block is made of aluminum die±cast casting
for 75V±type six cylinders. It has a rear plate integrated
structure and employs a deep skirt. The cylinder liner is
cast and the liner inner diameter and crankshaft journal
diameter are classified into grades. The crankshaft is
supported by four bearings of which width is different
between No.2, No.3 and No.1, No.4; the width of No.3
bearing on the body side is different in order to support the
thrust bearing. The bearing cap is made of nodular cast
iron and each bearing cap uses four bolts and two side
bolts.
Cylinder Head
The cylinder head, made of aluminum alloy casting
employs a pent±roof type combustion chamber with a
spark plug in the center. The intake and exhaust valves
are placed in V±type design. The ports are cross±flow
type.
Valve Train
Intake and exhaust camshaft on both banks are driven
with a camshaft drive gear by the timing belt. The valves
are operated by the camshaft and the valve clearance is
adjusted to select suitable thickness shim.
Intake Manifold
The intake manifold system is composed of the aluminum
cast common chamber and intake manifold attached with
six fuel injectors.
Exhaust Manifold
The exhaust manifold is made of nodular cast iron.
Pistons and Connecting Rods
Aluminum pistons are used after selecting the grade that
meets the cylinder bore diameter. Each piston has two
compression rings and one oil ring. The piston pin made
of chromium steel is offset 1mm toward the thrust side,
and the thrust pressure of piston to the cylinder wall varies
gradually as the piston travels. The connecting rods are
made of forged steel. The connecting rod bearings are
graded for correct size selection.
Crankshaft and Bearings
The crankshaft is made of Ductile cast±iron. Pins and
journals are graded for correct size selection for their
bearing.
Page 826 of 2100
6A±16
ENGINE MECHANICAL (6VE1 3.5L)
Engine Oil Consumption Excessive
ConditionPossible causeCorrection
Oil leakingOil pan drain plug looseRetighten or replace gasket
Crankcase fixing bolts loosenedRetighten
Oil pan setting bolts loosenedRetighten
Oil pan gasket brokenReplace gasket
Front cover retaining bolts loose or
gasket brokenRetighten or replace gasket
Head cover fixing bolts loose or
gasket brokenRetighten or replace gasket
Oil filter adapter crackedReplace
Oil filter attachings bolt loose or
rubber gasket brokenRetighten or replace oil filter
Crankshaft front or rear oil seal
defectiveReplace oil seal
Oil pressure unit loose or brokenRetighten or replace
Blow±by gas hose brokenReplace hose
Positive Crankcase Ventilation Valve
cloggedClean
Engine/Transmission coupling failedReplace oil seal
Oil leaking into combustion
chambers due topoor seal in valve
Valve stem oil seal defectiveReplace
chambers due to oor seal in valve
systemValve stem or valve guide wornReplace valve and valve guide
Oil leaking into combustion
chambers due to poor seal in cylinder
t
Cylinders and pistons worn
excessivelyReplace cylinder body assembly and
pistons
partsPiston ring gaps incorrectly
positionedCorrect
Piston rings set with wrong side upCorrect
Piston ring stickingReplace cylinder body assembly and
pistons
Piston ring and ring groove wornReplace pistons and others
Return ports in oil rings cloggedClean piston and replace rings
Positive Crankcase Ventilation
System malfunctioningPositive Crankcase Ventilation Valve
cloggedClean
OthersImproper oil viscosityUse oil of recommended S.A.E.
viscosity
Continuous high speed driving
and/or severe usage such as trailer
towingContinuous high speed operation
and/or severe usage will normally
cause increased oil consumption
Page 933 of 2100
ENGINE ELECTRICAL (6VE1 3.5L)6D1±3
Battery Charging
Observe the following safety precautions when charging
the battery:
1. Never attempt to charge the battery when the fluid
level is below the lower level line on the side of the
battery. In this case, the battery must be replaced.
2. Pay close attention to the battery during charging
procedure.
Battery charging should be discontinued or the rate of
charge reduced if the battery feels hot to the touch.
Battery charging should be discontinued or the rate of
charge reduced if the battery begins to gas or spew
electrolyte from the vent holes.
3. In order to more easily view the hydrometer blue dot
or ring, it may be necessary to jiggle or tilt the battery.
4. Battery temperature can have a great effect on
battery charging capacity.
5. The sealed battery used on this vehicle may be either
quick charged or slow charged in the same manner as
other batteries.
Whichever method you decide to use, be sure that
you completely charge the battery. Never partially
charge the battery.
Jump Starting
Jump Starting with an Auxiliary (Booster)
Battery
CAUTION: Never push or tow the vehicle in an
attempt to start it. Serious damage to the emission
system as well as other vehicle parts will result.
Treat both the discharged battery and the booster
battery with great care when using jumper cables.
Carefully follow the jump starting procedure, being
careful at all times to avoid sparking.
WARNING: FAILURE TO CAREFULLY FOLLOW THE
JUMP STARTING PROCEDURE COULD RESULT IN
THE FOLLOWING:
1. Serous personal injury, particularly to your eyes.
2. Property damage from a battery explosion, battery
acid, or an electrical fire.
3. Damage to the electronic components of one or both
vehicles particularly.
Never expose the battery to an open flame or electrical
spark. Gas generated by the battery may catch fire or
explode.
Remove any rings, watches, or other jewelry before
working around the battery. Protect your eyes by wearing
an approved set of goggles.
Never allow battery fluid to come in contact with your eyes
or skin.Never allow battery fluid to come in contact with fabrics or
painted surfaces.
Battery fluid is a highly corrosive acid.
Should battery fluid come in contact with your eyes, skin,
fabric, or a painted surface, immediately and thoroughly
rinse the affected area with clean tap water.
Never allow metal tools or jumper cables to come in
contact with the positive battery terminal, or any other
metal surface of the vehicle. This will protect against a
short circuit.
Always keep batteries out of reach of young children.
Jump Starting Procedure
1. Set the vehicle parking brake.
If the vehicle is equipped with an automatic
transmission, place the selector level in the ªPARKº
position.
If the vehicle is equipped with a manual transmission,
place the shift lever in the ªNEUTRALº position.
Turn ªOFFº the ignition.
Turn ªOFFº all lights and any other accessory
requiring electrical power.
2. Look at the built±in hydrometer.
If the indication area of the built±in hydrometer is
completely clear, do not try to jump start.
3. Attach the end of one jumper cable to the positive
terminal of the booster battery.
Attach the other end of the same cable to the positive
terminal of the discharged battery.
Do not allow the vehicles to touch each other. This will
cause a ground connection, effectively neutralizing
the charging procedure.
Be sure that the booster battery has a 12 volt rating.
4. Attach one end of the remaining cable to the negative
terminal of the booster battery.
Attach the other end of the same cable to a solid
engine ground (such as the air conditioning
compressor bracket or the generator mounting
bracket) of the vehicle with the discharged battery.
The ground connection must be at least 450 mm (18
in.) from the battery of the vehicle whose battery is
being charged.
WARNING: NEVER ATTACH THE END OF THE
JUMPER CABLE DIRECTLY TO THE NEGATIVE
TERMINAL OF THE DEAD BATTERY.
5. Start the engine of the vehicle with the good battery.
Make sure that all unnecessary electrical accessories
have been turned ªOFFº.
6. Start the engine of the vehicle with the dead battery.
Page 947 of 2100
6D3±5
STARTING AND CHARGING SYSTEM (6VE1 3.5L)
Starter
Removal
1. Battery ground cable.
2. Disconnect Heated O
2 Sensor connector (1).
3. Remove exhaust front left pipe(2).
150R100011
4. Disconnect starter wiring connector from terminals
ª30º (1) and ª50º (2).
5. Remove starter assembly mounting bolts on inside
and outside(3).
6. Remove starter assembly (4) toward the bottom of
engine.
065RY00050
Legend
(1) Terminal ª30º
(2) Terminal ª50º
(3) Fixing Bolts
(4) Starter Assembly
Installation
1. Install starter assembly(4).
2. Install mounting bolts and tighten bolts to specified
torque(3).
Torque: 40 N´m (30 lb ft)
3. Reconnect the connectors to terminals ª50º (2)
tighten terminals ª30º (1) to specified torque.
Torque: 9 N´m (78 lb in)
065RY00050
Legend
(1) Terminal ª30º
(2) Terminal ª50º
(3) Fixing Bolts
(4) Starter Assembly
4. Install exhaust front left pipe (2) and tighten bolts and
nuts to specified torque.
Stud Nuts
Torque: 67 N´m (49 lb ft)
Bolts
Torque: 43 N´m (32 lb ft)
Page 1035 of 2100
6E±68
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Electronic Ignition System Diagnosis
If the engine cranks but will not run or immediately stalls,
the Engine Cranks But Will Not Start chart must be used
to determine if the failure is in the ignition system or the
fuel system. If DTC P0300 through P0306, P0341, or
P0336 is set, the appropriate diagnostic trouble code
chart must be used for diagnosis.
If a misfire is being experienced with no DTC set, refer to
the
Symptoms section for diagnosis.
EVAP Canister Purge Solenoid and
EVAP Vent Solenoid Valve
A continuous purge condition with no purge commanded
by the PCM will set a DTC P1441. Refer to the DTC charts
for further information.
Visual Check of The Evaporative
Emission Canister
If the canister is cracked or damaged, replace the
canister.
If fuel is leaking from the canister, replace the canister
and check hoses and hose routing.
Fuel Metering System Check
Some failures of the fuel metering system will result in an
ªEngine Cranks But Will Not Runº symptom. If this
condition exists, refer to the
Cranks But Will Not Run
chart. This chart will determine if the problem is caused
by the ignition system, the PCM, or the fuel pump
electrical circuit.
Refer to
Fuel System Electrical Test for the fuel system
wiring schematic.
If there is a fuel delivery problem, refer to
Fuel System
Diagnosis
, which diagnoses the fuel injectors, the fuel
pressure regulator, and the fuel pump. If a malfunction
occurs in the fuel metering system, it usually results in
either a rich HO2S signal or a lean HO2S signal. This
condition is indicated by the HO2S voltage, which causes
the PCM to change the fuel calculation (fuel injector pulse
width) based on the HO2S reading. Changes made to the
fuel calculation will be indicated by a change in the long
term fuel trim values which can be monitored with a
Tech 2. Ideal long term fuel trim values are around 0%;
for a lean HO2S signal, the PCM will add fuel, resulting in
a fuel trim value above 0%. Some variations in fuel trim
values are normal because all engines are not exactly the
same. If the evaporative emission canister purge is ªONº,
the fuel trim may be as low as ±38%. If the fuel trim values
are greater than +23%, refer to
DTC P0131, DTC P0151,
DTC P0171, and DTC 1171
for items which can cause a
lean HO2S signal.
Fuel System Pressure Test
A fuel system pressure test is part of several of the
diagnostic charts and symptom checks. To perform this
test, refer to
Fuel Systems Diagnosis.
Fuel Injector Coil Test Procedure and
Fuel Injector Balance Test Procedure
T32003
Test Description
Number(s) below refer to the step number(s) on the
Diagnostic Chart:
2. Relieve the fuel pressure by connecting the J
34730-1 Fuel Pressure Gauge to the fuel pressure
connection on the fuel rail.
CAUTION: In order to reduce the risk of fire and
personal injury, wrap a shop towel around the fuel
pressure connection. The towel will absorb any fuel
leakage that occurs during the connection of the fuel
pressure gauge. Place the towel in an approved
container when the connection of the fuel pressure
gauge is complete.
Place the fuel pressure gauge bleed hose in an
approved gasoline container.
With the ignition switch ªOFFº, open the valve on the
fuel pressure gauge.
3. Record the lowest voltage displayed by the DVM
after the first second of the test. (During the first
second, voltage displayed by the DVM may be
inaccurate due to the initial current surge.)
Injector Specifications:
Resistance (Ohms)
Voltage Specification at
10C-35C (50F-95F)
11.8 ± 12.65.7 ± 6.6
The voltage displayed by the DVM should be within
the specified range.
The voltage displayed by the DVM may increase
throughout the test as the fuel injector windings
warm and the resistance of the fuel injector windings
changes.
Page 1038 of 2100
6E±71
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Injector Coil Test Procedure (Steps 1-6) and Injector Balance Test Procedure
(Steps 7-11)
StepNo Ye s Value(s) Action
51. Set injector switch box injector #1.
2. Press the ªPush to Start Testº button on the fuel
injector tester.
3. Observe the voltage reading on the DVM.
IMPORTANT:The voltage reading may rise during the
test.
4. Record the lowest voltage observed after the first
second of the test.
5. Set the injector switch box to the next injector and
repeat steps 2, 3, and 4.
Did any fuel injector have an erratic voltage reading
(large fluctuations in voltage that did not stabilize) or a
voltage reading above the specified value?
9.5 VGo to Step 4Go to Step 6
61. Identify the highest voltage reading recorded (other
than those above 9.5 V).
2. Subtract the voltage reading of each injector from
the highest voltage selected in step 1. Repeat until
you have a subtracted value for each injector.
For any injector, is the subtracted Value in step 2
greater than the specified value?
0.6 VGo to Step 4Go to Step 7
7CAUTION: In order to reduce the risk of fire and
personal injury, wrap a shop towel around the
fuel pressure connection. The towel will absorb
any fuel leakage that occurs during the
connection of the fuel pressure gauge. Place the
towel in an approved container when the
connection of the fuel pressure gauge is
complete.
1. Connect the J 34730-1 Fuel Pressure Gauge to the
fuel pressure test port.
2. Energize the fuel pump using the Tech 2.
3. Place the bleed hose of the fuel pressure gauge into
an approved gasoline container.
4. Bleed the air out of the fuel pressure gauge.
5. With the fuel pump running, observe the reading on
the fuel pressure gauge.
Is the fuel pressure within the specified values?
296-376 kPa
(43-55 psi)
Go to Step 8
Go to Fuel
System
Diagnosis
8Turn the fuel pump ªOFFº.
Does the fuel pressure remain constant?
ÐGo to Step 9
Go to Fuel
System
Diagnosis
Page 1075 of 2100
6E±108
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Circuit Description
When the ignition switch is first turned ªONº, the
powertrain control module (PCM) energizes the fuel
pump relay which applies power to the in-tank fuel pump.
The fuel pump relay will remain ªONº as long as the
engine is running or cranking and the PCM is receiving
58X crankshaft position pulses. If no 58X crankshaft
position pulses are present, the PCM de-energizes the
fuel pump relay within 2 seconds after the ignition is
turned ªONº or the engine is stopped.
The fuel pump delivers fuel to the fuel rail and injectors,
then to the fuel pressure regulator. The fuel pressure
regulator controls fuel pressure by allowing excess fuel to
be returned to the fuel tank. With the engine stopped and
ignition ªONº, the fuel pump can be turned ªONº by using a
command by the Tech 2.
Diagnostic Aids
An intermittent may be caused by a poor connection,
rubbed-through wire insulation, or a wire broken inside
the insulation. Check for the following items:
Poor connection or damaged harness ± Inspect the
PCM harness and connectors for improper mating,
broken locks, improperly formed or damaged
terminals, poor terminal-to-wire connection, and
damaged harness.
Test Description
Number(s) below refer to the step number(s) on the
Diagnostic Chart.
2. If the fuel pump is operating but incorrect pressure is
noted, the fuel pump wiring is OK and the ªFuel
System Pressure Testº chart should be used for
diagnosis.
CAUTION: To reduce the risk of fire and personal
injury:
It is necessary to relieve fuel system pressure
before connecting a fuel pressure gauge. Refer to
Fuel Pressure Relief Procedure, below.
A small amount of fuel may be released when
disconnecting the fuel lines. Cover fuel line
fittings with a shop towel before disconnecting, to
catch any fuel that may leak out. Place the towel in
an approved container when the procedure is
completed.
Fuel Pressure Relief Procedure
1. Remove the fuel cap.
2. Remove the fuel pump relay from the underhood
relay center.
3. Start the engine and allow it to stall.
4. Crank the engine for an additional 3 seconds.
Fuel Gauge Installation
1. Remove the shoulder fitting cap.
2. Install fuel gauge J 34730-1 to the fuel feed line
located in front of and above the right side valve train
cover .
3. Reinstall the fuel pump relay.