sensor JAGUAR XF 2009 1.G AJ133 5.0L Engine Manual
Page 19 of 36
Technical Training
NP10-V8JLR: AJ133 5.0-Liter DFI V8 Engine 04/14/2009
3-17
Engine Management System
Mass Air Flow Sensor
MASS AIR FLOW SENSOR
Mass air flow is determined by the cooling effect of
intake air passing over a ‘hot film’ element contained
within the device. The higher the air flow the greater the
cooling effect and the lower the electrical resistance of
the ‘hot film’ element. The ECM then uses this analog
signal from the mass air flow (MAF) sensor to calculate
the air mass flowing into the engine.
The measured air mass flow is used in determining the
fuel quantity to be injected in order to maintain the sto-
ichiometric air/fuel mixture required for correct opera-
tion of the engine and exhaust catalysts. Should the
device fail, there is a software backup strategy that will
be activated once a fault has been logged.
The intake air temperature (IAT) sensor is integrated into
the MAF sensor. The IAT sensor is an NTC thermistor,
meaning that the sensor resistance decreases as the sen-
sor temperature increases.
The sensor forms part of a voltage divider chain with an
additional resistor in the ECM. The voltage from this device
changes as the sensor resistance changes, thus relating the
air temperature to the voltage measured by the ECM.
Because the engine requires a twin air intake induction
system, there are two MAF sensors per vehicle.
Safety Precautions CAUTIONS:
• Component should not be dropped or han-dled roughly.
• Ensure that no contamination enters the device.
• Some terminals in MAF and connector are gold-plated for corrosion resistance – DO
NOT probe.
Failure Modes
• Sensor open circuit
• Short circuit to battery voltage or ground
• Contaminated/damaged sensor element
• Air leak after MAF sensor
• Intake air restricted
• Resistance in the harness, causing signal offset
• Damaged sensor element
Failure Symptoms
• During driving the engine rpm might dip (before recovering)
• Difficulty in starting or start/stall
• Poor throttle response/engine performance
• Emissions incorrect
• Lambda control and idle speed control halted
• MAF signal offset
NP10V8102
SpecificationFunction
Supply Voltage 8 – 14V
(rated supply voltage: 14V)
Pin A Output (Vg)
Pin B Ground for Output (Vg)
Pin C Power Source
Pin D IAT Sensor Ground
Pin E IAT Sensor Output
Page 20 of 36
3-1804/14/2009NP10-V8JLR: AJ133 5.0-Liter DFI V8 EngineTechnical Training
Temperature/Manifold Absolute Pressure Sensor Engine Management System
TEMPERATURE AND MANIFOLD ABSOLUTE PRESSURE SENSOR
The temperature and manifold absolute pressure
(TMAP) sensor is used only on SC variants. The TMAP
sensor provides a voltage proportional to the absolute
pressure between the supercharger intercooler and the
intake valve and the air charge temperature. These sig-
nals allow the ECM to calculate the air charge density.
The TMAP sensor is mounted at the rear of the engine,
below the charge air cooler of the LH bank.
Failure Modes
• Sensor open circuit
• Short circuit to battery voltage or ground
• Intake air restricted
• Boosted air leak
SpecificationFunction
Pin 1 Pressure Output Signal
Pin 2 Supply Voltage
Pin 3 Temperature Signal
Pin 4 Ground
NP10V8103
Temperature Signal
Pressure Signal
TEMPERATURE (°C)
OUTPUT SIGNAL (V)
RES IS TANCE (
Ω) (thous ands)
NP10V8104
5
4.5 4
3.5
3
2.5 2
1.5 1
0
0.5
-50 50 0 1001500 200 400 600
800 1000 1200
NOMINAL VOLTAGE
MINIMUM RES
IS TANCE
NOMINAL RES IS TANCE
MAXIMUM RES IS TANCE
NP10V8114
0
0.4
4.65
5
0 20 300
NOMINAL VOLTAGE
MINIMUM RESIS TANCE
Page 21 of 36
Technical TrainingNP10-V8JLR: AJ133 5.0-Liter DFI V8 Engine04/14/20093-19
Engine Management SystemThrottle Position Sensor
THROTTLE POSITION SENSOR
The engine torque is regulated via an electronic throttle
body (‘drive-by-wire’ system), where an electronic pedal
assembly determines throttle opening.
The throttle position (TP) sensor is mounted in the inte-
grated cover plate on the throttle body assembly. The
throttle body assembly is mounted at the top front of the
engine, in a similar position for both NA and SC variants.
This value is input into the ECM and the throttle is
opened to the correct angle by means of an electric direct
current (DC) motor integrated into the throttle body.
Movement of the motor is achieved by changing the
PWM signal to the DC motor, allowing it to be operated
in both directions.
The dual-output TP sensor in the throttle body is used to
determine the position of the throttle blade and the rate
of change in its angle.
A software strategy within the ECM enables the throttle
position to be calibrated each ignition cycle. When the
ignition is turned ON, the ECM commands the throttle
to open and close fully, thus performing a self-test and
calibration, learning the position of the full closed hard
stop position.Safety Precautions
CAUTION: Terminals in sensor and connec-
tor are gold-plated for corrosion/temperature
resistance – DO NOT probe.
Failure Modes
• Sensor open circuit
• Short circuit to battery voltage or ground
• If signal failure occurs the ECM will enter a limp home mode where the maximum engine speed is
2000 rpm
• Signal offset
• Vacuum leak
Failure Symptoms
• Poor engine running and throttle response
• Limp home mode – maximum 2000 rpm
• Emission control failure
• No closed loop idle speed control
NP10V8105
SpecificationFunction
Supply voltage 5V ± 0.2 V
Supply current Max. 10 mA/1 output
Tolerance – closed position ±150 mV Tolerance – WOT position ±150 mV
Operating temperature range -40°C – 160°C
(-40°F – 320°F)
Pin 1 Throttle motor valve open:
direction +
Pin 2 Throttle motor valve open:
direction –
Pin 3 Position sensor output 2
(Gold)
Pin 4 Ground (Gold)
Pin 5 Position sensor output 1
(Gold)
Pin 6 Position sensor 5V supply
(Gold)
Page 22 of 36
3-2004/14/2009NP10-V8JLR: AJ133 5.0-Liter DFI V8 EngineTechnical Training
Throttle Position SensorEngine Management System
Throttle Body Motor
The air mass flow through the throttle body is a function
of throttle angle, air temperature, air pressure before
throttle plate, and differential air pressure over the throt-
tle plate.
SpecificationFunction
Control signal 500Hz PWM
Resistance 1.2 Ohms
Normal operating voltage range 13.5 V to 14.2 V Tolerance – WOT position ±150 mV
Operating temperature range -40°C – 160°C
(-40°F – 320°F)
Page 23 of 36
Technical TrainingNP10-V8JLR: AJ133 5.0-Liter DFI V8 Engine04/14/20093-21
Engine Management SystemAccelerator Pedal Position Sensor
ACCELERATOR PEDAL POSITION SENSOR
The accelerator pedal position (APP) sensor provides a
pedal position signal to the ECM. The ECM uses this
information to actuate the damper motor in the elec-
tronic throttle assembly to move the throttle disc to the
correct angle in relation to the pedal position.
The APP sensor signals are checked for range and plau-
sibility. Two separate reference voltages are supplied to
the pedal. Should one sensor fail, the other is used as a
limp home input.
The accelerator pedal position (APP) sensor provides two
outputs. If the ECM detects a difference between the two
signals, a fault code is stored. The ECM will use the signal
with the lowest value for electronic throttle control.
PinFunction
Pin 1 5V 1
Pin 2 Demand 1
Pin 3 Ground 1
Pin 6 5V 2
Pin 5 Demand 2
Pin 4 Ground 2
Page 24 of 36
3-2204/14/2009NP10-V8JLR: AJ133 5.0-Liter DFI V8 EngineTechnical Training
Heated Oxygen SensorsEngine Management System
HEATED OXYGEN SENSORS
The heated oxygen sensors monitor the level of oxygen
in the exhaust gases and are used to control the fuel/air
mixture. Positioning the sensors in the stream of exhaust
gasses from each bank enables the ECM to control the
fuel metering on each bank independently of the other,
allowing much closer control of the air/fuel ratio and cat-
alyst conversion efficiency.
There are four heated oxygen sensors per engine:
• One upstream Universal Heated Exhaust Gas Oxy-
gen (UHEGO) sensor per bank
• One downstream Heated Oxygen Sensor (HO2S) per bank.
NP10V8106
UPS TREAM
DOWNSTREAM
GAS FLOW
UPSTREAM
UHEGO
1st BRICK 2nd BRICK DOWNS
TREAM
HO2S
NP10V8107
Page 25 of 36
Technical TrainingNP10-V8JLR: AJ133 5.0-Liter DFI V8 Engine04/14/20093-23
Engine Management SystemHeated Oxygen Sensors
Upstream Universal Heated Exhaust Gas Oxygen Sensors
In order to improve the control of the air : fuel ratio
(AFR) under varying engine conditions, a linear or ‘uni-
versal’ heated exhaust gas oxygen (UHEGO) sensor is
used in the upstream location. The UHEGO has a vary-
ing current response to changes in the exhaust gas oxy-
gen content.
The AFR can be maintained more precisely within a
range from approximately 12:1 to 18:1, not just stoichio-
metric. Voltage is maintained at approximately 450 mV
by applying a current.
The current required to maintain the constant voltage is
directly proportional to the AFR. A higher current indi-
cates a leaner condition; a lower current indicates a
richer condition. The current varies with the temperature
of the sensor and is therefore difficult to measure for
technician diagnostic purposes.
The upstream UHEGO sensors need to operate at high
temperatures – 750°C (1,382°F) – in order to function
correctly. To achieve this, the sensors are fitted with
heater elements that are controlled by a PWM signal
from the ECM.
The heater elements are operated immediately following
engine start and also during low load conditions when
the temperature of the exhaust gases is insufficient to
maintain the required sensor temperatures.A non-functioning heater delays the sensor’s readiness
for closed loop control and influences emissions. The
PWM duty cycle is carefully controlled to reduce ther-
mal shock risk to cold sensors.
The upstream UHEGO sensors are mounted to the
engine on the exhaust manifolds, in the mating flange to
the exhaust pipes. There is one sensor per bank. The sen-
sors are fitted during engine assembly.
Upstream UHEGO Output
NP10V8108
+10 mA
NOMINAL APPLIED CURRENT
-10 mA
AFR 12:1
APPLIED CURRENT(APPROXIMATE)
AFR 18:1λ = 1
Page 26 of 36
3-2404/14/2009NP10-V8JLR: AJ133 5.0-Liter DFI V8 EngineTechnical Training
Heated Oxygen SensorsEngine Management System
Downstream Heated Oxygen Sensors
The latest switching downstream exhaust sensors are
precise-control heated oxygen sensors (HO2S). These
sensors have a tighter lean/rich tolerance compared to
previous HO2S. The only visible distinction between the
current and previous HO2S is the part number.
The downstream HO2S uses smaller elements in its con-
struction to enable quicker heat-up times to control fuel
metering at lower temperatures (emissions).
The primary function of the downstream HO2S is to
ensure correct operation of the three way catalyst.
The downstream HO2S uses Zirconium technology that
produces an output voltage dependant upon the ratio of
exhaust gas oxygen to the ambient oxygen. The device
contains a Galvanic cell surrounded by gas-permeable
ceramic, the voltage of which depends upon the level of
O2 diffusing through.
Nominal output voltage of the device for lambda = 1 is
300 – 500mV. As the fuel mixture becomes richer (<1)
the voltage tends towards 900mV and as it becomes
leaner (lambda > 1) the voltage tends towards 0 volts. The downstream HO2S are mounted in the exhaust sys-
tem part way in the rear of the catalyst.
Downstream HO2S Output
NP10V8115
V
λ = 1
4.5V
Page 27 of 36
Technical TrainingNP10-V8JLR: AJ133 5.0-Liter DFI V8 Engine04/14/20093-25
Engine Management SystemHeated Oxygen Sensors
Safety Precautions
WARNINGS:
• Anti-seize compound used on service sensor threads may be a health hazard. Avoid skin
contact.
• Exhaust system components, catalysts in particular, operate at high temperatures and
remain hot for a long time after operation.
CAUTIONS:
• Oxygen sensors must be treated with the utmost care before and during the fitting
process. The sensors have ceramic material
within them that can easily crack if
dropped or over-torqued. They must be
tightened to the specified torque figure with
a calibrated torque wrench. Care should be
taken not to contaminate the sensor tip
when the anti-seize compound is used on
the thread.
• To prevent damage to the sensors, a special tool (box spanner) should be used when
removing.
• If the sensor sticks in the exhaust, apply de- seize product and use a repeating tighten
and loosen strategy.
• Ensure that the sensor harness is robustly secured away from moving or hot parts. Failure Modes
• Mechanical fitting and integrity of the sensor (i.e.
cracked)
• Sensor open circuit/disconnected
• Short circuit to battery voltage or ground.
• Lambda ratio outside operating band
• Crossed sensors (RH bank fitted to LH bank and vice-versa)
• Contamination from leaded fuel or other sources
• Harness damage
• Air leak into exhaust system (cracked pipe/weld or loose fixings)
Failure Symptoms
• Default to open loop fuel metering
• High CO reading
• Strong smell of sulfur (rotten eggs) until default condition
• Excess emissions
• Unstable operation
• Reduced performance
Page 28 of 36
3-2604/14/2009NP10-V8JLR: AJ133 5.0-Liter DFI V8 EngineTechnical Training
Ambient Air Temperature SensorEngine Management System
AMBIENT AIR TEMPERATURE SENSOR
The ambient air temperature (AAT) sensor is located in
the underside of the LH exterior door mirror. The sensor
is an NTC thermistor – the element resistance decreases
as the sensor temperature increases, which produces a
low signal voltage.
The ECM supplies the sensor with a 5V reference volt-
age and ground, and measures the returned signal volt-
age as an outside temperature.
The AAT signal is used by the ECM for a number of
functions including engine cooling fan control and A/C
compressor displacement control.
The ECM also transmits an ambient temperature mes-
sage on the high speed CAN bus for use by other control
modules.
NOTE: If there is a fault with the AAT sensor, the ECM
calculates the AAT from the temperature inputs of the
IAT sensors. If the AAT sensor and the temperature
inputs of the IAT sensors are all faulty, the ECM adopts a
default ambient temperature value of 20°C (68°F).
Failure Mode
• Default value of 20°C (68°F)
PinFunction
Pin 1 5V supply
Pin 2 Ground