load capacity JEEP CJ 1953 Service Manual

Page 116 of 376


E

FUEL
SYSTEM
pressing downward on metering rod) or
seats
be­
fore the metering rod arm makes flat contact with the pump lifter link, make adjustment by bending
the lip on the metering rod arm.

E-17.
Choke System

The
choke system consists of a manually-operated
choke valve, a fast-idle connecting rod, and a fast-
idle arm. The choke valve is offset-spring loaded to prevent over-choking during the starting warm-
up period. When the choke valve is moved to a closed position for starting, the fast idle connector

rod
in Fig. E-ll revolves the fast idle link.
This
action increases the
engine
idle speed to prevent stalling during the warm-up period. A fast-idle
connector rod return spring prevents partial closing
of the choke valve. pump lifter which is connected to the throttle.

This
movement forces fuel from the chamber
above the diaphragm through discharge pump check valve and discharge pump jet.
This
auxiliary discharge of fuel supplies
engine
requirements for

quick
acceleration and heavy loads. When the
throttle is closed, the diaphragm is again pulled
down by high vacuum and another measured
charge of fuel enters the chamber above the
diaphragm
through the intake passage to be
available for the next cycle of operation.

Note:
The pump jet (see insert drawing in Fig.

E-12)
projecting into the air stream is permanently pressed into the carburetor body and should not
be removed. Also, carburetor design makes it im­ possible to adjust the pump stroke.
FIG.
E-ll—FAST
IDLE
ADJUSTMENT

1—Fast
Idle
Connector Rod
2—Fast
Idle
Link
E-18.
Fast
Idle Adjustment

With
the choke held in wide open position, lip (No. 1) (Fig.
E-ll)
on the fast-idle rod should con­
tact the
boss
on the body casting. Adjust by bend­
ing the fast-idle link at
offset
as shown by (No. 2).

E-19.
Accelerating Pump System

The
accelerating pump system shown in Fig. E-12
provides a measured amount of fuel for rapid acceleration and smooth
engine
operation when
the throttle is opened at lower speeds. In operation,
vacuum
is applied to the underside of diaphragm
at all times when the
engine
is running.
Lower

and
more uniform vacuum is provided by vacuum
restriction
and vacuum bleed passage. When the
diaphragm
is in its maximum down position at
low throttle resulting from high vacuum in chamber the chamber above the diaphragm is full of fuel

which
has been admitted through intake passage.
When
the throttle is opened, vacuum drops in the
chamber and the diaphragm is initially forced
upward
by the spring on the diaphragm shaft.
The
upward motion is picked up by accelerator
|
13347

FIG.
E-12—ACCELERATING
PUMP
SYSTEM

1—
Pump
Fuel
Passage
6—Intake
Passage

2—
Discharge
Pump Jet 7—Diaphragm

3—
Pump
Check
Valve
Ball
8—Vacuum Chamber 4—
Bail
Check
Weight
9—Vacuum
Restriction
Jet

5—
Pump
Lifter
Arm 10—Vacuum Bleed Passage
E-20.
Accelerating Pump Maintenance

If
engine
acceleration is unsatisfactory, remove the
pump diaphragm and check the diaphragm for wear

or
damage. Then remove the pump check retainer
ring
located directly above the pump check weight

and
pump ball check. Pump ball check must seat

properly
as a leak
will
cause poor acceleration performance. Inspect and replace all worn or
damaged parts.
Clean
and blow out all passages

with
compressed air.
Note
that when testing the pump for discharge volume with the carburetor
off the engine, only half of the maximum pump capacity
will
be discharged. When the
engine
is
operating, vacuum controls the balance of dis­ charge. 116

Page 127 of 376


'Jeep'
UNIVERSAL
SERIES
SERVICE
MANUAL

E
E-47.
Reassembly


Refer to Fig. E-29.
Install
the valve gaskets, valves, valve retainer and
secure them with the valve retainer screws. Make
sure that the inlet and
outlet
valves are in their proper positions. Place the diaphragm spring re­
tainer in position on the diaphragm
pull
rod
and
install diaphragm spring. Position the
dia­

phragm assembly in pump
body
and attach the
cover to pump body, with file marks aligned, with
the six attaching screws. Do not draw the screws
up tight.
Install
rocker arm spring, rocker arm

pin
washers, rocker arm and rocker arm pin.
With

rocker
arm positioned on the diaphragm rod, draw
the six pump
body
screws up evenly and securely.
Install
the filter screen, cork gasket and sediment
bowl and secure them firmly with the thumb screw
on the bowl clamp.

E-48.
Vacuum
Pump

The
double-action fuel pump resembles two single-
action pumps placed one
above
the other. A single
fuel pump rocker arm actuates the two separate diaphragms. One diaphragm is part of the fuel
delivery pump and operates as described in Par.
E-45.
The other diaphragm is part of the vacuum
pump and operates as described here.

As
the actuating lever forces the diaphragm upward against spring pressure, air is forced through the

outlet
port
into
the
engine's
intake manifold. On
the return stroke, spring pressure forces the
dia­
phragm downward, creating a
partial
vacuum and
opening the inlet valve. In this manner, air is pumped out of the windshield wiper motor and
into

the intake manifold. When the wiper motor is shut off, manifold vacuum holds the diaphragm against its spring so that the
full
motion of the actuating
lever is not accompanied by a
complete
up-and-
down motion of the diaphragm.

When
the windshield wiper motor is turned on, but manifold vacuum is greater than the vacuum
created by the
booster
pump, air
flows
from the
wiper motor through both valves of the vacuum
booster.
As manifold vacuum drops off as a result
of the
engine
operating under low
speed
and high load, the vacuum created by the vacuum
booster

will
be greater than
engine
intake manifold vacuum

and
the pump
will
operate the wiper motor when the wiper control switch is turned on.


Refer to Fig. E-29. Remove the
eight
cover attaching screws and
lockwashers, and remove the cover, diaphragm

spring
and spring seat. Detach the diaphragm rod
from the rocker arm and remove the diaphragm.
The
valve assemblies are pressed
into
the cover

and
body
and lightly staked. They may be removed
with the point of a knife blade. If installing new valves be sure the inlet and
outlet
valves are
correctly positioned and stake them lightly with

a
small punch.
Assemble the vacuum pump in the reverse order
of disassembly, drawing the cover attaching screws up evenly and tightly.
E-49.
Fuel
Pump
Testing

Four
tests
are presented in following paragraphs to
test
for proper operation of the fuel pump. In addi­
tion, check the following:

a.
Check
for secure mounting of the fuel pump.

The
rocker arm may be working the entire pump
up and down, rather than just the pump
dia­

phragms.
b. Remove and clean the fuel sediment bowl.
c.
Check
all fuel lines.
E-50.
Volume
Check

To
measure fuel pump capacity (amount of fuel
delivered in a given time) disconnect the pump-to-

carburetor
line at the carburetor end. Place the

open
end of the line in a suitable container.
Start

the
engine
and operate at normal idle speed.
Delivery
should be one quart U.S. [1 ltr.] within
one minute.

E-51.
Pressure
Check

To
measure fuel pump pressure (force of fuel de­

livery)
disconnect the pump-to-carburetor line
at the carburetor end. Plug a pressure
gauge
and T-fitting
into
the
open
end of this line and
into
the

carburetor.
Start
the
engine
and operate at normal
idle speed. Pressure should be 2J4 to 3% psi.
[0,716
a
0,264
kg-cm2] at 1800 rpm. and at 16"
[406 mm.]
above
the
outlet.

E-52.
Vacuum
Check

To
measure fuel pump vacuum (pull of. the pump
at the inlet side) disconnect the pump-to-fuel-tank
line at the fuel pump. Attach a vacuum
gauge
to the fuel pump inlet.
Start
the
engine,
accelerate to
specified speed, and hold this
engine
speed
while
taking a
gauge
reading. Permissible
gauge
reading
is 8* [203 mm.] of mercury [Hg] at 1200 rpm. and
10j^'
[267 mm.] at 1800 rpm.
E-53.
Vacuum
Booster
Check

To
test
the condition of the vacuum
booster
pump,
disconnect both inlet and
outlet
lines at the pump.

Attach
a vacuum
gauge
to the windshield wiper
connection at the pump.
Start
the
engine,
accelerate
to
2000
rpm., and hold this
engine
speed
while taking a
gauge
reading. Permissible
gauge
reading
is 10* to 14" [254 a 356 cm.] of mercury [Hg].
E-54.'
FUEL
PUMP
(SINGLE-ACTION)

HURRICANE
F4
ENGINE

Early
Models.
Vehicles with electric windshield wiper motors are
equipped with a single-action fuel pump (Fig.

E-30).
The fuel pump cam lever is activated by an eccentric on the
engine
camshaft. When the
car­

buretor float
needle
valve closes, accumulation of
fuel in the pump
extends
the diaphragm spring.

This
action causes the rocker arm linkage to be­
come
inoperative until the pressure on the
dia­
phragm and spring is reduced. The fuel pump dis­
charge pressure is thus controlled by the diaphragm

spring.
This
provides a steady supply of fuel to the
carburetor
at a fairly constant pressure. 127

Page 191 of 376


'Jeep*
UNIVERSAL SERIES SERVICE
MANUAL

H
long as the circuit values allow the voltage to build
up to the operating voltage.
The
electromagnet of the voltage regulator unit has

a
winding of many turns of fine wire and is con­
nected across the charging circuit so that the sys­ tem voltage controls the amount of magnetism.
The
contacts of the voltage regulator unit are con­
nected in the generator field circuit so that the field

circuit
is completed through the contacts when they

are
closed and through a resistor when the contacts
are
opened.

When
the voltage rises to a predetermined value
there is sufficient magnetism created by the regu­

lator
winding to
pull
the
armature
down.
This
opens

the contacts and inserts resistance in the field
cir­

cuit
of the generator thus reducing the
field
current.
The
generated voltage immediately drops, which
reduces the
pull
on the
armature
to the point where
the spring closes the contacts. The output again

rises
and the cycle is repeated.

These
cycles occur at high enough frequencies to
hold the generated voltage at a constant value and

will
continue as long as the voltage of the circuit
is high enough to keep the voltage regulator unit

in
operation.
With
the addition of a current load great enough to lower the battery voltage below
the operating voltage of the unit, the contacts
will

remain
closed and the generator
will
maintain a
charging
rate as limited by its speed or the current

limiting
regulator.

Due
to the
effect
of heat on the operating
charac­

teristics of regulator windings it is necessary to
compensate for the changes in coil resistance when
the regulator is operating under varying tempera­

ture
conditions.
This
is accomplished through the
use of a nickel iron magnetic by-pass on the volt­
age regulator unit.
This
shunt by-passes
some
of
the magnetic flux when the unit is cold and allows most of the flux to act on the armature when the

unit
is hot.
Thus
when the coil is hot and not as
efficient, the magnetic shunt reduces the amount of flux needed to vibrate the armature.

The
compensation is usually more than enough to

offset
the changes in regulator coil resistance due
to heat. The excess compensation allows the regu­

lator
to operate at higher voltage under cold
operating conditions than under hot conditions.
This
is necessary as it requires a higher voltage to charge a battery with its internal resistance in­

creased
by low temperatures.

H-45.
Current-Limiting
Regulator

The
function of the current-limiting regulator is to limit the output of the generator to its maxi­

mum
safe output.

The
electromagnet of the current regulator unit
consists of
a
winding of heavy
wire
that is connected
in
series with the generator output. When the gen­

erator
output reaches a predetermined value, the
current
in the winding produces enough magnetism
to overcome the spring tension and
pull
the
arma­
ture
down.
This
opens
the contacts and inserts re­
sistance in the field circuit of the generator.
With
the field current reduced by the resistance, the
generator output falls and there is no longer enough
magnetism to hold the contacts open. As soon as
the spring closes the contacts, the output rises and the cycle is repeated. These cycles occur at high
enough frequencies to limit the output to a mini­
mum
fluctuation.

H-46.
Preliminary Inspection

a.
Wiring—Check
the wiring to see that it is prop­
erly
connected to the generator.

b.
Generator
Performance—Make
sure the genera­
tor operates correctly without the regulator in the
circuit.
Remove the armature and battery leads

from
the regulator and connect an ammeter be­
tween them. Remove the field lead from the regu­

lator
and while operating at idle speed touch the
field
lead
to the regulator base. Increase the speed slowly noting the charging rate.

CAUTION:
Do not increase the output above
the rated output of the generator.

If
the generator output
will
not build up inspect
the wiring harness for shorts and
opens
and remove the generator for an overhaul. To check the genera­
tor circuit when a suitable ammeter is unavailable,

Fig.
H-19, disconnect the armature cable at the

regulator.
Connect one lead of
a
12v
test
lamp to the regulator terminal marked "armature" and with
the engine running, ground the other lead. Should
the
test
light
fail
to
burn
there is a fault either in the generator or regulator. To localize the fault, discon­
nect both the
"Field"
and
"Armature"
cables at the generator. Connect a wire from the
"Field"
ter­
minal
to ground and use a 60 watt, 110 volt
test

lamp
to ground the
"Armature"
terminal. If the
generator is charging satisfactorily the
test
lamp

will
glow
at approximately 1500 rpm. engine speed
and
the fault
will
be definitely localized in the
regulator.

c.
Incorrect Regulator—Make sui he regulator
is the correct type for use with the generator.

d.
Battery—Check
the specific gravity and termi­

nal
voltage of the battery. If the \ ttery is not up
to specifications substitute temporarily
for
test
pur­
poses
a fully charged battery of the same type and
capacity.

e. High Resistance Connections—Inspect the
wir­
ing between the generator, regulator and battery for broken wires and high resistance connections.

Pay
special attention to the ground connections at
all
three units. Connect a reliable ammeter with 1-ampere graduations in series with the regulator

B-terminal
and the lead removed from this
terminal.
Run
the generator at a medium speed and
turn
on the lights or accessories until the ammeter shows a 10-ampere charging rate. At this charging rate
measure the voltage drop between the following
points using an accurate voltmeter graduated in
,1-volt divisions. The voltmeter should not show

a
reading above the maximum noted.
Generator
"A" terminal to regulator
"A"
terminal
—.1-volt maximum.

Generator
"F"
terminal to regulator
"F"
terminal
—.05-volt maximum.

Battery
terminal to regulator "B" terminal— .1-volt maximum.

Regulator
ground screw to generator frame— .03-volt maximum. 191

Page 223 of 376


'Jeep'
UNIVERSAL SERIES SERVICE
MANUAL

H
H-152.
ELECTRICAL
SPECIFICATIONS
MODEL HURRICANE
F4 ENGINE DAUNTLESS
V-6
ENGINE

BATTERY:
Make
Model Hour Rating.

Voltage
Terminal
Ground

SPECIFIC
GRAVITY:
Fully
Charged
Recharged At
Location

GENERATOR:
Make.
Model

Ground
Polarity
Controlled Output

Control

Armature End Play
Brushes

Brush
Spring Tension

REGULATOR:
Make
Model:
For
GJP
7202,
GJP
7402A

Type
Cutout Relay: Closing
Voltage
@
Generator rpm..........
Reverse Current to Open.
Regulated
Voltage

Regulated Current

ALTERNATOR:
Make
Model
Ground
Polarity
Rated Output
Rated Field
Coil
Draw

At
70°F.
and
10-volt

Capacitor Capacity

REGULATOR:
Make
Model
Type

STARTING
MOTOR:
Make
Model
Brush
Spring Tension

LOCK
TEST:
Temperature
Amp.
(Max.)
Volt
Stall
Torque (Min.)

NO LOAD TEST:
Tempesature

Amp.
(Max.)
Volt
Rpm.
(Min.)

DRIVE:
Type

COIL:
Make.
Model

Primary
Resistance Secondary Resistance
Prestolite

HS
11-50
50 Ampere-hour
12-volts

Negative

1.260
1.225
Engine Compartment- Right Rear

Prestolite

GJP-7402A
Negative
35 amp.

CV
Regulator .003" to .010"

[0,076
a 0,25 mm.] 2
18 to 36 oz.
[510 a 1020 gr.]

Prestolite

VBO-4201E-4A
Vibrator

12.6 to 13.6 @ 1325 3 to 5 amp. 14.2 to 14.4
36 amp. max.
Motorola
A12 NW 526
Negative
35 amp.
1.7 to 2.3 amp. .1 mfd.
Motorola
R-2-K-1

Transistor

Prestolite

MDU-7004
32 to 40 oz. [907 a 1134 gr.]

70°F.
[21°C] 295 4
6 lb-ft. [0,83
kg-m.]

70°F.
[21°C.;
50
10

5300

Bendix Folo-Thru
Prestolite
200691

3.9 to 4.2
ohms

9400
to
11,700
ohms
Prestolite

HS
11-50
50 Ampere-hour
12-volts

Negative

1.260
1.225
Engine Compartment- Right Rear

Prestolite

GJP-7402A
Negative
35 amp.

CV
Regulator .003" to .010"

[0,076
a 0,25 mm.] 2
18 to 36 oz.
[510 a 1020 gr.]

Prestolite

VBO-4201E-4A
Vibrator

12.6 to 13.6 @ 1325 3 to 5 amp. 14.2 to 14.4
36 amp. max.
Motorola
A12 NW 528
Negative
35 amp.
1.7 to 2.3 amp. .1 mfd.
Motorola
R-2-K-1

Transistor
Delco-Remy

1107391,
1108366,
1108375

32 to 40 oz. [907 a 1134 gr.]
Not Applicable Not Applicable

70°F.
[21°C] 75
10.6

6200

Overrunning Clutch Delco-Remy
1115247

1.28 to 1.42
ohms

7200
to
9500
ohms
Prestolite

MHA-7008
32 to 40 oz. [907 a 1134 gr.]

70°F.
[21°C] 200 4
3 lb-ft. [0,41
kg-m.]

70°F.
[21°C] 43
10.0

9000

Bendix Folo-Thru

Prestolite
201700

4.25 to 4.60
ohms

5200
to 6100
ohms
223

Page 286 of 376


FRONT
AXLE

M-20.
FRONT
AXLE
SPECIFICATIONS

MODEL:
Four
Wheel Drive
Models
Two Wheel Drive
Models

Front
Axle:
Make.

Model
Capacity

Description

Universal
Joints: Make

Type.
King
Pin Bearing Preload
Differential:
Drive
Pinion Offset:
Number of Differential Pinions

Gear
Ratio:
F4
Engine
Standard
Optional

V-6
Engine
Standard
Optional

Ring
Gear Pitch Diameter
Pinion Adjustment
Pinion Bearing Adjustment
Dana

27AF

2000
lb. [907 kg.] Full-floating
Hypoid Gears
Spicer

Cardan
Cross
12 to 16 lb. [5,44 a 7,25 kg.]
1.38*
[35,05
mm.] 2

4.27:1
5.38:1

3.73:1
4.88:1

7.12'
[19,05
cm.]

Shim Shim
Clark

130097

2000
lb. [907 kg.] Reverse Elliot 286