NISSAN X-TRAIL 2005 Service Repair Manual

Page 431 of 4555

PRECAUTIONS
EC-27
[QR (WITH EURO-OBD)]
C
D
E
F
G
H
I
J
K
L
MA
EC

Do not depress accelerator pedal when starting.
Immediately after starting, do not rev up engine unneces-
sarily.
Do not rev up engine just prior to shutdown.
When installing C.B. ham radio or a mobile phone, be sure
to observe the following as it may adversely affect elec-
tronic control systems depending on installation location.
–Keep the antenna as far as possible from the electronic
control units.
–Keep the antenna feeder line more than 20 cm (8 in) away
from the harness of electronic controls.
Do not let them run parallel for a long distance.
–Adjust the antenna and feeder line so that the standing-
wave radio can be kept smaller.
–Be sure to ground the radio to vehicle body.
Wiring Diagrams and Trouble DiagnosisEBS010L3
When you read wiring diagrams, refer to the following:
GI-14, "How to Read Wiring Diagrams"
PG-2, "POWER SUPPLY ROUTING" for power distribution circuit
When you perform trouble diagnosis, refer to the following:
GI-10, "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES"
GI-23, "How to Perform Efficient Diagnosis for an Electrical Incident"
SEF709Y
SEF708Y

Page 432 of 4555

EC-28
[QR (WITH EURO-OBD)]
PREPARATION

PREPARATIONPFP:00002
Special Service ToolsEBS010L4
Tool number
Tool nameDescription
KV10117100
Heated oxygen
sensor wrenchLoosening or tightening heated oxygen sensor
with 22 mm (0.87 in) hexagon nut
KV10114400
Heated oxygen
sensor wrenchLoosening or tightening heated oxygen sensor
a: 22 mm (0.87 in)
EG17650301
Radiator cap tester
adapterAdapting radiator cap tester to radiator cap and
radiator filler neck
a: 28 (1.10) dia.
b: 31.4 (1.236) dia.
c: 41.3 (1.626) dia.
Unit: mm (in)
KV109E0010
Break-out boxMeasuring ECM signals with a circuit tester
KV109E0080
Y-cable adapterMeasuring ECM signals with a circuit tester
S-NT379
S-NT636
S-NT564
NT825
NT826

Page 433 of 4555

PREPARATION
EC-29
[QR (WITH EURO-OBD)]
C
D
E
F
G
H
I
J
K
L
MA
EC

Commercial Service ToolsEBS010L5
Tool name Description
Quick connector
releaseRemoving fuel tube quick connectors in engine
room
(Available in SEC. 164 of PARTS CATALOG: Part
No. 16441 6N210)
Fuel filler cap adapter Checking fuel tank vacuum relief valve opening
pressure
Socket wrench Removing and installing engine coolant
temperature sensor
Oxygen sensor thread
cleanerReconditioning the exhaust system threads
before installing a new oxygen sensor. Use with
anti-seize lubricant shown below.
a: 18 mm diameter with pitch 1.5 mm for
Zirconia Oxygen Sensor
b: 12 mm diameter with pitch 1.25 mm for
Titania Oxygen Sensor
Anti-seize lubricant
i.e.: (Permatex
TM
133AR or equivalent
meeting MIL
specification MIL-A-
907)Lubricating oxygen sensor thread cleaning tool
when reconditioning exhaust system threads.
PBIC0198E
S-NT653
S-NT705
AEM488
S-NT779

Page 434 of 4555

EC-30
[QR (WITH EURO-OBD)]
ENGINE CONTROL SYSTEM

ENGINE CONTROL SYSTEMPFP:23710
System DiagramEBS010L6
QR20DE ENGINE MODELS
PBIB2455E

Page 435 of 4555

ENGINE CONTROL SYSTEM
EC-31
[QR (WITH EURO-OBD)]
C
D
E
F
G
H
I
J
K
L
MA
EC

QR25DE ENGINE MODELS
PBIB2456E

Page 436 of 4555

EC-32
[QR (WITH EURO-OBD)]
ENGINE CONTROL SYSTEM

Vacuum Hose DrawingEBS010L7
QR20DE ENGINE MODELS
Refer to EC-30, "QR20DE ENGINE MODELS" for Vacuum Control System.
PBIB0489E

Page 437 of 4555

ENGINE CONTROL SYSTEM
EC-33
[QR (WITH EURO-OBD)]
C
D
E
F
G
H
I
J
K
L
MA
EC

QR25DE ENGINE MODELS
Refer to EC-31, "QR25DE ENGINE MODELS" for Vacuum Control System.
PBIB1445E

Page 438 of 4555

EC-34
[QR (WITH EURO-OBD)]
ENGINE CONTROL SYSTEM

System ChartEBS010L8
*1: This sensor is not used to control the engine system under normal conditions.
*2: This input signal is sent to the ECM through CAN communication line.
*3: This output signal is sent from the ECM through CAN communication line.
*4: For models with ESP
*5: For models without ESP
*6: For QR25DE engine modelsInput (Sensor) ECM Function Output (Actuator)
Camshaft position sensor (PHASE)
Crankshaft position sensor (POS)
Mass air flow sensor
Engine coolant temperature sensor
Heated oxygen sensor 1
Throttle position sensor
Accelerator pedal position sensor
Park/neutral position (PNP) switch
Intake air temperature sensor
Power steering pressure sensor
Ignition switch
Battery voltage
Knock sensor
Refrigerant pressure sensor
Stop lamp switch
Heated oxygen sensor 2*1
TCM (Transmission control module)*2
ESP/TCS/ABS control unit*2 *4
ABS actuator and electric unit
(control unit)*2 *5
Air conditioner switch
Wheel sensor*2
Electrical load signal
ASCD steering switch*6
ASCD brake switch*6
ASCD clutch switch*6
Stop lamp switchFuel injection & mixture ratio control Fuel injector
Electronic ignition system Power transistor
Fuel pump control Fuel pump relay
On board diagnostic system
MI (On the instrument panel)*
3
Heated oxygen sensor 1 heater control Heated oxygen sensor 1 heater
Heated oxygen sensor 2 heater control Heated oxygen sensor 2 heater
EVAP canister purge flow controlEVAP canister purge volume control
solenoid valve
Air conditioning cut control Air conditioner relay
Power valve control*
6VIAS control solenoid valve
ASCD vehicle speed control*
6Electric throttle control actuator
Cooling fan control Cooling fan relay

Page 439 of 4555

ENGINE CONTROL SYSTEM
EC-35
[QR (WITH EURO-OBD)]
C
D
E
F
G
H
I
J
K
L
MA
EC

Multiport Fuel Injection (MFI) SystemEBS010L9
INPUT/OUTPUT SIGNAL CHART
*1: This sensor is not used to control the engine system under normal conditions.
*2: This signal is sent to the ECM through CAN communication line.
*3: ECM determines the start signal status by the signals of engine speed and battery voltage.
SYSTEM DESCRIPTION
The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of
time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the
ECM memory. The program value is preset by engine operating conditions. These conditions are determined
by input signals (for engine speed and intake air) from both the crankshaft position sensor and the mass air
flow sensor.
VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION
In addition, the amount of fuel injected is compensated to improve engine performance under various operat-
ing conditions as listed below.
<Fuel increase>
During warm-up
When starting the engine
During acceleration
Hot-engine operation
When selector lever is changed from N to D (A/T models)
High-load, high-speed operation
<Fuel decrease>
During deceleration
During high engine speed operation
Sensor Input Signal to ECMECM
functionActuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
3 and piston position
Fuel injec-
tion & mix-
ture ratio
controlFuel injector Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Heated oxygen sensor 1 Density of oxygen in exhaust gas
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Park/neutral position (PNP) switch Gear position
Knock sensor Engine knocking condition
Battery
Battery voltage*
3
Power steering pressure sensor Power steering operation
Heated oxygen sensor 2*
1Density of oxygen in exhaust gas
Wheel sensor*
2Vehicle speed
Air conditioner switch Air conditioner operation

Page 440 of 4555

EC-36
[QR (WITH EURO-OBD)]
ENGINE CONTROL SYSTEM

MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)
The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control.
The three way catalyst (manifold) can then better reduce CO, HC and NOx emissions. This system uses
heated oxygen sensor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The
ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about
heated oxygen sensor 1, refer to EC-179, "
DTC P0132 HO2S1" . This maintains the mixture ratio within the
range of stoichiometric (ideal air-fuel mixture).
This stage is referred to as the closed loop control condition.
Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching
characteristics of heated oxygen sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal
from heated oxygen sensor 2.
Open Loop Control
The open loop system condition refers to when the ECM detects any of the following conditions. Feedback
control stops in order to maintain stabilized fuel combustion.
Deceleration and acceleration
High-load, high-speed operation
Malfunction of heated oxygen sensor 1 or its circuit
Insufficient activation of heated oxygen sensor 1 at low engine coolant temperature
High engine coolant temperature
During warm-up
After shifting from N to D (A/T models)
When starting the engine
MIXTURE RATIO SELF-LEARNING CONTROL
The mixture ratio feedback control system monitors the mixture ratio signal transmitted from heated oxygen
sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to
the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as orig-
inally designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic
changes during operation (i.e., injector clogging) directly affect mixture ratio.
Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is
then computed in terms of “injection pulse duration” to automatically compensate for the difference between
the two ratios.
“Fuel trim” refers to the feedback compensation value compared against the basic injection duration. Fuel trim
includes short term fuel trim and long term fuel trim.
“Short term fuel trim” is the short-term fuel compensation used to maintain the mixture ratio at its theoretical
value. The signal from heated oxygen sensor 1 indicates whether the mixture ratio is RICH or LEAN compared
to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an
increase in fuel volume if it is lean.
“Long term fuel trim” is overall fuel compensation carried out long-term to compensate for continual deviation
of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences,
wear over time and changes in the usage environment.
PBIB0121E

Page:   < prev 1-10 ... 391-400 401-410 411-420 421-430 431-440 441-450 451-460 461-470 471-480 ... 4560 next >