air RENAULT SCENIC 2011 J95 / 3.G Engine And Peripherals Workshop Manual

Page 1 of 198

1Engine and peripherals
V4 MR-372-J84-13B000$TOC.mif
V4
13B
"The repair procedures given by the manufacturer in this document are based on the
technical specifications current when it was prepared.
The procedures may be modified as a result of changes introduced by the
manufacturer in the production of the various component units and accessories from
which his vehicles are constructed."
V4
All rights reserved by Renault s.a.s.
Edition Anglaise
Copying or translating, in part or in full, of this document or use of the service part
reference numbering system is forbidden without the prior written authority of
Renault s.a.s.
© Renault s.a.s. 2011
DIESEL INJECTION
DDCR INJECTION
Vdiag No.: 44, 48
Fault finding – Introduction 13B - 2
Fault finding – System operation 13B - 8
Fault finding – Replacement of components 13B - 18
Fault finding – Configurations and programming 13B - 21
Fault finding – Fault summary table 13B - 22
Fault finding – Interpretation of faults 13B - 24
Fault finding – Conformity check 13B - 83
Fault finding – Status summary table 13B - 124
Fault finding – Interpretation of statuses 13B - 125
Fault finding – Parameter summary table 13B - 143
Fault finding – Interpretation of parameters 13B - 144
Fault finding – Tests 13B - 147
Fault finding – Customer complaints 13B - 165
Fault finding – Fault finding charts 13B - 166

Page 3 of 198

13B-3V4 MR-372-J84-13B000$010.mif
DIESEL INJECTION
Fault finding – Introduction13B
DDCR INJECTION
Vdiag No.: 44, 48
To cut off + after ignition, proceed as follows:
– disconnect the diagnostic tool,
– press the start button twice briefly (less than 3 seconds),
– check that the + after ignition feed has been cut off by checking that the computer warning lights on the instrument
panel have gone out.
Fault
Faults are declared present or stored (depending on whether they appeared in a certain context and have
disappeared since, or whether they remain present but are not diagnosed within the current context).
The present or stored status of the faults should be taken into consideration when the diagnostic tool is used after
the + after ignition feed has been connected (with no system components activated).
For a present fault,apply the procedure described in the Interpretation of faults section.
For a stored fault, note the faults displayed and apply the Notes paragraph.
If the fault is confirmed when the notes are applied, the fault is present. Deal with the fault.
If the fault is not confirmed, check:
– the electrical lines which correspond to the fault,
– the connectors on these lines (corrosion, bent pins, etc.),
– the resistance of the faulty component,
– the condition of the wires (melted or cut insulation, wear).
Or use diagnostics to check the circuit of the suspect component.
Conformity check
The conformity check is designed to check the statuses and parameters that do not display any faults on
the diagnostic tool when inconsistent. Therefore, this stage is used to:
Run fault finding on faults that do not have a fault display, and which may correspond to a customer complaint,
– Check that the system is operating correctly and that there is no risk of a fault recurring after repair.
– This section features the fault finding procedures for statuses and parameters, and the conditions for checking
them.
If a status is not operating normally or a parameter is outside permitted tolerance values, you should consult
the corresponding fault finding page.
Customer complaints - Fault-finding chart
If the diagnostic tool check is correct, but the customer complaint is still present, it should be dealt with using
Customer complaints.NOTE:
The right-hand and left-hand xenon bulb computers are powered when the dipped headlights are lit. Fault finding
can only be carried out on them after the ignition has been switched on in fault finding mode (forced + after ignition
feed) and the dipped headlights are on.
A summary of the overall procedure to follow is provided on the following page in the form of a flow chart.

Page 4 of 198

13B-4V4 MR-372-J84-13B000$010.mif
DIESEL INJECTION
Fault finding – Introduction13B
DDCR INJECTION
Vdiag No.: 44, 48
4. FAULT FINDING PROCEDURE
Perform a pre-diagnostic on the system
Print the system fault finding log
(available on CLIP and in the Workshop
Repair Manual or Technical Note)
Connect CLIP
See ALP no. 1
Read the faults
Conformity check
Deal with present faults
Fault solved
Deal with stored faults Use fault finding charts (ALPs)
Fault solved Fault solved
Contact the Techline with the completed fault
finding log
Dialogue with
computer?NO
YES
Faults presentNO
YES
The cause is still
presentNO
The cause is still
presentThe cause is still
presentNONO
YES

Page 5 of 198

13B-5V4 MR-372-J84-13B000$010.mif
DIESEL INJECTION
Fault finding – Introduction13B
DDCR INJECTION
Vdiag No.: 44, 48
4. FAULT FINDING PROCEDURE (continued)
Wiring check
Fault finding problems
Disconnecting the connectors and/or manipulating the wiring may temporarily clear the cause of a fault.
The electrical measurements of the voltage, resistance, and insulation are generally correct, especially if the fault is
not present when the measurements are being taken (stored fault).
Visual inspection
Look for damage under the bonnet and in the passenger compartment.
Carefully check the fuses, insulators and wiring harness routing.
Look for signs of oxidation.
Physical inspection
When handling the wiring, use the diagnostic tool to detect any change in the status of the fault from stored to
present.
Make sure that the connectors are firmly locked.
Apply light pressure to the connectors.
Twist the wiring harness.
If there is a change in status, try to locate the source of the fault.
Inspection of each component
Disconnect the connectors and check the appearance of the clips and tabs as well as their crimping (no crimping on
the insulation). Check that the clips and the tabs are correctly locked in the sockets.
Check that no clips or tabs have been dislodged during connection.
Check the clip contact pressure using an appropriate model of tab.
Resistance check
Check the continuity of entire lines, then section by section.
Look for a short circuit to earth, to + 12 V or with another wire.
If a fault is detected, repair or replace the wiring harness.
5. FAULT FINDING LOG
IMPORTANTIMPORTANT
Any fault on a complex system requires thorough fault finding with the appropriate tools.
The FAULT FINDING LOG, which should be completed during the procedure, enables you to
keep track of the procedure which is carried out. It is an essential document when consulting
the manufacturer.
IT IS THEREFORE COMPULSORY TO COMPLETE A FAULT FINDING LOG EVERY TIME A FAULT FINDING
PROCEDURE IS PERFORMED

Page 6 of 198

13B-6V4 MR-372-J84-13B000$010.mif
DIESEL INJECTION
Fault finding – Introduction13B
DDCR INJECTION
Vdiag No.: 44, 48
You will always be asked for this log:
• when requesting technical assistance from the Techline,
• when requesting approval before replacing parts for which approval is compulsory,
• to be attached to monitored parts for which reimbursement is requested. The log is needed for warranty
reimbursement, and enables better analysis of the parts removed.
6. SAFETY INSTRUCTIONS
Safety rules must be observed during any work on a component to prevent any material damage or personal injury:
– check the battery voltage to avoid incorrect operation of computer functions,
– use the proper tools.
7. CLEANLINESS INSTRUCTIONS WHICH MUST BE FOLLOWED WHEN WORKING ON THE HIGH-
PRESSURE DIRECT INJECTION SYSTEM
Risks relating to contamination:
The high pressure direct injection system is highly sensitive to contamination. The risks associated with
contamination are:
– damage to or destruction of the high pressure injection system,
– components jamming,
– a component leaking.
All After-Sales operations must be performed under very clean conditions. This means that no impurities
(particles a few microns in size) should penetrate the system during dismantling.
The cleanliness principle must be applied from the filter to the injectors.
What are the sources of contamination?
– metal or plastic swarf,
– paint,
– fibres from cardboard, brushes, paper, clothing and cloth.
– foreign bodies such as hair,
– ambient air,
–etc.WARNING
BEFORE CARRYING OUT ANY WORK ON THE INJECTION SYSTEM, CHECK WITH THE DIAGNOSTIC
TOOL:
– that the rail is depressurised,
– that the fuel temperature is not too high.
IMPORTANT
Cleaning the engine using a high pressure washer is prohibited because of the risk of damaging connections. In
addition, moisture may collect in the connectors and create electrical connection faults.

Page 7 of 198

13B-7V4 MR-372-J84-13B000$010.mif
DIESEL INJECTION
Fault finding – Introduction13B
DDCR INJECTION
Vdiag No.: 44, 48
Advice to be followed before any operation
Protect the accessories and timing belts, the electrical accessories (starter, alternator, electric power assisted
steering pump) and the mating face to prevent diesel fuel spilling onto the clutch friction plate).
Check that you have plugs for the unions to be opened (set of plugs available from the Parts Department). The plugs
are single-use only. After use, they must be discarded (once used they are soiled and cleaning is not sufficient to
make them reusable). Unused plugs must be discarded.
Ensure that you have hermetically resealable plastic bags for storing removed parts. Parts stored in this way will be
less susceptible to the risk of contamination. These are single-use bags; after use they must be discarded.
Use lint-free cleaning cloths (part no. 77 11 211 707). Using normal cloth or paper is prohibited. They are not lint-free
and could contaminate the fuel circuit. Each cloth should only be used once.
Use fresh cleaning agent for each operation (used cleaning agent is contaminated). Pour it into an uncontaminated
container.
For each operation, use a clean brush in good condition (the brush must not shed its bristles).
Use a brush and cleaning agent to clean the unions to be opened.
Blow compressed air over the cleaned parts (the tools and workbench, as well as the parts, unions, and injection
system sections). Check that no bristles remain.
Wash your hands before and during the operation if necessary.
When wearing leather protective gloves cover them with latex gloves to prevent contamination.
Instructions to be followed during the operation
As soon as the circuit is open, all openings must be plugged to prevent impurities from entering the system.
The plugs to be used are available from the Parts Department. They must not be reused under any circumstances.
Close the hermetically sealed bag, even if it has to be reopened shortly afterwards. Ambient air carries impurities.
All components removed from the injection system must be stored in a hermetically sealed plastic bag once they
have been plugged.
Using a brush, cleaning agent, air gun, sponge or normal cloth is strictly prohibited once the circuit has been
opened. These items are likely to allow impurities to enter the system.
A new component replacing an old one must not be removed from its packaging until it is to be fitted to the vehicle.

Page 8 of 198

13B-8V4 MR-372-J84-13B000$020.mif
13B
DDCR INJECTION
Vdiag No.: 44, 48
System outline
The DDCR injection system used on the K9 engine is an electronically managed high pressure injection system.
The fuel is compressed by a high pressure pump then stored in a rail that feeds the injectors. Injection occurs when
a current pulse is applied to the injector holders. The injected flow is proportional to the rail pressure and to
the applied pulse length, and the start of injection is phased with the start of the pulse.
The circuit comprises two subsystems, which are distinguished by the fuel pressure level.
– The low pressure system includes the tank, diesel fuel filter, transfer pump and injector holder return pipes.
– The high pressure circuit contains the high pressure pump, the rail, the injector holders and the high pressure tubes.
Finally, there are a certain number of sensors and regulating actuators for controlling and monitoring the entire
system.
Functions provided
Function: Fuel supply management (timing, flow and pressure).
Quantity of fuel injected and injection timing adjustment
The injection checking parameters are the quantities to be injected and their respective timing. These are calculated
by the computer using signals from the following sensors:
• Engine speed (Crankshaft + Cam for synchronisation)
• Accelerator pedal
• Turbocharging pressure and air temperature (Turbocharger pressure)
• Coolant temperature
• Air temperature
• Air load (Flow and Pressure)
• Rail pressure
• Flowmeter
• Turbocharging solenoid valve
The quantities to be injected and their respective timing are converted into:
• a reference tooth
• the time between this tooth and the start of the pulse
• the time for which the supply to the injector holder is on
An electrical current (pulse) is sent to each injector holder according to previously calculated data. The system
makes one or two injections (1 pilot injection, 1 main injection). The general principle is to calculate an overall
injected flow which will then be divided into a main injection flow and a pilot injection flow, to help the combustion
process work properly and to reduce pollutant emissions.
An accelerometer is used to monitor some of the fuel injection deviation. This has several roles:
• Protecting the engine by detecting injection leaks (disabled on the basic vehicle).
• Checking the pilot quantity by measuring deviation and dispersion
• By changing both the duration and timing of the injection, the quantity of fuel injected and the mixture ignition timing
can be adjusted.
DIESEL INJECTION
Fault finding – System operation

Page 9 of 198

13B-9V4 MR-372-J84-13B000$020.mif
DIESEL INJECTION
Fault finding – System operation13B
DDCR INJECTION
Vdiag No.: 44, 48
Rail pressure check
The quality of combustion is influenced by the size of the atomised droplets in the cylinder. In the combustion
chamber, smaller fuel droplets will have time to burn fully, and will not produce smoke or unburned particles. To
meet the pollution requirements, the droplet size, and therefore the size of the injection holes, must be reduced.
With smaller holes, less fuel will be able to be introduced at a given pressure, which limits the power. To handle this
drawback, the injected fuel flow has to be increased, which means a pressure increase (and more apertures on the
injector nozzles). For the DDCR injection system, the pressure reaches 1400 bar in the rail, and must be constantly
regulated. The measuring circuit consists of an active pressure sensor on the rail connected to an analogue port on
the computer.
The High Pressure pump is supplied at low pressure (5bar) by a built-in transfer pump. This pump supplies the rail.
The rail filling pressure is controlled by the filling valve (IMV) and the discharge pressure is controlled by the injector
valves. This compensates for pressure drops. The filling actuator enables the high pressure pump to supply just
the exact quantity of diesel fuel required to maintain the rail pressure. This mechanism minimises the heat
generated and improves engine output.
In order to discharge the rail using the injector valves, the valves are actuated by short electrical pulses which are:
– short enough not to open the injector (and pass through the return circuit from the injectors),
– long enough to open the valves and discharge the rail.
The fuel surplus is sent back to the fuel filter or the tank, according to its flow. If there is no IMV control, the rail
pressure is limited by a discharge valve fitted on the pump.
Idling speed regulation
The computer handles the calculation of idling speed. This has to take account of the instantaneous power level to
be supplied, according to the following factors:
– Engine coolant temperature
– Gear engaged
– Battery charging
– Electrical consumers (Heating elements, Air conditioning, Fan assembly, Heated windscreen, etc.) active or
inactive
Individual injector correction (C2I)
The DDCR system injectors must be calibrated with corrective values to adjust their flow precisely. Each injector is
calibrated for different pressures on a test bench, and its specifications are shown on a label attached to the body of
the injector holders. These individual correction values are then written to the computer EEPROM, which can then
actuate the injectors by taking into account their manufacturing dispersion.

Page 10 of 198

13B-10V4 MR-372-J84-13B000$020.mif
DIESEL INJECTION
Fault finding – System operation13B
DDCR INJECTION
Vdiag No.: 44, 48
Measuring the angular position (Cylinder reference sensor)
The angular position is measured using a magneto-inductive sensor triggered by machined teeth on the engine
flywheel. This flywheel has 60 teeth separated by six degrees, minus 2 missing teeth that form a notch.
A second sensor (Hall effect), activated by a machined tooth on the high pressure pump drive pulley
(synchronised with the camshaft), which rotates at half the engine speed, supplies a signal showing the progress of
the injection cycle. By comparing the signals from these two sensors, the computer's APS module (Angular Position
Subsystem) can supply the entire system with the synchronisation factors, namely: the angular position of
the flywheel, the engine speed, the number of the active injector, and the injection cycle timing. This module also
supplies the system with the engine speed signal.
Flow capacity function (VLC)
Because of the combination of several parameters such as the diesel fuel temperature, part wear, clogging of the
diesel filter, etc., the system may reach its limit during its service life. If this happens, the rail pressure cannot be
maintained because the pump lacks the necessary capacity. If the pump lacks the necessary capacity, this
programming will therefore reduce the requested flow to a value that will enable the pressure monitoring system to
control the pressure again.
The customer may have noticed a loss of vehicle performance when this program is activated (confirmed by
ET563 Flow capacity function). This is part of normal operation.
Function: Air flow management.
EGR valve control
The EGR (Exhaust gas recirculation) system comprises a proportional EGR valve with a built-in valve position
feedback potentiometer. The EGR valve position is controlled by the potentiometer in a closed loop and/or by
changes in the estimated air flow.
Calculation of the air flow
WITHOUT FLOWMETER (K9K 722)
Certain models are not fitted with air flowmeters. In this case the amount of fresh inlet air must be evaluated, based
on the values supplied by the surrounding systems. The (theoretical) air volume is calculated using a model with
these calculation parameters:
– the inlet air temperature measured by a sensor located after the turbocharger and/or after the intercooler (if fitted),
– the turbocharging pressure,
– the atmospheric pressure (external air),
– the EGR valve position,
– the fuel flow,
– the engine speed.
The atmospheric pressure sensor is optional. If fitted, it sends back an atmospheric pressure signal to an analogue
port on the micro-controller. If not, atmospheric pressure is recovered based on the turbocharger pressure
and the engine field.

Page 11 of 198

13B-11V4 MR-372-J84-13B000$020.mif
DIESEL INJECTION
Fault finding – System operation13B
DDCR INJECTION
Vdiag No.: 44, 48
WITH FLOWMETER (K9K 728)
The flow of fresh air entering the engine is given by a hot wire ratiometric sensor. This flow sensor is used to
manage the amount of exhaust gas to be recirculated to ensure optimum recirculation rates. A fresh air temperature
sensor is built into the flowmeter.
Air flow measurement allows closed-loop control via the EGR valve.
Besides electrical faults with the sensor, there is a consistency test between the measured air flow and an estimated
air flow without EGR.
This flow evaluates the amount of fresh inlet air, based on the values supplied by the surrounding systems:
– the inlet air temperature measured by a sensor located after the turbocharger and/or after the intercooler (if fitted),
– the turbocharging pressure,
– the engine speed.
Pre-postheating actuation
Pre-postheating actuation consists of controlling the heater plugs and preheating warning light on the instrument
panel. The heater plugs are activated by relays, and the power is supplied from the battery. After the ignition is
switched on. Preheating is activated for a period of time. The warning light is illuminated for an activation period that
depends on the battery voltage, the atmospheric pressure, and the coolant temperature. When the temperature is
below a certain threshold, a postheating function can be used to improve the combustion stability, and consequently
engine operation (reducing unburnt particles and pollutant emissions).
Turbocharger control solenoid valve actuation
The turbocharger system comprises a solenoid valve that is used to actuate the vanes (or wastegate) to create an
overpressure or a vacuum in the inlet circuit.

Page:   1-10 11-20 21-30 31-40 41-50 ... 160 next >