fuel filter SSANGYONG NEW REXTON 2012 Owner's Manual
Page 440 of 600
7. CAUTIONS
1) Designated Engine Oil for CDPF (Low Ash Oil)
Need to use the designated engine oil for CDPF 1.
The smoke from the vehicle may generate the particle material in the ambient air. CDPF is the
device to reduce the smoke by collecting and recycling it. To ensure the performance of CDPF,
the designated engine oil should be used.
The smoke including combusted sulfur in fuel cannot be recycled in CDPF. This smoke
generates the ash, resulting in clogging the filter. -
-
Advantages when using the designated engine oil for CDPF 2.
Reduces the amount of ash
Improves the fuel economy and reduces the CO2
Increases the life span of engine oil
Available for all engines (diesel and gasoline) -
-
-
-
Problems when using non-designated engine oil for CDPF 3.
Decreases the life span of engine oil due to accumulated ash in DPF (around 30%)
Decreases the fuel economy due to friction resistance, exhaust gas resistance and frequent
recycling process of DPF -
-
The fuel containing high sulfur may cause the same problems.
2) Do Not Use the Fuel Containing High Sulfur
Producing white smoke during recycling 1.
The sulfur in exhaust gas is changed to sulfate gas during exhaust process. This sulfate gas is
shown as white smoke. -
Producing odor during recycling 2.
The sulfur after oxidation may produce the odor. -
Accumulation of ash 3.
The sulfur accumulated in DPF cannot be recycled. It reduces the life span of DPF. -
3) White Smoke
The white smoke can be generated when the exhaust gas is recycled in DPF. There are two reasons as
below.
Saturated vapor
Sulfate -
-
Page 455 of 600
0000-00
B. Driver Demand
The driver demand is the translation of the pedal position into the fuel demand. It is calculated as a
function of the pedal position and of the engine speed. The driver demand is filtered in order to limit the
hesitations caused by rapid changes of the pedal position. A mapping determines the maximum fuel
which can be injected as a function of the driver demand and the rail pressure. Since the flow is
proportional to the injection time and to the square root of the injection pressure, it is necessary to limit
the flow according to the pressure in order to avoid extending the injection for too long into the engine
cycle. The system compares the driver demand with this limit and chooses the smaller of the 2 values.
The driver demand is then corrected according to the coolant temperature. This correction is added to
the driver demand.
Page 487 of 600
0000-00
E. Cautions
Use only specified Engine Oil (approved by MB Sheet 229.51) for CDPF. -
Use only specified engine oil (Low Ash Oil)
The vehicle equipped with CDPF should use specific engine oil to improve the engine performance
and fuel economy, and ensure the service life of CDPF. -
Issue with normal engine oil
Sulfur, one of the contents of engine oil is burned and generates soot that is not regenerated by the
DPF. This remains on the filter as ashes and keeps accumulating. Eventually, this ashes will block
the filter. -
Benefit for specified engine oil
Minimized the sulfur content of engine oil which reduces the service life.
Improved fuel economy and emission level of CO2 with high performance and low viscosity.
Increased service life of engine oil with high resistance to temperature. -
-
-
Problems when using unspecified engine oil
The service life of filter may be reduced by 30% or more by the ashes accumulated on the filter.
The fuel economy may be reduced because of engine rolling resistance, frequent regeneration of
DPF. -
-
These problems are also caused by oil with high sulfur content, such as tax exemption oil and
heating oil, etc. *
Page 514 of 600
Engine Compartment Layout
Engine assembly
Engine oil dipstick
Vacuum pump
Oil filter and cooler
Fuel filter and priming pump
Brake booster
Brake oil tank
AQGS unit
Washer fluid filler cap
Engine compartment fuse box
PTC relay box
Battery
Vacuum modulator (for VGT turbo charger) 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.FFH Assembly (Only for vehicle with FFH)
Power steering oil tank
Engine oil filler cap
Fan shroud
E-EGR Valve
High-capacity PCV oil separator
HFM sensor (6.0)
VGT turbo charger
Air cleaner housing
2Coolant surge tank
ABS/ESP HECU (Including TPMS function:
optional)
Exhaust gas FRT Temp. sensor (T3) 14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
Page 525 of 600
1212-01
1. D27DT ENGINE STRUCTURE
1) Major Components in Engine and Engine Compartment
The advanced electronically controlled D27DT engine that has high pressure fuel system has
been introduced to this vehicle. It satisfies the strict emission regulation and provides improved
output and maximum torque.
1. Coolant reservoir
2. FFH device
3. Brake fluid reservoir
4. Washer fluid reservoir
5. Common rail6. Fuse box
7. Battery
8. Fuel filter
9. Power steering pump
10. Priming pump11. EGR valve
12. Air cleaner assembly
13. Turbo charger
14. Oil dipstick
Page 546 of 600
1725-12
2. CDPF (EURO IV) SYSTEM CONTROL
1) Combustion Temperature and Procedures
As the soot is filtered in the CDPF, it is burnt and removed, and the CDPF is returned to the initial
state to collect the soot. Therefore, the burning procedures in the CDPF can be called as
regeneration.
The CDPF assembly is integrated with DOC (at front side) and DPF (at rear side).
The DPF burns the soot with high-temperature exhaust gas (over
The rear exhaust gas
temperature sensor monitors the temperature of DPF section. If this temperature is below the
regeneration temperature, the ECU increases the post injection period to increase the fuel
injection amount, and consequently to increase the exhaust gas temperature.
Front exhaust gas temperature sensor
(Measuring temperature of exhaust gas in
exhaust manifold)
Rear exhaust gas temperature sensor
(Measuring temperature of exhaust gas escaping DOC)
Normally, when the vehicle is driven for 600 ~ 1,200 km, the enough amount of soot to be
burnt is filtered and accumulated in the CDPF. The ECU increase the amount of post
injection to increase the tempeature of exhaust gas up to
so that the soot is burnt.
The soot is burnt for 15 ~ 20 minutes. -
Page 547 of 600
3) Post Injection and Air Mass Control
When the differential pressure sensor detects the pressure difference between the front and the
rear side of CDPF, the sensor sends signal indicating the soot is acumulated and the post
injection is performed to raise the temperature of exhaust gas. The amount of fuel injected is
determined according to the temperature of exhaust gas detected by the rear temperature sensor.
If the temperature is below
the amount of fuel injected is increased to raise the
temperature. If the temperature is over
the amount of fuel injected is decreased or not
controlled.
When the engine is running in low load range, the amount of post injection and the amount of
intake air are controlled. It is to raise the temperature by increasing the amount of fuel while
decreasing the amount of intake air.
2) Sytem Composition for Soot Combustion
When the engine is running in low load range, the temperature of exhaust gas is decreased as the
amount of fuel supplied is decreased. To burn the soot filtered in the CDPF, the control system
should be installed to check the operating range and increase the temperature of exhaust gas by
controlling the amount of fuel supplied and intake air.
Two temperature sensors and one differential pressure sensor monitor the CDPF's operating
range. According to these sensors' information, the throttle flap decreases the intake air entered
to the throttle body. Also, the fuel injection pattern is added to increase the temperature of
exhaust gas for soot combustion.
There are three fuel injection patterns (pilot injection, pre-injection and main injection). As the
CDPF is installed, the post injection pattern is added.
Page 598 of 600
Engine Compartment Layout
Engine assembly
Engine oil dipstick
Vacuum pump
Oil filter and cooler
Fuel filter and priming pump
Brake booster
Brake oil tank
AQGS unit
Washer fluid filler cap
Engine compartment fuse box
PTC relay box
Battery
Vacuum modulator (for VGT turbo charger) 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.FFH Assembly (Only for vehicle with FFH)
Power steering oil tank
Engine oil filler cap
Fan shroud
E-EGR Valve
High-capacity PCV oil separator
HFM sensor (6.0)
VGT turbo charger
Air cleaner housing
2Coolant surge tank
ABS/ESP HECU (Including TPMS function:
optional)
Exhaust gas FRT Temp. sensor (T3) 14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.