check engine SUZUKI SWIFT 2000 1.G SF310 Service Owner's Manual
Page 64 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-13
MALFUNCTION INDICATOR LAMP (MIL)
CHECK
1) Turn ON ignition switch (but the engine at stop) and check that
MIL lights.
If MIL does not light up (or MIL dims), go to “Diagnostic Flow
Table A-1” for troubleshooting.
2) Start engine and check that MIL turns OFF.
If MIL remains ON and no DTC is stored in ECM (PCM), go to
“Diagnostic Flow Table A-2” for troubleshooting.
DIAGNOSTIC TROUBLE CODE (DTC) CHECK
1) Prepare SUZUKI scan tool (Tech-1) or generic scan tool.
2) With ignition switch OFF, connect it to data link connector (DLC)
(1) located on underside of instrument panel at driver’s seat side.
Special Tool:
(A): SUZUKI scan tool
(B): Mass storage cartridge
(C): 16 / 14 pin DLC cable
3) Turn ignition switch ON and confirm that MIL lights.
4) Read DTC, pending DTC and freeze frame data according to
instructions displayed on scan tool and print it or write it down.
Refer to scan tool operator’s manual for further details.
If communication between scan tool and ECM (PCM) is not pos-
sible, check if scan tool is communicable by connecting it to
ECM (PCM) in another vehicle. If communication is possible in
this case, scan tool is in good condition. Then check data link
connector and serial data line (circuit) in the vehicle with which
communication was not possible.
5) After completing the check, turn ignition switch off and discon-
nect scan tool from data link connector.
Page 65 of 557
6-14 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
DIAGNOSTIC TROUBLE CODE (DTC)
CLEARANCE
1) Connect SUZUKI scan tool (Tech-1) or generic scan tool to data
link connector in the same manner as when making this connec-
tion for DTC check.
2) Turn ignition switch ON.
3) Erase DTC and pending DTC according to instructions dis-
played on scan tool. Refer to scan tool operator’s manual for fur-
ther details.
4) After completing the clearance, turn ignition switch off and dis-
connect scan tool from data link connector.
NOTE:
DTC and freeze frame data stored in ECM (PCM) memory
are also cleared in following cases. Be careful not to clear
them before keeping their record.
When power to ECM (PCM) is cut off (by disconnecting
battery cable, removing fuse or disconnecting ECM
(PCM) connectors for 30 sec. or longer)
When the same malfunction (DTC) is not detected again
during 40 engine warm-up cycles.
Page 70 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-19
Operation
VISUAL INSPECTION
Visually check following parts and systems.
INSPECTION ITEM
REFERRING SECTION
Engine oil ––––– level, leakage
Engine coolant ––––– level, leakage
Fuel ––––– level, leakage
A / T fluid ––––– level, leakage
Air cleaner element ––––– dirt, clogging
Battery ––––– fluid level, corrosion of terminal
Water pump belt ––––– tension, damage
Throttle cable ––––– play, installation
Vacuum hoses of air intake system ––––– disconnection,
looseness, deterioration, bend
Connectors of electric wire harness ––––– disconnection, friction
Fuses ––––– burning
Parts ––––– installation, bolt ––––– looseness
Parts ––––– deformation
Other parts that can be checked visually
Also check following items at engine start, if possible
Malfunction indicator lamp
Charge warning lamp
Engine oil pressure warning lamp
Engine coolant temp. meter
Fuel level meter
Tachometer, if equipped
Abnormal air being inhaled from air intake system
Exhaust system ––––– leakage of exhaust gas, noise
Other parts that can be checked visuallySection 0B
Section 0B
Section 0B
Section 0B
Section 0B
Section 0B
Section 6E1
Section 8
Section 6
Section 6H
Section 8 (section 6 for pressure check)
Section 8
Section 8
Page 71 of 557
6-20 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
ENGINE BASIC INSPECTION
This check is very important for troubleshooting when ECM (PCM) has detected no DTC and no abnormality has
been found in visual inspection.
Follow the flow table carefully.
STEP
ACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check battery voltage.
Is it 11 V or more?Go to Step 3.Charge or replace
battery.
3Is engine cranked?Go to Step 4.Go to “DIAGNOSIS”
in Section 6G.
4Does engine start?Go to Step 5.Go to Step 7.
5Check idle speed as follows.
1) Warm up engine to normal operating temp.
2) Shift transmission to neutral position for M / T
(“P” position for A / T).
3) All of electrical loads are switched off.
4) Check engine idle speed with scan tool.
See Fig. 1.
Is it 800 – 900 r / min.?Go to Step 6.Go to “ENGINE
DIAGNOSIS TABLE”.
6Check ignition timing as follows.
1) Select “MISC” mode on SUZUKI scan tool and
fix ignition timing to initial one. See Fig. 2.
2) Using timing light (1), check initial ignition timing.
See Fig. 3.
Is it 5 ± 3 BTDC at specified idle speed?Go to “ENGINE
DIAGNOSIS TABLE”.Check ignition control
related parts referring
to Section 6F.
7Check immobilizer system malfunction as follows.
1) Check immobilizer indicator lamp for flashing.
Is it flashing when ignition switch is turned to ON
position?Go to “DIAGNOSIS” in
Section 8A.Go to Step 8.
8Check fuel supply as follows.
1) Check to make sure that enough fuel is filled in fuel
tank.
2) Turn ON ignition switch for 2 seconds and then
OFF. See Fig. 4.
Is fuel return pressure (returning sounds) felt from fuel
feed hose (1) when ignition switch is turned ON?Go to Step 10.Go to Step 9.
9Check fuel pump for operating.
1) Was fuel pump operating sound heard from fuel
filler for about 2 seconds after ignition switch ON
and stop?Go to “DIAG. FLOW
TABLE B-3”.Go to “DIAG. FLOW
TABLE B-2”.
10Check ignition spark as follows.
1) Disconnect injector coupler.
2) Remove spark plugs and connect them to high
tension cords.
3) Ground spark plugs.
4) Crank engine and check if each spark plug sparks.
Is it in good condition?Go to Step 11.Go to “DIAGNOSIS”
in Section 6F.
11Check fuel injector for operation as follows.
1) Install spark plugs and connect injector
connectors.
2) Check that fuel is injected out in conical shape
from fuel injector when cranking.
Is it in good condition?Go to “ENGINE
DIAGNOSIS TABLE”.Go to “DIAG. FLOW
TABLE B-1”.
Page 73 of 557
6-22 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
ENGINE DIAGNOSIS TABLE
Perform troubleshooting referring to following table when ECM (PCM) has detected no DTC and no abnormality
has been found in visual inspection and engine basic inspection previously.
Condition
Possible CauseReferring Item
Hard Starting
(Engine cranks OK)Ignition system out of order
Faulty spark plug
Leaky high-tension cord
Loose connection or disconnection of high-
tension cords or lead wires
Faulty ignition coil
Fuel system out of order
Dirty or clogged fuel hose or pipe
Malfunctioning fuel pump
Air inhaling from intake manifold gasket or
throttle body gasket
Fuel injector resistor malfunction
Engine and emission control system out of
order
Faulty idle control system
Faulty ECT sensor or MAP sensor
Faulty ECM (PCM)
Low compression
Poor spark plug tightening or faulty gasket
Compression leak from valve seat
Sticky valve stem
Weak or damaged valve springs
Compression leak at cylinder head gasket
Sticking or damaged piston ring
Worn piston, ring or cylinder
Others
Malfunctioning PCV valve
Spark plugs in Section 6F
High-tension cords in Section 6F
High-tension cords in Section 6F
Ignition coil in Section 6F
Diagnostic Flow Table B-3
Diagnostic Flow Table B-3
Fuel injector resistor in Section 6E1
Diagnostic Flow Table P0505
ECT sensor or MAP sensor in
Section 6E1
Compression check in Section
6A
Spark plugs in Section 6F
Valves inspection in Section 6A
Valves inspection in Section 6A
Valve springs inspection in
Section 6A
Cylinder head inspection in
Section 6A
Cylinders, pistons and piston rings
inspection in Section 6A
Cylinders, pistons and piston rings
inspection in Section 6A
PCV system in Section 6E1
Page 74 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-23
ConditionPossible CauseReferring Item
Low oil pressureImproper oil viscosity
Malfunctioning oil pressure switch
Clogged oil strainer
Functional deterioration of oil pump
Worn oil pump relief valve
Excessive clearance in various sliding partsEngine oil and oil filter change in
Section 0B
Oil pressure switch inspection in
Section 8
Oil pan and oil pump strainer
cleaning in Section 6A
Oil pump in Section 6A
Oil pump in Section 6A
Engine noise
Note: Before
checking mechanical
noise, make sure
that:
Specified spark
plug in used.
Specified fuel is
used.Valve noise
Improper valve lash
Worn valve stem and guide
Weak or broken valve spring
Warped or bent valve
Piston, ring and cylinder noise
Worn piston, ring and cylinder bore
Connecting rod noise
Worn rod bearing
Worn crank pin
Loose connecting rod nuts
Low oil pressure
Crankshaft noise
Low oil pressure
Worn bearing
Worn crankshaft journal
Loose bearing cap bolts
Excessive crankshaft thrust play
Valve lash in Section 6A
Valves inspection in Section 6A
Valve springs inspection in
Section 6A
Valves inspection in Section 6A
Pistons and cylinders inspection
in Section 6A
Crank pin and connecting rod
bearing inspection in Section 6A
Crank pin and connecting rod
bearing inspection in Section 6A
Connecting rod installation in
Section 6A
Previously outlined
Previously outlined
Crankshaft and bearing
inspection in Section 6A
Crankshaft and bearing
inspection in Section 6A
Crankshaft inspection in
Section 6A
Crankshaft thrust play inspection
in Section 6A
Page 75 of 557
6-24 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
ConditionPossible CauseReferring Item
OverheatingInoperative thermostat
Poor water pump performance
Clogged or leaky radiator
Improper engine oil grade
Clogged oil filter or oil strainer
Poor oil pump performance
Faulty radiator fan control system
Dragging brakes
Slipping clutch
Blown cylinder head gasketThermostat in Section 6B
Water pump in Section 6B
Radiator in Section 6B
Engine oil and oil filter change in
Section 0B
Oil pressure check in Section 6A
Oil pressure check in Section 6A
Radiator fan control system in
Section 6E1
Trouble diagnosis in Section 5
Trouble diagnosis in Section 7C
Cylinder head in Section 6A
Poor gasoline
mileageIgnition system out of order
Leaks or loose connection of high-tension cord
Faulty spark plug (improper gap, heavy deposits
and burned electrodes, etc.)
Engine and emission control system out of
order
High idle speed
Poor performance of TP sensor, ECT sensor or
MAP sensor
Faulty fuel injector
Faulty fuel injector resistor
Faulty ECM (PCM)
Low compression
Others
Poor valve seating
Dragging brakes
Slipping clutch
Thermostat out of order
Improper tire pressure
High-tension cords in Section 6F
Spark plugs in Section 6F
Refer to item “Improper engine
idle speed” previously outlined
TP sensor, ECT sensor or MAP
sensor in Section 6E1
Diagnostic Flow Table B-1
Fuel injector resistor in Section 6E1
Previously outlined
Valves inspection in Section 6A
Trouble diagnosis in Section 5
Trouble diagnosis in Section 7C
Thermostat in Section 6B
Refer to Section 3F
Excessive engine
oil consumptionOil leakage
Blown cylinder head gasket
Leaky camshaft oil seals
Oil entering combustion chamber
Sticky piston ring
Worn piston and cylinder
Worn piston ring groove and ring
Improper location of piston ring gap
Worn or damaged valve stem seal
Worn valve stem
Cylinder head in Section 6A
Camshaft in Section 6A
Piston cleaning in Section 6A
Pistons and cylinders inspection
in Section 6A
Pistons inspection in Section 6A
Pistons assembly in Section 6A
Valves removal and installation in
Section 6A
Valves inspection in Section 6A
Page 79 of 557
6-28 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
ConditionPossible CauseReferring Item
Excessive
hydrocarbon (HC)
emission or carbon
monoxide (CO)Ignition system out of order
Faulty spark plug
Leaky or disconnected high-tension cord
Faulty ignition coil with ignitor
Low compression
Engine and emission control system out of
order
Lead contamination of three way catalytic
converter
Faulty evaporative emission control system
Fuel pressure out of specification
Closed loop system (A / F feed back
compensation) fails
–Faulty TP sensor
–Poor performance of ECT sensor or MAP
sensor
Faulty injector
Faulty fuel injector resistor
Faulty ECM (PCM)
Others
Engine not at normal operating temperature
Clogged air cleaner
Vacuum leaks
Spark plugs in Section 6F
High-tension cords in Section 6F
Ignition coil assembly in Section
6F
Refer to “Low compression”
section
Check for absence of filler neck
restrictor
EVAP control system in Section
6E1
Diagnostic Flow Table B-3
TP sensor in Section 6E1
ECT sensor or MAP sensor in
Section 6E1
Diagnostic Flow Table B-1
Fuel injector resistor in Section 6E1
Excessive nitrogen
oxides (NOx)
emissionIgnition system out of order
Improper ignition timing
Engine and emission control system out of
order
Lead contamination of catalytic converter
Fuel pressure out of specification
Closed loop system (A / F feed back
compensation) fails
–Faulty TP sensor
–Poor performance of ECT sensor or MAP
sensor
Faulty injector
Faulty fuel injector resistor
Faulty ECM (PCM)
See section 6F1
Check for absence of filler neck
restrictor.
Diagnostic Flow Table B-3
TP sensor in Section 6E1
ECT sensor or MAP sensor in
Section 6E1
Diagnostic Flow Table B-1
Fuel injector resistor in Section 6E1
Page 80 of 557
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-29
Ambient temp.
SCAN TOOL DATA
As the data values given below are standard values estimated on the basis of values obtained from the normally
operating vehicles by using a scan tool, use them as reference values. Even when the vehicle is in good condition,
there may be cases where the checked value does not fall within each specified data range. Therefore, judgment
as abnormal should not be made by checking with these data alone.
Also, conditions in the below table that can be checked by the scan tool are those detected by ECM (PCM) and
output from ECM (PCM) as commands and there may be cases where the engine or actuator is not operating (in
the condition) as indicated by the scan tool. Be sure to use the timing light to check the ignition timing.
NOTE:
With the generic scan tool, only star () marked data in the table below can be read.
When checking the data with the engine running at idle or racing, be sure to shift M / T gear to the neutral
gear position and A / T gear to the “Park” position and pull the parking brake fully. Also, if nothing or “no
load” is indicated, turn OFF A / C, all electric loads, P / S and all the other necessary switches.
SCAN TOOL DATAVEHICLE CONDITIONNORMAL CONDITION /
REFERENCE VALUES
FUEL SYSTEM B1 (FUEL
SYSTEM STATUS)At specified idle speed after warming upCLOSED (closed loop)
CALC LOAD
(CALCULATED LOADAt specified idle speed with no load after
warming up3 – 5%(
VALUE)At 2500 r / min with no load after warming up10 – 18%
COOLANT TEMP.
(ENGINE COOLANT
TEMP.)
At specified idle speed after warming up85 – 95C, 185 – 203F
SHORT FT BI (SHORT
TERM FUEL TRIM)At specified idle speed after warming up–20 – +20%
LONG FT BI (LONG
TERM FUEL TRIM)At specified idle speed after warming up–15 – +15%
MAP (INTAKE
MANIFOLD ABSOLUTE
PRESSURE)At specified idle speed with no load after
warming up29 – 48 kPa,
220 – 360 mmHg
ENGINE SPEEDAt idling with no load after warming upDesired idle speed
± 50 r / min
VEHICLE SPEEDAt stop0 km / h, 0 MPH
IGNITION ADVANCE
(IGNITION TIMING
ADVANCE FOR NO.1
CYLINDER)
At specified idle speed with no load after
warming up–1 – 18 BTDC
INTAKE AIR TEMP.At specified idle speed after warming up+35C (+63F)
–5C (–9F)
MAF (MASS AIR FLOW
RATE)
At specified idle speed with no load after
warming up1.0 – 3.0 gm / sec
RATE)At 2500 r / min with no load after warming up3.0 – 6.0 gm / sec
THROTTLE POS
(ABSOLUTEIgnition switch ON /Throttle valve fully closed7 – 18%
(ABSOLUTE
THROTTLE POSITION)
g
engine stoppedThrottle valve fully open70 – 90%
O2S B1 S1 (HEATED
OXYGEN SENSOR-1)At specified idle speed after warming up0.05 – 0.95 V
O2S B1 S2 (HEATED
OXYGEN SENSOR-2)When engine is running at 2000 r / min. for
3 min. or longer after warming up.0 – 0.95 V
O2S FT B1 S1At specified idle speed after warning up–20 – +20%
DIS. WITH MIL ON————
Page 83 of 557
6-32 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
SCAN TOOL DATA DEFINITIONS
FUEL SYSTEM (FUEL SYSTEM STATUS)
Air / fuel ratio feedback loop status displayed as either
open or closed loop. Open indicates that ECM (PCM)
ignores feedback from the exhaust oxygen sensor.
Closed indicates final injection duration is corrected
for oxygen sensor feedback.
CALC LOAD (CALCULATED LOAD VALUE, %)
Engine load displayed as a percentage of maximum
possible load. Value is calculated mathematically us-
ing the formula: actual (current) intake air volume
maximum possible intake air volume x 100%.
COOLANT TEMP.
(ENGINE COOLANT TEMPERATURE, C, F)
It is detected by engine coolant temp. sensor
SHORT FT B1 (SHORT TERM FUEL TRIM, %)
Short term fuel trim value represents short term
corrections to the air / fuel mixture computation. A val-
ue of 0 indicates no correction, a value greater than
0 means an enrichment correction, and a value less
than 0 implies an enleanment correction.
LONG FT B1 (LONG TERM FUEL TRIM, %)
Long term fuel trim Value represents long term correc-
tions to the air / fuel mixture computation. A value of 0
indicates no correction, a value greater than 0 means
an enrichment correction, and a value less than 0 im-
plies an enleanment correction.
MAP (INTAKE MANIFOLD ABSOLUTE
PRESSURE, kPa, inHg)
It is detected by manifold absolute pressure sensor and
used (among other things) to compute engine load.
ENGINE SPEED (rpm)
It is computed by reference pulses from crankshaft
position sensor.
VEHICLE SPEED (km / h, MPH)
It is computed based on pulse signals from vehicle
speed sensor.
IGNITION ADVANCE
(IGNITION TIMING ADVANCE FOR NO.1
CYLINDER, )
Ignition timing of NO.1 cylinder is commanded by
ECM (PCM). The actual ignition timing should be
checked by using the timing light.
INTAKE AIR TEMP. (C, F)
It is detected by intake air temp. sensor and used to
determine the amount of air passing into the intake
manifold as air density varies with temperature.
MAF (MASS AIR FLOW RATE, gm / s, lb / min)
It represents total mass of air entering intake manifold
which is computed based on signals from MAP sen-
sor, IAT sensor, TP sensor, etc.
THROTTLE POS
(ABSOLUTE THROTTLE POSITION, %)
When throttle position sensor is fully closed position,
throttle opening is indicated as 0% and 100% full open
position.
OXYGEN SENSOR B1 S1
(HEATED OXYGEN SENSOR-1, V)
It indicates output voltage of HO2S-1 installed on ex-
haust manifold (pre-catalyst).
OXYGEN SENSOR B1 S2
(HEATED OXYGEN SENSOR-2, V)
It indicates output voltage of HO2S-2 installed on ex-
haust pipe (post-catalyst). It is used to detect catalyst
deterioration.
DESIRED IDLE (DESIRED IDLE SPEED, rpm)
The Desired Idle Speed is an ECM (PCM) internal pa-
rameter which indicates the ECM (PCM) requested
idle. If the engine is not running, this number is not valid.
TP SENSOR VOLT (THROTTLE POSITION
SENSOR OUTPUT VOLTAGE, V)
The Throttle Position Sensor reading provides throttle
valve opening information in the form of voltage.
INJ PULSE WIDTH
(FUEL INJECTION PULSE WIDTH, msec.)
This parameter indicates time of the injector drive
(valve opening) pulse which is output from ECM
(PCM) (but injector drive time of NO.1 cylinder for
multiport fuel injection).
IAC FLOW DUTY (IDLE AIR (SPEED) CONTROL
DUTY, %)
This parameter indicates opening of the throttle valve
in terms of percentage to opening controllable by the
ISC actuator.
TOTAL FUEL TRIM (%)
The value of Total Fuel Trim is obtained by putting val-
ues of short Term Fuel Trim and Long Term Fuel Trim
together. This value indicates how much correction is
necessary to keep the air / fuel mixture stoichiomet-
rical.
BATTERY VOLTAGE (V)
This parameter indicates battery positive voltage in-
putted from main relay to ECM (PCM).