cam shaft sensor DAEWOO NUBIRA 2004 Service Workshop Manual
[x] Cancel search | Manufacturer: DAEWOO, Model Year: 2004, Model line: NUBIRA, Model: DAEWOO NUBIRA 2004Pages: 2643, PDF Size: 80.54 MB
Page 698 of 2643

1F – 452IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0336
58X CRANK POSITION SENSOR EXTRA/MISSING
PULSES
Circuit Description
The 58X reference signal is produced by the Crankshaft
Position (CKP) sensor. During one crankshaft revolution,
58 crankshaft pulses will be produced. The Engine Control
Module (ECM) uses the 58X reference signal to calculate
engine rpm and CKP. The ECM constantly monitors the
number of pulses on the 58X reference circuit and
compares them to the number of Camshaft Position
(CMP) signal pulses being received. If the ECM receives
and incorrect number of pulses on the 58X reference cir-
cuit, Diagnostic Trouble Code (DTC) P0336 will set.
Conditions for Setting the DTC
S Engine is running.
S Extra or missing pulses detected between consecu-
tive 58X reference pulses.
S Number of extra or missing teeth is greater than or
equal to 2 per revolution.
S Above condition is detected in 10 of 100 crankshaft
rotations.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive ignition cycle with a fail.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffer.
S A history DTC is stored.
Conditions for Clearing the MIL/DTCS The MIL will turn OFF after four consecutive igni-
tion cycles in which the diagnostic runs without a
fault.
S A history DTC will clear after 40 consecutive warm–
up cycles have occurred without a fault.
S The DTC(s) can be cleared using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An intermittent may be caused by a poor connection,
rubbed–through wire insulation or a wire broken inside the
insulation. Check for:
S Poor connection – Inspect the ECM harness and
connectors for improper mating, broken locks, im-
properly formed or damaged terminals, and poor
terminal–towire connections.
S Damaged harness – Inspect the wiring harness for
damage. If the harness appears to be OK, discon-
nect the ECM, turn the ignition ON and observe a
voltmeter connected to the 58X reference circuit at
the ECM harness connector while moving the con-
nectors and the wiring harnesses related to the
ECM. A change in voltage will indicate the location
of the fault.
S Reviewing the Failure Records vehicle mileage
since the diagnostic test last failed may help deter-
mine how often the condition that caused the DTC
to be set occurs. This may assist in diagnosing the
condition.
Page 701 of 2643

ENGINE CONTROLS 1F – 455
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0337
58X CRANK POSITION SENSOR NO SIGNAL
Circuit Description
The 58X reference signal is produced by the Crankshaft
Position (CKP) sensor. During one crankshaft revolution,
58 crankshaft pulses will be produced. The Engine Control
Module (ECM) uses the 58X reference signal to calculate
engine rpm and CKP. The ECM constantly monitors the
number of pulses on the 58X reference circuit and
compares them to the number of Camshaft Position
(CMP) signal pulses being received. If the ECM does not
receive any 58X reference pulses on the 58X reference
circuit while cranking, Diagnostic Trouble Code (DTC)
P0337 will set.
Conditions for Setting the DTC
S 58X reference pulse not seen during cranking.
S DTCs P0341 and P0342 are not set.
S Change in voltage drop is greater than 0.5 volts and
change in Manifold Absolute Pressure (MAP) is
greater than 0.05kPa (0.07 psi).
S 58X reference pulse not seen for 0.078 seconds.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffer.
S A history DTC is stored.
Conditions for Clearing the MIL/DTCS The MIL will turn OFF after four consecutive igni-
tion cycles in which the diagnostic runs without a
fault.
S A history DTC will clear after 40 consecutive warm–
up cycles have occurred without a fault.
S The DTC(s) can be cleared using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An intermittent may be caused by a poor connection,
rubbed–through wire insulation or a wire broken inside the
insulation. Check for:
S Poor connection – Inspect the ECM harness and
connectors for improper mating, broken locks, im-
properly formed or damaged terminals, and poor
terminal–towire connections.
S Damaged harness – Inspect the wiring harness for
damage. If the harness appears to be OK, discon-
nect the ECM, turn the ignition ON and observe a
voltmeter connected to the 58X reference circuit at
the ECM harness connector while moving the con-
nectors and the wiring harnesses related to the
ECM. A change in voltage will indicate the location
of the fault.
S Reviewing the Failure Records vehicle mileage
since the diagnostic test last failed may help deter-
mine how often the condition that caused the DTC
to be set occurs. This may assist in diagnosing the
condition.
Page 704 of 2643

1F – 458IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0341
CAMSHAFT POSITION SENSOR RATIONALITY
System Description
The Camshaft Position (CMP) Sensor is used to correlate
crankshaft to camshaft position so that the Engine Control
Module (ECM) can determine which cylinder is ready to be
fueled by the injector. The CMP is also used to determine
which cylinder is misfiring when a misfire is present. When
the ECM cannot use the information from the CMP sensor,
a Diagnostic Trouble Code (DTC) is set, and the ECM will
fuel the engine using the Alternating Synchronous Double
Fire (ASDF) method.
Conditions for Setting the DTC
S CMP Sensor reference pulse is not detected at the
correct interval every 4 cylinders.
S Engine is running.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive ignition cycle with a fail.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An intermittent problem may be caused by a poor connec-
tion, rubbed–through wire insulation, or a wire that is bro-
ken inside the insulation.
Any circuitry, that is suspected as causing the complaint,
should be thoroughly checked for the following conditions:
S Backed–out terminals
S Improper mating
S Broken locks
S Improperly formed
S Damaged terminals
S Poor terminal–to–wire connection
S Physical damage to the wiring harness
Anytime a poor connection is present, the CMP Reference
Activity counter will stop incrementing.
Page 705 of 2643

ENGINE CONTROLS 1F – 459
DAEWOO V–121 BL4
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. This step determines if DTC P0341 is the result of
a hard failure or an intermittent condition.
3. The counter should stop incrementing with the sen-sor electrical connector disconnected and set a
DTC P0342 with the sensor disconnected. If it still
increments the ECM is malfunctioning.
4. By moving the CMP sensor electrical connector, the
connections at the sensor are checked. Make sure
the electrical connector remains securely fastened.
5. A poor connection in any of the circuits at the CMP
will cause the CMP Resync Counter to increment.
Anytime a poor connection is present, the CMP
Reference Activity counter will stop incrementing
and the CMP Resync Counter will increment.
8. The replacement ECM must be reprogrammed.
Refer to the latest Techline procedure for ECM re-
programming.
DTC P0341 – Camshaft Position Sensor Rationality
StepActionValue(s)YesNo
1Perform an On–Board Diagnostic (EOBD) System
Check.
Was the check performed?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Turn the ignition OFF.
2. Install a scan tool to the Data Link Connector
(DLC).
3. Start the engine and operate the vehicle within
the Freeze Frame Conditions and Conditions
for Setting the DTC as noted.
Is Diagnostic Trouble Code (DTC) P0341 set?–Go to Step 3Go to
”Diagnostic
Aids”
31. Turn the ignition OFF.
2. Disconnect the Camshaft Position (CMP) sen-
sor connector.
3. Turn the ignition ON.
4. Using a voltmeter, check the voltage between
the CMP sensor harness connector (Engine
Control Module [ECM] side) terminal 3 and
ground.
Does the voltage near the specified value?5 VGo to Step 4Go to Step 5
4Using a voltmeter, check the voltage between the
CMP sensor wiring harness connector terminal 1
and ground.
Is the voltage over the specified value?10 voltsGo to Step 6Go to Step 10
5With a test light connected to ground, probe the
CMP harness connector terminal 3.
Does the test light illuminate?–Go to Step 8Go to Step 9
6With a test light connected to B+, probe the CMP
sensor harness connector terminal 2.
Does the test light illuminate?–Go to Step 7Go to Step 11
7Check for poor connections at the CMP sensor elec-
trical connectors and repair as needed.
Is the repair complete?–Go to Step 15Go to Step 13
Page 707 of 2643

ENGINE CONTROLS 1F – 461
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0342
CAMSHAFT POSITION SENSOR NO SIGNAL
System Description
The Camshaft Position (CMP) Sensor is used to correlate
crankshaft to camshaft position so that the Engine Control
Module (ECM) can determine which cylinder is ready to be
fueled by the injector. The CMP is also used to determine
which cylinder is misfiring when a misfire is present. When
the ECM cannot use the information from the CMP sensor,
a Diagnostic Trouble Code (DTC) is set, and the ECM will
fuel the engine using the Alternating Synchronous Double
Fire (ASDF) method.
Conditions for Setting the DTC
S CMP Sensor pulse is not detected at the correct
interval every 4 cylinders.
S Engine is running.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
An intermittent problem may be caused by a poor connec-
tion, rubbed–through wire insulation, or a wire that is bro-
ken inside the insulation.
Any circuitry, that is suspected as causing the complaint,
should be thoroughly checked for the following conditions:
S Backed–out terminals
S Improper mating
S Broken locks
S Improperly formed
S Damaged terminals
S Poor terminal–to–wire connection
S Physical damage to the wiring harness
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
Page 708 of 2643

1F – 462IENGINE CONTROLS
DAEWOO V–121 BL4
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and to store the freeze frame and failure
records data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. This step determines if DTC P0342 is the result ofa hard failure or an intermittent condition.
4. Determines if voltage is available to the CMP.
7. This step checks for a voltage supplied by the ECM
to the CMP.
12. The replacement ECM must be reprogrammed.
Refer to the latest Techline procedure for ECM re-
programming.
DTC P0342 – Camshaft Position Sensor No Signal
StepActionValue(s)YesNo
1Perform an On–Board Diagnostic (EOBD) System
Check.
Was the check performed?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Turn the ignition OFF.
2. Install a scan tool to the Data Link Connector
(DLC).
3. Idle the engine.
Is the Camshaft Position (CMP) Active Count incre-
menting?–Go to Step 3Go to Step 4
31. Turn the ignition ON.
2. Review the Freeze Frame data and note the
parameters.
3. Start the engine and operate the vehicle within
the Freeze Frame Conditions and Conditions
for Setting the DTC as noted.
Is the CMP Active Counter incrementing?–Go to Step 13Go to Step 4
41. Turn the ignition OFF.
2. Disconnect the CMP sensor connector.
3. Turn the ignition ON.
4. With a test light connected to ground, probe
the CMP sensor harness connector, terminal 1.
Does the test light illuminate?–Go to Step 5Go to Step 6
5With a test light connected to B+, probe the CMP
sensor harness connector, terminal 2.
Does the test light illuminate?–Go to Step 7Go to Step 8
6Check for a poor connection or open in the CMP sen-
sor B+ feed circuit and repair as necessary.
Is the repair complete?–Go to Step 13Go to
”Diagnostic
Aids”
7Using a Digital Voltmeter (DVM), check the voltage
between the CMP sensor harness connector, termi-
nal 3 and ground.
Does the DVM display near the specified values?5 VGo to Step 11Go to Step 9
8Check for a poor connection or open in the CMP sen-
sor ground circuit and repair as necessary.
Is the repair complete?–Go to Step 13–
91. Turn the ignition OFF.
2. Disconnect the engine Control Module (ECM)
connector.
3. Check for the CMP signal circuit for an open or
short to round or short to B+, and repair as
needed.
Is the repair complete?–Go to Step 13Go to Step 10
Page 824 of 2643

1F – 578IENGINE CONTROLS
DAEWOO V–121 BL4
StepNo Yes Value(s) Action
231. Check for the proper valve timing.
2. Check the cylinder compression.
3. Inspect the pushrods, the rocker arms, the
valve springs, and the camshaft lobes for ex-
cessive wear.
4. Inspect the intake manifold and the exhaust
manifold passages for casting flash.
Is the problem found?–Go toStep 24Go toStep 25
24Repair or replace any components as needed.
Is the repair complete?–System OK–
25Check the Idle Air Control (IAC) valve operation. Re-
pair or replace components as needed.
Is the repair complete?–System OK–
26Check the base idle setting of the throttle body.
Is the repair complete?–Go toStep 27Go toStep 28
27Check the Throttle Position (TP) sensor circuit for
proper operation. Repair or replace components as
needed.
Is the repair complete?–System OK–
28Adjust the base idle setting to specifications.
Is the repair complete?–System OK–
29Repair the fuel system as needed.
Is the repair complete?–System OK–
30Replace the ECM.
Is the repair complete?–System OK–
Page 864 of 2643

1F – 618IENGINE CONTROLS
DAEWOO V–121 BL4
CAMSHAFT POSITION SENSOR
(1.4L/1.6L DOHC)
Removal Procedure
1. Disconnect the negative battery cable.
2. Remove the engine cover bolts and the nuts.
3. Remove the engine cover.
4. Disconnect the CMP sensor electrical connector.
5. Remove the timing belt front cover. Refer to Sec-
tion 1C, DOHC Engine Mechanical.
6. Remvoe the CMP sensor bolts.
7. Remvoe the CMP sensor from the top.
Installation Procedure
1. Install the camshaft position sensor and bolt.
Tighten
Tighten the camshaft position sensor bolts to 7 NSm
(62 lb–in).
2. Install the timing bolt front cover. Refer to Section
1C, DOHC Engine Mechanical.
3. Connect the CMP sensor electrical connector.
4. Install the engine cover.
5. Connect the negative battery cable.
Page 865 of 2643

ENGINE CONTROLS 1F – 619
DAEWOO V–121 BL4
CAMSHAFT POSITION SENSOR
(1.8L DOHC)
Removal Procedure
1. Disconnect the negative battery cable.
2. Remove the engine cover.
3. Disconnect the sensor electrical connector.
4. Remove the timing belt front cover. Refer to Sec-
tion 1C, DOHC Engine Mechanical.
5. Remove the camshaft position sensor bolts.
6. Remove the camshaft position sensor from the top.
Installation Procedure
1. Install the camshaft position sensor and bolts.
Tighten
Tighten the camshaft position bolts to 8 NSm (71 lb–
in).
2. Install the timing belt front cover, the crankshaft
pulley, the accessory drive belt, and the air filter.
Refer to Section 1C, DOHC Engine Mechanical.
3. Connect the sensor electrical connector.
4. Install the engine cover.
5. Connect the negative battery cable.
Page 869 of 2643

ENGINE CONTROLS 1F – 623
DAEWOO V–121 BL4
GENERAL DESCRIPTION
AND SYSTEM OPERATION
IGNITION SYSTEM OPERATION
This ignition system does not use a conventional distribu-
tor and coil. It uses a crankshaft position sensor input to
the engine control module (ECM). The ECM then deter-
mines Electronic Spark Timing (EST) and triggers the di-
rect ignition system ignition coil.
This type of distributorless ignition system uses a ”waste
spark” method of spark distribution. Each cylinder is
paired with the cylinder that is opposite it (1–4 or 2–3). The
spark occurs simultaneously in the cylinder coming up on
the compression stroke and in the cylinder coming up on
the exhaust stroke. The cylinder on the exhaust stroke re-
quires very little of the available energy to fire the spark
plug. The remaining energy is available to the spark plug
in the cylinder on the compression stroke.
These systems use the EST signal from the ECM to con-
trol the electronic spark timing. The ECM uses the follow-
ing information:
S Engine load (manifold pressure or vacuum).
S Atmospheric (barometric) pressure.
S Engine temperature.
S Intake air temperature.
S Crankshaft position.
S Engine speed (rpm).
ELECTRONIC IGNITION SYSTEM
IGNITION COIL
The Electronic Ignition (EI) system ignition coil provides
the spark for two spark plugs simultaneously. The EI sys-
tem ignition coil is not serviceable and must be replaced
as an assembly.
CRANKSHAFT POSITION SENSOR
This direct ignition system uses a magnetic crankshaft
position sensor. This sensor protrudes through its mount
to within approximately 0.05 inch (1.3 mm) of the crank-
shaft reluctor. The reluctor is a special wheel attached to
the crankshaft or crankshaft pulley with 58 slots machined
into it, 57 of which are equally spaced in 6 degree intervals.
The last slot is wider and serves to generate a ”sync
pulse.” As the crankshaft rotates, the slots in the reluctor
change the magnetic field of the sensor, creating an in-
duced voltage pulse. The longer pulse of the 58th slot
identifies a specific orientation of the crankshaft and al-
lows the engine control module (ECM) to determine the
crankshaft orientation at all times. The ECM uses this in-
formation to generate timed ignition and injection pulses
that it sends to the ignition coils and to the fuel injectors.
CAMAHAFT POSITION SENSOR
The Camshaft Position (CMP) sensor sends a CMP sen-
sor signal to the engine control module (ECM). The ECM
uses this signal as a ”sync pulse” to trigger the injectors in
the proper sequence. The ECM uses the CMP sensor sig-
nal to indicate the position of the #1 piston during its power
stroke. This allows the ECM to calculate true sequential
fuel injection mode of operation. If the ECM detects an in-
correct CMP sensor signal while the engine is running,
DTC P0341 will set. If the CMP sensor signal is lost while
the engine is running, the fuel injection system will shift to
a calculated sequential fuel injection mode based on the
last fuel injection pulse, and the engine will continue to run.
As long as the fault is present, the engine can be restarted.
It will run in the calculated sequential mode with a 1–in–6
chance of the injector sequence being correct.
IDLE AIR SYSTEM OPERATION
The idle air system operation is controlled by the base idle
setting of the throttle body and the Idle Air Control (IAC)
valve.
The engine control module (ECM) uses the IAC valve to
set the idle speed dependent on conditions. The ECM
uses information from various inputs, such as coolant tem-
perature, manifold vacuum, etc., for the effective control
of the idle speed.
FUEL CONTROL SYSTEM
OPERATION
The function of the fuel metering system is to deliver the
correct amount of fuel to the engine under all operating
conditions. The fuel is delivered to the engine by the indi-
vidual fuel injectors mounted into the intake manifold near
each cylinder.
The two main fuel control sensors are the Manifold Abso-
lute Pressure (MAP) sensor, the Front Heated Oxygen
Sensor (HO2S1) and the Rear Heated Oxygen Sensor
(HO2S2).
The MAP sensor measures or senses the intake manifold
vacuum. Under high fuel demands the MAP sensor reads
a low vacuum condition, such as wide open throttle. The
engine control module (ECM) uses this information to ri-
chen the mixture, thus increasing the fuel injector on–time,
to provide the correct amount of fuel. When decelerating,
the vacuum increases. This vacuum change is sensed by
the MAP sensor and read by the ECM, which then de-
creases the fuel injector on–time due to the low fuel de-
mand conditions.
HO2S Sensors
The HO2S sensor is located in the exhaust manifold. The
HO2S sensor indicates to the ECM the amount of oxygen
in the exhaust gas and the ECM changes the air/fuel ratio
to the engine by controlling the fuel injectors. The best air/
fuel ratio to minimize exhaust emissions is 14.7 to 1, which
allows the catalytic converter to operate most efficiently.