Fuel sensor wiring ISUZU TF SERIES 2004 User Guide
[x] Cancel search | Manufacturer: ISUZU, Model Year: 2004, Model line: TF SERIES, Model: ISUZU TF SERIES 2004Pages: 4264, PDF Size: 72.63 MB
Page 1738 of 4264

6E–366 4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS
HARD START SYMPTOM
DEFINITIONS: Engine cranks, but does not start for a long time. Does eventually start, or may start and then
immediately stall.
Step Action Value(s) Yes No
1Was the “On-Board Diagnostic (OBD) System Check”
performed?
—Go to Step 2Go to On Board
Diagnostic
(OBD) System
Check
2 1. Perform a bulletin search.
2. If a bulletin that addresses the symptom is found,
correct the condition as instructed in the bulletin.
Was a bulletin found that addresses the symptom?—Verify repair Go to Step 3
3 Was a visually/physical check performed?
—Go to Step 4Go to Visual /
physical Check
4 Is the customer using the incorrect fuel type? Diesel fuel
onlyReplace with
diesel fuel Go to Step 6
5 Visually/physically inspect for the following conditions.
Restrict air intake system. Check for a restricted air
filter element, or foreign objects blocking the air
intake system
Check for objects blocking or ex cessive deposits in
the throttle bore and on the throttle plate
Check for a condition that causes a large vacuum
leak, such as an incorrectly installed or faulty
crankcase ventilation hose.
Restrict air intake system at the turbocharger.
Check for objects blocking the turbocharger
compressor wheel or turbine shaft sticking.
If a problem is found, repair as necessary.
Was a problem found?—Verify repair Go to Step 6
6 Check the ECM & PSG grounds to verify that they are
clean and tight. Refer to the ECM wiring diagrams.
Was a problem found?—Verify repair Go to Step 7
7 1. Using the Tech 2, display the ECT sensor and IAT
sensor value.
2 . C h e c k t h e d i s p l a y e d v a l u e .
Does the Tech 2 indicate correct temperature
depending on engine condition?
If a problem is found, repair as necessary.
Was the problem found?—Verify repair Go to Step 8
8 1. Using the Tech 2, display the FT sensor value.
2. Check the displayed value.
Does the Tech 2 indicate correct temperature
depending on engine condition?
If a problem is found, repair as necessary.
Was the problem found?—Go to Step 20Go to Step 9
9 1. Using the Tech 2, ignition “On”.
2. Monitor the “Glow Time Relay” in the data display.
Does the Tech 2 indicate correct “Glow Time Relay”
status depending on the time from ignition switch
“On”?
If a problem is found, repair as necessary.
Was the problem found?—Go to Step 20Go to Step 10
Page 1768 of 4264

6E–396 4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS
LACK OF POWER, SLUGGISH OR SPONGY SYMPTOM
DEFINITIONS: Engine delivers less than ex pected power. Attempting part-throttle acceleration results in little or no
increase in vehicle speed.
Step Action Value(s) Yes No
1Was the “On-Board Diagnostic (OBD) System Check”
performed?
—Go to Step 2Go to On Board
Diagnostic
(OBD) System
Check
2 1. Perform a bulletin search.
2. If a bulletin that addresses the symptom is found,
correct the condition as instructed in the bulletin.
Was a bulletin found that addresses the symptom?—Verify repair Go to Step 3
3 Was a visually/physical check performed?
—Go to Step 4Go to Visual /
physical Check
4 Is the customer using the incorrect fuel type? Diesel fuel
onlyReplace with
diesel fuel Go to Step 5
5 Visually/physically inspect for the following conditions.
Restrict air intake system. Check for a restricted air
filter element, or foreign objects blocking the air
intake system
Check for objects blocking or ex cessive deposits in
the throttle bore and on the throttle plate
Check for a condition that causes a large vacuum
leak, such as an incorrectly installed or faulty
crankcase ventilation hose.
Restrict air intake system at the turbocharger.
Check for objects blocking the turbocharger
compressor wheel or turbine shaft sticking.
If a problem is found, repair as necessary.
Was a problem found?—Verify repair Go to Step 6
6 Check the ECM & PSG grounds to verify that they are
clean and tight. Refer to the ECM wiring diagrams.
Was a problem found?—Verify repair Go to Step 7
7 1. Using the Tech 2, display the ECT sensor and IAT
sensor value.
2. Check the displayed value.
Does the Tech 2 indicate correct temperature
depending on engine condition?
If a problem is found, repair as necessary.
Was the problem found?—Verify repair Go to Step 8
8 1. Using the Tech 2, display the FT sensor value.
2. Check the displayed value.
Does the Tech 2 indicate correct temperature
depending on engine condition?
If a problem is found, repair as necessary.
Was the problem found?—Go to Step 29Go to Step 9
9 1. Using the Tech 2, ignition “On” and engine “Run”.
2. Monitor the “Mass Air Flow” in the data display.
Does the Tech 2 indicate correct “Mass Air Flow”
depending on accelerator pedal operation? —Go to Step 14Go to Step 10
Page 1779 of 4264

4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS 6E–407
EXCESSIVE WHITE SMOKE
Step Action Value(s) Yes No
1Was the “On-Board Diagnostic (OBD) System Check”
performed?
—Go to Step 2Go to On Board
Diagnostic
(OBD) System
Check
2 1. Perform a bulletin search.
2. If a bulletin that addresses the symptom is found,
correct the condition as instructed in the bulletin.
Was a bulletin found that addresses the symptom?—Verify repair Go to Step 3
3 Was a visually/physical check performed?
—Go to Step 4Go to Visual /
physical Check
4 Is the customer using the incorrect fuel type? Diesel fuel
onlyReplace with
diesel fuel Go to Step 5
5 Check the engine coolant consumption to verify that it
leaks to combustion chamber or ex haust through the
gasket.
Was a problem found?—Verify repair Go to Step 6
6 Check the ECM & PSG grounds to verify that they are
clean and tight. Refer to the ECM wiring diagrams.
Was a problem found?—Verify repair Go to Step 7
7 1. Using the Tech 2, display the ECT sensor and IAT
sensor value.
2. Check the displayed value.
Does the Tech 2 indicate correct temperature
depending on engine condition?
If a problem is found, repair as necessary.
Was the problem found?—Verify repair Go to Step 8
8 1. Using the Tech 2, display the FT sensor value.
2. Check the displayed value.
Does the Tech 2 indicate correct temperature
depending on engine condition?
If a problem is found, repair as necessary.
Was the problem found?—Go to Step 30Go to Step 9
9 1. Using the Tech 2, ignition “On” and engine “Run”.
2. Monitor the “Mass Air Flow” in the data display.
Does the Tech 2 indicate correct “Mass Air Flow”
depending on accelerator pedal operation? —Go to Step 14Go to Step 10
10 Remove the MAF & IAT sensor assembly and check
for the following conditions.
Objects blocking at the MAF sensor element.
If a problem is found, repair as necessary.
Was the problem found?—Verify repair Go to Step 11
11 Check the MAF sensor harness for the following
conditions.
Check for poor connector connection.
Check for misrouted harness.
Check for any accessory parts which may cause
electric interference.
If a problem is found, repair as necessary.
Was a problem found? —Verify repair Go to Step 12
Page 1785 of 4264

4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS 6E–413
EXCESSIVE BLACK SMOKE
Step Action Value(s) Yes No
1Was the “On-Board Diagnostic (OBD) System Check”
performed?
—Go to Step 2Go to On Board
Diagnostic
(OBD) System
Check
2 1. Perform a bulletin search.
2. If a bulletin that addresses the symptom is found,
correct the condition as instructed in the bulletin.
Was a bulletin found that addresses the symptom?—Verify repair Go to Step 3
3 Was a visually/physical check performed?
—Go to Step 4Go to Visual /
physical Check
4 Is the customer using the incorrect fuel type? Diesel fuel
onlyReplace with
diesel fuel Go to Step 5
5 Visually/physically inspect for the following conditions.
Restrict air intake system. Check for a restricted air
filter element, or foreign objects blocking the air
intake system
Check for objects blocking or ex cessive deposits in
the throttle bore and on the throttle plate
Check for a condition that causes a large vacuum
leak, such as an incorrectly installed or faulty
crankcase ventilation hose.
Restrict air intake system at the turbocharger.
Check for objects blocking the turbocharger
compressor wheel or turbine shaft sticking.
If a problem is found, repair as necessary.
Was a problem found?—Verify repair Go to Step 6
6 Check the ECM & PSG grounds to verify that they are
clean and tight. Refer to the ECM wiring diagrams.
Was a problem found?—Verify repair Go to Step 7
7 1. Using the Tech 2, display the ECT sensor and IAT
sensor value.
2. Check the displayed value.
Does the Tech 2 indicate correct temperature
depending on engine condition?
If a problem is found, repair as necessary.
Was the problem found?—Verify repair Go to Step 8
8 1. Using the Tech 2, display the FT sensor value.
2. Check the displayed value.
Does the Tech 2 indicate correct temperature
depending on engine condition?
If a problem is found, repair as necessary.
Was the problem found?—Go to Step 21Go to Step 9
9 1. Using the Tech 2, ignition “On” and engine “Run”.
2. Monitor the “Mass Air Flow” in the data display.
Does the Tech 2 indicate correct “Mass Air Flow”
depending on accelerator pedal operation? —Go to Step 14Go to Step 10
Page 1997 of 4264

3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-1
ENGINE
3.5L ENGINE DRIVEABILITY AND EMISSIONS
CONTENTS
ABBREVIATION CHARTS ................................ 6E-5
COMPONENT LOCATOR ................................. 6E-6
ENGINE COMPONENT LOCATOR TABLE .. 6E-6
ECM CIRCUIT DIAGRAM ................................. 6E-10
GROUND POINT CHART G.EXP (LHD)
WITHOUT EUROPE, ISRAEL, TURKEY (1/4). 6E-13
GROUND POINT CHART G.EXP (LHD) (2/4) .. 6E-14
GROUND POINT CHART G.EXP (LHD) (3/4) .. 6E-15
GROUND POINT CHART G.EXP (LHD) (4/4) .. 6E-16
GROUND POINT CHART G.EXP (RHD) (1/4) . 6E-17
GROUND POINT CHART G.EXP (RHD) (2/4) . 6E-18
GROUND POINT CHART G.EXP (RHD) (3/4) . 6E-19
GROUND POINT CHART G.EXP (RHD) (4/4) . 6E-20
LOCATION ........................................................ 6E-21
CABLE HARNESS & CONNECTOR
LOCATION ....................................................... 6E-22
CONNECTOR LIST ........................................... 6E-27
RELAY AND FUSE ............................................ 6E-30
RELAY AND FUSE BOX LOCATION
(LHD&RHD) ................................................... 6E-30
RELAY AND FUSE BOX LOCATION
(LHD&RHD) ................................................... 6E-31
FUSE AND RELAY LOCATION
(LHD&RHD) ................................................... 6E-32
ECM WIRING DIAGRAM (1/10) ........................ 6E-33
ECM WIRING DIAGRAM (2/10) ........................ 6E-34
ECM WIRING DIAGRAM (3/10) ........................ 6E-35
ECM WIRING DIAGRAM (4/10) ........................ 6E-36
ECM WIRING DIAGRAM (5/10) ........................ 6E-37
ECM WIRING DIAGRAM (6/10) ........................ 6E-38
ECM WIRING DIAGRAM (7/10) ........................ 6E-39
ECM WIRING DIAGRAM (8/10) ........................ 6E-40
ECM WIRING DIAGRAM (9/10) ........................ 6E-41
ECM WIRING DIAGRAM (10/10) ...................... 6E-42
ECM CONNECTOR PIN ASSIGNMENT
& OUTPUT SIGNAL ......................................... 6E-43
GENERAL DESCRIPTION FOR ECM AND
SENSORS ........................................................ 6E-51
Mass Air Flow (MAF) Sensor & Intake Air
Temperature (IAT) Sensor ............................. 6E-52
Throttle Position Sensor (TPS)....................... 6E-52
Idle Air Control (IAC) Valve ............................ 6E-53
Camshaft Position (CMP) Sensor .................. 6E-53
Crankshaft Position (CKP) Sensor ................. 6E-54
Engine Coolant Temperature (ECT) Sensor .. 6E-54
Vehicle Speed Sensor (VSS) ......................... 6E-55
Heated Oxygen (O
2) Sensor........................... 6E-55
GENERAL DESCRIPTION FOR FUEL
METERING....................................................... 6E-56
GENERAL DESCRIPTION FOR ELECTRONIC
IGNITION SYSTEM IGNITION
COILS & CONTROL ......................................... 6E-58
GENERAL DESCRIPTION FOR EVAPORATIVE
EMISSION SYSTEM ........................................ 6E-61
GENERAL DESCRIPRION FOR EXHAUST
GAS RECIRCULATION (EGR) SYSTEM......... 6E-62
ISUZU STRATEGY BASED DIAGNOSTICS .... 6E-63
Diagnostic Thought Process .......................... 6E-64
1. Verify the Complaint ................................... 6E-64
2. Perform Preliminary Checks....................... 6E-64
3. Check Bulletins and Troubleshooting
Hints ........................................................... 6E-65
4. Perform Service Manual Diagnostic
Checks ....................................................... 6E-65
5a and 5b. Perform Service Manual
Diagnostic Procedures ............................... 6E-65
5c. Technician Self Diagnoses ....................... 6E-65
5d. Intermittent Diagnosis............................ 6E-66
Symptom Simulation Tests.......................... 6E-67
5e. Vehicle Operates as Designed ................. 6E-68
6. Re-Examine the Complaint ........................ 6E-68
7. Repair and Verify Fix .................................. 6E-68
GENERAL SERVICE INFORMATION .............. 6E-69
Aftermarket Electrical and Vacuum
Equipment ..................................................... 6E-69
Electrostatic Discharge Damage .................... 6E-69
Page 2067 of 4264

3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-71
Basic Knowledge of Tools Required
Lack of basic knowledge of this powertrain when
performing diagnostic procedures could result in an
incorrect diagnosis or damage to powertrain
components. Do not attempt to diagnose a powertrain
problem without this basic knowledge.
A basic understanding of hand tools is necessary to
effectively use this section of the Service Manual.
Serial Data Communications
Class II Serial Data Communications
This vehicle utilizes the “Class II" communication
system. Each bit of information can have one of two
lengths: long or short. This allows vehicle wiring to be
reduced by transmitting and receiving multiple signals
over a single wire. The messages carried on Class II
data streams are also prioritized. If two messages
attempt to establish communications on the data line at
the same time, only the message with higher priority will
continue. The device with the lower priority message
must wait. The most significant result of this regulation
is that it provides Tech 2 manufacturers with the
capability to access data from any make or model
vehicle that is sold.
The data displayed on the other Tech 2 will appear the
same, with some exceptions. Some scan tools will only
be able to display certain vehicle parameters as values
that are a coded representation of the true or actual
value. For more information on this system of coding,
refer to Decimal/Binary/Hexadecimal Conversions.On
this vehicle the Tech 2 displays the actual values fo
r
vehicle parameters. It will not be necessary to perform
any conversions from coded values to actual values.
On-Board Diagnostic (OBD)
On-Board Diagnostic Tests
A diagnostic test is a series of steps, the result of which
is a pass or fail reported to the diagnostic executive.
When a diagnostic test reports a pass result, the
diagnostic executive records the following data:
The diagnostic test has been completed since the
last ignition cycle.
The diagnostic test has passed during the curren
t
ignition cycle.
The fault identified by the diagnostic test is no
t
currently active.
When a diagnostic test reports a fail result, the
diagnostic executive records the following data:
The diagnostic test has been completed since the
last ignition cycle.
The fault identified by the diagnostic test is currently
active.
The fault has been active during this ignition cycle.
The operating conditions at the time of the failure.
Remember, a fuel trim DTC may be triggered by a list o
f
vehicle faults. Make use of all information available
(other DTCs stored, rich or lean condition, etc.) when
diagnosing a fuel trim fault.
Comprehensive Component Monitor
Diagnostic Operation
Input Components:
Input components are monitored for circuit continuity
and out-of-range values. This includes rationality
checking. Rationality checking refers to indicating a
fault when the signal from a sensor does not seem
reasonable, i.e.throttle position sensor that indicates
high throttle position at low engine loads. Inpu
t
components may include, but are not limited to the
following sensors:
Vehicle Speed Sensor (VSS)
Inlet Air Temperature (IAT) Sensor
Crankshaft Position (CKP) Sensor
Throttle Position Sensor (TPS)
Engine Coolant Temperature (ECT) Sensor
Camshaft Position (CMP) Sensor
Mass Air Flow (MAF) Sensor
In addition to the circuit continuity and rationality check
the ECT sensor is monitored for its ability to achieve a
steady state temperature to enable closed loop fuel
control.
Output Components:
Output components are diagnosed for proper response
to control module commands. Components where
functional monitoring is not feasible will be monitored fo
r
circuit continuity and out-of-range values if applicable.
Output components to be monitored include, but are no
t
limited to, the following circuit:
Idle Air Control (IAC) Valve
Control module controlled EVAP Canister Purge
Valve
Electronic Transmission controls
A/C relays
VSS output
MIL control
Refer to ECM and Sensors in General Descriptions.
Page 2146 of 4264

6E-150 3.5L ENGINE DRIVEABILITY AND EMISSIONS
CIRCUIT DESCRIPTION
The mass air flow (MAF) sensor measures the amount
of air which passes through it into the engine during a
given time. The Engine Control Module (ECM) uses the
mass air flow information to monitor engine operating
conditions for fuel delivery calculations. A large quantity
of air entering the engine indicates an acceleration o
r
high load situation, while a small quantity of air indicates
deceleration or idle.
The MAF sensor produces a frequency signal which
can be monitored using a Tech 2. The frequency will
vary within a range of around 5 to 8 g/s at idle to around
25 to 40 g/s at maximum engine load. DTC P0102 will
be set if the signal from the MAF sensor is below the
possible range of a normally operating MAF sensor.
.
DIAGNOSTIC AIDS
Check for the following conditions:
Poor connection at ECM – Inspect harness
connectors for backed-out terminals, imprope
r
mating, broken locks, improperly formed or damaged
terminals, and poor terminal-to-wire connection.
Misrouted harness – Inspect the MAF senso
r
harness to ensure that it is not routed too close to
high voltage wires.
Damaged harness –Inspect the wiring harness fo
r
damage. If the harness appears to be OK, observe
the Tech 2 while moving connectors and wiring
harnesses related to the MAF sensor. A change in
the display will indicate the location of the fault.
If DTC P0102 cannot be duplicated, the information
included in the Failure Records data can be useful in
determining vehicle mileage since the DTC was last set
Diagnostic Trouble Code (DTC) P0102 (Flash Code 61) Mass Air Flow Sensor
Circuit Low Input
Step Action Value (s) Yes No
1
Was the "On-Board Diagnostic (OBD) System Check"
performed?
- Go to Step 2 Go to On Board
Diagnostic (OBD)
System Check
2
1. Connect the Tech 2.
2. Review and record the failure information.
3. Select "F0: Read DTC Infor By Priority" in "F0:
Diagnostic Trouble Code".
Is the DTC P0102 stored as "Present Failure"?
- Go to Step 3 Refer to
Diagnostic Aids
and Go to Step 3
3
1. Using the Tech2, ignition "On" and engine "Off".
2. Select "Clear DTC Information" with the Tech2 and
clear the DTC information.
3. Operate the vehicle and monitor the "F5: Failed
This Ignition" in "F2: DTC Information"
Was the DTC P0102 stored in this ignition cycle?
- Go to Step 4 Refer to
Diagnostic Aids
and Go to Step 4
Page 2176 of 4264

6E-180 3.5L ENGINE DRIVEABILITY AND EMISSIONS
CIRCUIT DESCRIPTION
The TPS circuit provides a voltage signal that changes
relative to throttle blade angle. The signal voltage will
vary from about 0.6 volts at closed throttle to about 4.5
volts at wide open throttle (WOT).
The TPS signal is one of the most important inputs
used by the Engine Control Module (ECM) for fuel
control and many of the ECM-controlled outputs. The
ECM monitors throttle position and compares actual
throttle position from the TPS to a predicted TPS value
calculated from engine speed. If the ECM detects an
out-of-range condition, DTC P0121 will set.
DIAGNOSTIC AIDS
Check for the following conditions:
Poor connection at ECM – Inspect harness
connectors for backed-out terminals, imprope
r
mating, broken locks improperly formed or damaged
terminals, and poor terminal-to-wire connection.
Damaged harness –Inspect the wiring harness fo
r
damage. If the harness appears to be OK, observe
the ECT display on the Tech 2 while moving
connectors and wiring harnesses related to the
sensor. A change in the display will indicate the
location of the fault.
If DTC P0121 cannot be duplicated, the information
included in the Failure Records data can be useful in
determining vehicle mileage since the DTC was last set.
Diagnostic Trouble Code (DTC) P0121 (Flash Code 21) Throttle Position
Sensor (TPS) Circuit Range/Performance
Step Action Value (s) Yes No
1
Was the "On-Board Diagnostic (OBD) System Check"
performed?
- Go to Step 2 Go to On Board
Diagnostic (OBD)
System Check
2
1. Connect the Tech 2.
2. Review and record the failure information.
3. Select "F0: Read DTC Infor By Priority" in "F0:
Diagnostic Trouble Code".
Is the DTC P0121 stored as "Present Failure"?
- Go to Step 3 Refer to
Diagnostic Aids
and Go to Step 3
3
1. Using the Tech2, ignition "On" and engine "Off".
2. Select "Clear DTC Information" with the Tech2 and
clear the DTC information.
3. Operate the vehicle and monitor the "F5: Failed
This Ignition" in "F2: DTC Information"
Was the DTC P0121 stored in this ignition cycle?
- Go to Step 4 Refer to
Diagnostic Aids
and Go to Step 4
4
1. Using the Tech 2, ignition "On" and engine "Off".
2. Monitor the "Throttle Position" in the data display.
Does the Tech 2 indicate correct "Throttle Position"
from 0% to 100% depending on accelerator pedal
operation?
- Go to Step 6 Go to Step 5
5
1. Using the Tech 2, ignition "On" and engine "Off
2. Monitor the "Throttle Position" in the data display.
3. Adjust the TPS within 0% to 100%.
Was the problem solved?
- Verify repair Go to Step 12
Page 2179 of 4264

3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-183
DIAGNOSTIC TROUBLE CODE (DTC) P0122 (FLASH CODE 21) THROTTLE
POSITION SENSOR CIRCUIT LOW INPUT
RUW46EMF000101
Condition For Setting The DTC and Action Taken When The DTC Sets
Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up)
21 P0122 A Throttle Position
Sensor Low Input TPS output voltage is below 0.24V. The ECM uses default throttle
position value based on mass air
flow and engine speed.
CIRCUIT DESCRIPTION
The TPS circuit provides a voltage signal that changes
relative to throttle blade angle. The signal voltage will
vary from below 0.6 volts at closed throttle to about 4.5
volts at wide open throttle (WOT).
The TPS signal is used by the Engine Control Module
(ECM) for fuel control and many of the ECM-controlled
outputs.
DIAGNOSTIC AIDS
Check for the following conditions:
Poor connection at ECM – Inspect harness
connectors for backed-out terminals, imprope
r
mating, broken locks, improperly formed or damaged
terminals, and poor terminal-to-wire connection.
Damaged harness –Inspect the wiring harness fo
r
damage. If the harness appears to be OK, observe
the throttle position display on the Tech 2 while
moving connectors and wiring harnesses related to
the TPS. A change in the display will indicate the
location of the fault.
If DTC P0122 cannot be duplicated, the information
included in the Failure Records data can be useful in
determining vehicle mileage since the DTC was last set.
Page 2184 of 4264

6E-188 3.5L ENGINE DRIVEABILITY AND EMISSIONS
DIAGNOSTIC TROUBLE CODE (DTC) P0123 (FLASH CODE 21) THROTTLE
POSITION SENSOR CIRCUIT HIGH INPUT
RUW46EMF000101
Condition For Setting The DTC and Action Taken When The DTC Sets
Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up)
21 P0123 A Throttle Position
Sensor High Input TPS output voltage is more than 4.56V. The ECM uses default throttle
position value based on mass air
flow and engine speed.
CIRCUIT DESCRIPTION
The TPS circuit provides a voltage signal that changes
relative to throttle blade angle. The signal voltage will
vary from about 0.6 volts at closed throttle to about 4.5
volts at wide open throttle (WOT).
The TPS signal is one of the most important inputs
used by the Engine Control Module (ECM) for fuel
control and many of the ECM-controlled outputs.
DIAGNOSTIC AIDS
Check for the following conditions:
Poor connection at ECM – Inspect harness
connectors for backed-out terminals, imprope
r
mating, broken locks, improperly formed or damaged
terminals, and poor terminal-to-wire connection.
Damaged harness –Inspect the wiring harness fo
r
damage. If the harness appears to be OK, observe
the TPS display on the Tech 2 while moving
connectors and wiring harnesses related to the TP
sensor. A change in the display will indicate the
location of the fault.
Faulty TPS –With the ignition key “ON," engine
“OFF," observe the TPS display on the Tech 2 while
slowly depressing the accelerator to wide open
throttle. If a voltage over 4.56 volts is seen at any
point in normal accelerator travel, replace the TPS.
If DTC P0123 cannot be duplicated, the information
included in the Failure Records data can be useful in
determining vehicle mileage since the DTC was last set.