Control module JAGUAR XFR 2010 1.G Workshop Manual
[x] Cancel search | Manufacturer: JAGUAR, Model Year: 2010, Model line: XFR, Model: JAGUAR XFR 2010 1.GPages: 3039, PDF Size: 58.49 MB
Page 2683 of 3039

Published: 11-May-2011 
Pedestrian Protection System - Pedestrian Protection System - System 
Operation and Component Description 
Description and Operation 
 
Control Diagram 
 
NOTE: A = Hardwired; D = High speed CAN (controller area network) bus; N = Medium speed CAN bus  
 
 
Item Description 1 Battery 2 CJB (central junction box) 3 Instrument cluster 4 LH (left-hand) hood actuator 5 RH (right-hand) hood actuator 6 Pedestrian protection system control module  
Page 2684 of 3039

 
7 RH accelerometer 8 LH accelerometer 9 RJB (rear junction box) 10 BJB (battery junction box)  
System Operation 
The pedestrian protection system is operational when the vehicle is traveling at speeds between approximately 20 km/h (12.4 
mph) and 45 km/h (28 mph). A vehicle speed signal is received by the pedestrian protection system control module over the 
high speed CAN bus.  
The system is able to determine if contact is made with a pedestrian or another object, such as a traffic cone, using signals 
from accelerometers mounted behind the front bumper. When the system determines contact is made with a pedestrian it fires 
the actuators to lift the rear of the hood approximately 130 mm within 35 ms of the 'fire' signal. 
 
When an impact condition is registered, the pedestrian protection system control module outputs an impact signal on the high 
speed CAN bus. This signal is used by the RJB to initiate the hazard warning lamps. If this occurs, the hazard warning lamp switch is disabled for the remainder of the current ignition cycle. 
 
If the pedestrian protection system control module detects a fault with the system, it outputs a message on the high speed  
CAN bus to the instrument cluster message center. On receipt of this, the message center will display the message 'CHECK PEDESTRIAN SYSTEM'. 
 
The pedestrian protection system control module also stores the VIN (vehicle identification number). If a new control module 
is fitted to the vehicle the Jaguar approved diagnostic tool must be used to program the unit with the vehicles VIN.  
When the vehicle is delivered from the factory the pedestrian protection system is in a 'safe' plant mode. Normal operating 
mode should be activated using the Jaguar approved diagnostic tool during the Pre-Delivery Inspection (PDI) prior to delivery 
to the customer. For additional information, refer to the PDI manual. 
 
If any damage is caused to the front of the vehicle, be it cosmetic or structural, repairs must be carried out in line with the 
processes contained in the workshop manual. Failure to carry out the correct repair process could compromise operation of the 
pedestrian protection system. Refer to GTR for the latest information. 
 
The vehicle must be left for 1 minute after disconnecting the battery before any work can be carried out on the pedestrian 
protection system. 
 
Failure Mode Detection 
 
In service, if any fault is detected, or any part of the system is recognized as not being present, the message center displays 
the warning 'Check Pedestrian System'. 
 
The bonnet deployment actuators are non-serviceable components, and if they must be replaced due to a fault, or due to 
having been deployed, or following any other accident, their barcode labels must be read and recorded in the service database 
against the vehicle VIN for security purposes. 
 
After deployment of the pedestrian protection system, the vehicle must be stopped as soon as it is safe to do so. The hazard 
warning lamps will be activated and can only be switched off by pressing the engine START/STOP button to turn the engine off 
and on again. A warning message 'CHECK PEDESTRIAN SYSTEM' will appear on the message center and the vehicle should be 
transported to the nearest dealer/authorised repairer. The vehicle must not be driven when the bonnet has been deployed. 
 
 
NOTE: If the warning message 'CHECK PEDESTRIAN SYSTEM' appears in the message center when the bonnet has not 
been deployed, the vehicle should be taken to the nearest dealer/authorised repairer immediately. It can be driven. 
 
If any significant damage occurs to the front bumper it should be inspected by a dealer/authorised repairer as soon as 
possible. 
 
 
 
CONTROL MODULE Component Description 
 
The control module is mounted below the hood release lever behind the side trim in the left hand front footwell. 
 
The deployment signal is received from the pedestrian protection system control module. The second-generation system 
adopted for XF is all-new to Jaguar and, although similar, differs from that introduced on XK by having an accelerometer-based 
sensing system rather than a contact-sensing system. The accelerometer-based system is supplied by Bosch. Mounted very 
close to the skin of the bumper, it examines the characteristics of vibration waves caused by impact. Its response time is 
quicker, because it does not rely on the front of the bumper being loaded. It uses the 'saved' time to make more complex 
decisions, and so has fewer error states. The speed of vehicle and the length of the bonnet define the time available to get 
the bonnet into its deployed and stabilized position. It is possible, therefore, to create a time-line counting back from the 
predicted moment of head impact to the time when the deployment signals need to be sent. That in turn defines a time from 
first contact to decision time. 
www.JagDocs.com 
Page 2687 of 3039

 
Pedestrian Protection System - Pedestrian Protection System 
Diagnosis and Testing 
 
Principles of Operation Published: 09-Dec-2013 
 
For a detailed description of the Pedestrian Protection System, refer to the relevant Description and Operation section in the 
workshop manual. 
REFER to: Pedestrian Protection System (501-20C Pedestrian Protection System, Description and Operation) /  Pedestrian Protection System (501-20C Pedestrian Protection System, Description and Operation) /  Pedestrian Protection System (501-20C Pedestrian Protection System, Description and Operation).  
Inspection and Verification 
 
WARNINGS: 
 
 
TO AVOID ACCIDENTAL DEPLOYMENT AND POSSIBLE PERSONAL INJURY, THE BACKUP POWER SUPPLY MUST BE DEPLETED 
BEFORE REPAIRING OR REPLACING ANY PEDESTRIAN PROTECTION SYSTEM COMPONENTS. TO DEPLETE THE BACKUP POWER 
SUPPLY ENERGY, DISCONNECT THE BATTERY GROUND CABLE AND WAIT TWO MINUTES. FAILURE TO FOLLOW THIS 
INSTRUCTION MAY RESULT IN PERSONAL INJURY. 
 
 
Do not use a multimeter to probe the pedestrian protection system actuators. It is possible for the power from the 
multimeter battery to trigger the activation of the actuator. Failure to follow this instruction may result in personal injury. 
 
 
CAUTION: Diagnosis by substitution from a donor vehicle is NOT acceptable. Substitution of control modules does not 
guarantee confirmation of a fault, and may also cause additional faults in the vehicle being tested and/or the donor vehicle. 
NOTES: 
 
 
If the control module or a component is suspect and the vehicle remains under manufacturer warranty, refer to the 
Warranty Policy and Procedures manual (section B1.2), or determine if any prior approval programme is in operation, prior to 
the installation of a new module/component. 
 
 
When performing voltage or resistance tests, always use a digital multimeter accurate to three decimal places, and with 
an up-to-date calibration certificate. When testing resistance always take the resistance of the digital multimeter leads into 
account. 
 
 
Check and rectify basic faults before beginning diagnostic routines involving pinpoint tests. 
 
 
It is advisable not to use a cellular phone or to have a cellular phone in close proximity when working on the pedestrian 
protection system or components 
 
 
Given the legal implications of a restraints system failure, harness repairs to pedestrian protection system circuits are 
not acceptable. Where the text refers to "REPAIR the circuit", this will normally mean the replacement of a harness. 
 
 
After 5 hood deployment events, a new Pedestrian Protection System Control Module (PPSCM) and wiring harness must be 
installed. 
1. Verify the customer concern 
 
2. Visually inspect for obvious signs of damage and system integrity 
 
Visual Inspection 
Mechanical Electrical  
Hood  
Hood hinge 
Hood deployment controls  
Fuses 
Wiring harnesses and connectors 
Pedestrian Protection System Control Module (PPSCM) 
Impact sensors 
Hood deployment controls  
3. If an obvious cause for an observed or reported concern is found, correct the cause (if possible) before proceeding to 
the next step 
4. If the cause is not visually evident, verify the symptom and refer to the Symptom Chart, alternatively check for  
Page 2688 of 3039

Diagnostic Trouble Codes (DTCs) and refer to the DTC Index 
 
5. Check DDW for open campaigns. Refer to the corresponding bulletins and SSMs which may be valid for the specific 
customer complaint and carry out the recommendations as required 
 
Symptom Chart 
 
Symptom Message Possible Causes Action Hood 
deployed CHECK 
PEDESTRIAN 
SYSTEM  
Low speed collision 
with pedestrian or 
other object  
WARNING: The vehicle must not be driven if the hood has been 
deployed. 
 
 
NOTE: Repairs due to a collision are not warrantable. 
Check the vehicle for collision damage. Repair as necessary Hood not 
deployed CHECK 
PEDESTRIAN 
SYSTEM  
Pedestrian 
protection system 
fault  
NOTE: The vehicle may be driven if a pedestrian protection 
system fault is present but the hood has not been deployed. 
 
Check the vehicle for collision damage. Repair as necessary. 
Using the manufacturer approved diagnostic system, check the 
pedestrian protection system control module for related DTCs 
and refer to the relevant DTC index  
DTC Index 
 
For a list of Diagnostic Trouble Codes (DTCs) that could be logged on this vehicle, please refer to Section 100-00. 
REFER to: Diagnostic Trouble Code (DTC) Index - DTC: Pedestrian Protection System Control Module (PPSCM) (100-00 General Information, Description and Operation).  
Page 2714 of 3039

- Disadvantage: Scarring and hardening of the surface. 
Flattening using a copper electrode. 
- Small, sharp dents that face outwards can be worked on with a copper electrode. 
Flattening using a flame and body files. 
 
NOTE: When applied correctly, this method can be used with all the attached parts still in place (roof headlining, 
wiring harnesses etc.). 
 
- Small, soft dents (only slight stretching): Working at the edges of the dent in an inward spiral pattern, the dent 
is heated with an oxyacetylene torch (torch size 1 - 2 mm, excess gas flame) to approx. 250° C. 
- Working rapidly with a body file extracts heat from the edge area until the dent is flattened. Preferably alternate 
between two files. This increases the amount of heat that can be extracted. 
 
Safety measures 
 
The electronic control modules (ECM) fitted to vehicles make it advisable to follow suitable precautions prior to carrying 
out welding repair operations. Harsh conditions of heat and vibration may be generated during these operations which 
could cause damage to the modules. In particular, it is essential to follow the appropriate precautions when 
disconnecting or removing the airbag RCM. 
Do not allow electronic modules or lines to come into contact with the ground connection or the welding electrode. 
Seat belt anchorages are a safety critical. When making repairs in these areas, it is essential to follow design 
specifications. Note that extra strength low alloy steel may be used for seat belt anchorages. Where possible, the 
original production assembly should be used, complete with its seat belt anchorages, or the cut line should be so 
arranged that the original seat belt anchorage is not disturbed. 
All welds within 250mm (9.842) of seat belt anchorages must be carefully checked for weld quality, including spacing of 
spot welds. 
Remove the battery before carrying out welding work in its vicinity. 
Utmost care must be taken when welding near the fuel tank or other components that contain fuel. If the tank filler 
neck or a fuel line must be detached to allow access for welding work, then the fuel tank must be drained and removed. 
Never weld, on components of a filled air conditioning system. The same applies if there is a risk of the air conditioning 
system heating up. 
Connect the ground connection of the electrical welder directly to the part that is to be welded. Make sure that there 
are no electrically insulating parts between the ground connection and the welding point. 
Adjacent vehicle parts and adjacent vehicles must be shielded against flying sparks and heat. 
 
Pedestrian protection system 
 
The pedestrian protection system is designed to mitigate injuries in a pedestrian collision with the vehicle. It does this by 
utilizing a pair of pyrotechnic actuators to lift the hood away from the engine, creating a cushioned impact between the 
pedestrian and the vehicle. It is essential that any repair or replacement operations do not affect the safe working of the 
system. 
For additional information, refer to: Pedestrian Protection System (501-20C Pedestrian Protection System, Description and Operation). 
 
Resistance spot welding 
 
Where resistance spot welds have been used in production, they must be reproduced with new spot welds in replacement 
where possible. All such reproduction spot welds should be spaced 25 to 30mm apart. 
Setting up the equipment and co-ordinating the welding parameters. 
 
Equipment: 
- Follow the equipment manufacturer's instructions for the equipment settings. 
- Select the correct electrode arms (as short as possible). 
- Align the electrode arms and tips exactly. 
- Electrode tips should be convex (rough shaping with a file, fine shaping with a sanding block). 
Body:  
- Make sure that the flanges to be joined lie perfectly flat to one another. 
- Prepare a bare metal joint surface (inside and outside). 
Notes on technique/method: 
- Carry out a test weld on a sample piece of the material coated in welding paste. 
- If any metal parts are located between the electrode arms then there will be a loss of induction and therefore 
power (adjust current setting). 
- The power needs to be adjusted for high-strength low alloy steel. 
- Repeated welding on old welding points often leads to poor quality welds. 
- Keep the electrode tips as near as possible to an angle of 90° to the contact surface. 
- Keep the pressure on the electrodes for a short period after finishing the weld. 
- The electrodes work best if their shape is convex. Clean the contact surface of the electrodes regularly. 
Resistance spot welding panels where the total thickness is 3 mm or more 
 
For all repairs to modern Jaguar vehicles, spot-welding equipment should be suitable for reliable welding of zinc-plated, 
high-strength and high-tensile steels in three or more layers, up to 5 mm total thickness. If these requirements are not 
fulfilled, plug welding must be used for safety reasons. The electrical specifications (current, resistance, heat) of the 
spot-welding equipment have different validity, depending upon the type of equipment. Therefore, it is essential that the 
manufacturer's instructions are observed with regard to the actual welding performance. 
www.JagDocs.com 
Page 2759 of 3039

 
Front End Sheet Metal Repairs - Fender Apron Panel 
Removal and Installation 
 
Removal Published: 11-May-2011 
 
 
1. NOTE: The fender apron panel is manufactured from mild 
steel. 
 
The fender apron panel is serviced as a separate weld-on 
panel. 
 
 
 
 
 
 
 
 
 
 
2. The fender apron panel is replaced in conjunction with: 
Front bumper cover 
Front fender 
Fender apron panel closing panel 
Hood 
Hood hinge 
Hood strut mounting bracket 
Fender mounting plate 
 
3. For additional information relating to this repair procedure please see 
the following: 
For additional information, refer to: Health and Safety Precautions (100-00 General Information, Description and Operation) / 
Body Repairs (501-25A Body Repairs - General Information, Description and Operation) / 
Corrosion Protection (501-25B Body Repairs - Corrosion Protection, Description and Operation) / 
Body and Frame (501-26 Body Repairs - Vehicle Specific Information and Tolerance Checks, Description and Operation). 
 
4. Remove the hood. 
For additional information, refer to: Hood (501-02 Front End Body Panels, Removal and Installation). 
 
5. Remove the hood hinge. 
 
6. Remove the fender apron panel closing panel. 
For additional information, refer to: Fender Apron Panel Closing Panel (501-27 Front End Sheet Metal Repairs, Removal and Installation). 
 
7. Disconnect the generator electrical connectors. 
 
8. Remove the windshield wiper motor and linkage. 
For additional information, refer to: Windshield Wiper Motor (501-16 Wipers and Washers, Removal and Installation). 
 
9. Remove the ECM (engine control module). 
For additional information, refer to: Engine Control Module (ECM) 
(303-14A, Removal and Installation) / 
Engine Control Module (ECM) (303-14B Electronic Engine Controls - V6 3.0L Petrol, Removal and Installation) / 
Engine Control Module (ECM) (303-14C, Removal and Installation). www.JagDocs.com 
Page 2857 of 3039

Panel Sheet Metal Repairs, Removal and Installation). 
 
7. Remove the side air curtain module. 
For additional information, refer to: Side Air Curtain Module (501-20B Supplemental Restraint System, Removal and Installation). 
 
8. Remove the front seat. 
For additional information, refer to: Front Seat (501-10 Seating, Removal and Installation). 
 
9. Remove the floor covering. 
 
10. If the passenger side A-pillar reinforcement is to be repaired, remove 
the heater core and evaporator core housing. 
For additional information, refer to: Heater Core and Evaporator Core Housing (412-01 Climate Control, Removal and Installation).  
11. If the right-hand A-pillar reinforcement is to be repaired, remove the 
central junction box. 
For additional information, refer to: Central Junction Box (CJB) (418-00 Module Communications Network, Removal and Installation). 
 
12. If the drivers side A-pillar reinforcement is to be repaired, remove the 
pedal box. 
 
13. Release and lay aside the insulating material at the inner bulkhead. 
 
14. Release and position aside the inner bulkhead and floor panel wiring 
harness. 
 
 
15. NOTE: The NVH components may have already been 
removed on the outer panel. 
 
Remove the upper and lower NVH components and if 
undamaged retain for reuse.  
Page 2982 of 3039

 
12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      13. 
      14. 
15. NOTE: A new striker reinforcement panel is supplied 
on the quarter panel service panel. 
 
Separate the joints, the adhesive and the NVH (noise, 
vibration and harshness) component and remove the striker 
reinforcement panel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTE: Care should be taken when separating and 
removing the ECM (engine control module) mounting 
bracket if it is to be reused. 
 
If the right-hand rear wheelhouse outer is to be repaired, 
drill out the spot welds as indicated and remove the ECM 
mounting bracket. Retain for reuse on installation. 
 
 
 
 
 
 
 
 
 
 
 
 
NOTE: It is necessary to section the quarter panel 
inner reinforcement at the point indicated, to make sure the 
integrity of the safety belt anchorage point. The right-hand 
panel is illustrated, the left-hand is similar. 
 
Cut the quarter panel inner reinforcement, horizontally, 
approximately 90mm from the centre of the safety belt bolt 
anchorage point as indicated. 
 
 
 
 
 
 
 
 
 
 
 
NOTE: The right-hand panel is illustrated, the 
left-hand is similar although there are additional spot welds 
to drill out. 
 
Drill out the spot welds from the quarter panel inner 
reinforcement section at the points indicated.